Title

Some Results on Optimality Conditions for Nonsmooth Vector Optimization Problems (Nonlinear Analysis and Convex Analysis)

Author(s)

Lee, Gue Myung

Citation

数理解析研究所講究録 数理解析研究所講究録 2004, 1365: 128-137

Issue Date

2004-04

URL

http://hdl.handle.net/2433/25345

Type

Departmental Bulletin Paper
Some Results on Optimality Conditions for Nonsmooth Vector Optimization Problems*

Gue Myung Lee †

Abstract
In this paper, we summarize our recent results ([14]-[17]) about optimality conditions for nonsmooth vector optimization problems. Firstly, we give optimality conditions for a (properly, weakly) efficient solution of a nonsmooth convex vector optimization, which are expressed in terms of vector variational inequalities with subdifferentials. Secondly, we present sequential optimality conditions for an efficient solutions of a nonsmooth convex vector optimization, which hold without any constraint qualifications. Thirdly, we give a necessary optimality condition for a weakly efficient solution of a non-Lipschitzian vector optimization problem. Finally, we present necessary optimality condition for a properly efficient solution of a Lipschitzian vector optimization problem.

1 Introduction

In this paper, we consider the following vector optimization problem:

\[(VP) \quad \text{Minimize} \quad f(x) := (f_1(x), \ldots, f_p(x)) \]
subject to \(x \in D,\)

where \(f_i : \mathbb{R}^n \to \mathbb{R}, \ i = 1, \ldots, p,\) are functions and \(D\) is a subset of \(\mathbb{R}^n.\)

Solving (VP) means to find the (properly, weakly) efficient solutions which are defined as follows;

Definition 1.1 (1) \(\bar{x} \in D\) is said to be an efficient solution of (VP) if for any \(x \in D,\)

\[(f_1(x) - f_1(\bar{x}), \ldots, f_p(x) - f_p(\bar{x})) \not\in \mathbb{R}_+^p \backslash \{0\},\]

where \(\mathbb{R}_+^p\) is the nonnegative orthant of \(\mathbb{R}^p.\)

*This work was supported by the grant No. R01-2003-000-10825-0 from the Basic Research Program of KOSEF.
†Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea.
(2) $\bar{x} \in D$ is called a properly efficient solution of (VP) if $\bar{x} \in D$ is an efficient solution of (VP) and there exists a constant $M > 0$ such that for each $i = 1, \cdots, p$, we have

$$\frac{f_i(\bar{x}) - f_i(x)}{f_j(x) - f_j(\bar{x})} \leq M$$

for some j such that $f_j(x) > f_j(\bar{x})$ whenever $x \in D$ and $f_i(x) < f_i(\bar{x})$.

(3) $\bar{x} \in D$ is said to be a weakly efficient solution of (VP) if for any $x \in D$,

$$(f_1(x) - f_1(\bar{x}), \cdots, f_p(x) - f_p(\bar{x})) \notin \text{int} \mathbb{R}_+^p,$$

where $\text{int} \mathbb{R}_+^p$ is the interior of \mathbb{R}_+^p.

We denote the set of all the efficient solution of (VP), the set of all the weakly efficient solution of (VP), the set of all the properly efficient solution of (VP) by $\text{Eff}(\text{VP})$, $\text{WEff}(\text{VP})$ and $\text{PrEff}(\text{VP})$, respectively.

It is clear that $\text{PrEff}(\text{VP}) \subset \text{Eff}(\text{VP}) \subset \text{WEff}(\text{VP})$. For basic meanings and properties of such solution sets, see [25].

Recently many authors have tried to obtain optimality conditions to nonsmooth (nondifferentiable) vector optimization problems involving nonsmooth objective or constraint functions ([1], [2], [4], [6], [7], [10], [13], [18]-[20], [23], [24], [26]-[31]). In particular, Giannessi [3] gave elegant optimality conditions for differentiable vector convex optimization problem, which are expressed by vector variational inequalities with gradients. Many authors ([8]-[13], [27], [28]) have tried to extend the Giannessi’s results to (nonsmooth) vector optimization problems. Very recently, Jeyakumar, Lee and Dinh ([5]) gave sequential optimality conditions characterizing the solution without any constraint qualification for a scalar convex optimization problem.

In this paper, we summarize our recent results ([14]-[17]) about optimality conditions for nonsmooth vector optimization problems. Firstly, we give optimality conditions for a (properly, weakly) efficient solution of a nonsmooth convex vector optimization, which are expressed in terms of vector variational inequalities with subdifferentials. Secondly, we present sequential optimality conditions for an efficient solution of a nonsmooth convex vector optimization, which hold without any constraint qualifications, and which are given in sequential forms using subdifferentials and ϵ-subdifferentials. Thirdly, we give a necessary optimality condition for a weakly efficient solution of a non-Lipschitzian vector optimization problem involving lower semicontinuous or continuous functions (not necessarily, locally Lipschitz functions). Finally, we present a necessary optimality condition for a properly efficient solution of a Lipschitzian vector optimization problem involving locally Lipschitz functions.
2 Vector Variational Inequalities for Nonsmooth Convex Vector Optimization Problems

Throughout this section, we will assume that the objective functions of (VP), $f_i, i = 1, \cdots, p$, are convex and the constraint set of (VP), D, is a closed convex subset of \mathbb{R}^n.

Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a convex function. The subdifferential of φ at $a \in \mathbb{R}^n$ is defined as the non-empty compact convex set

$$\partial \varphi(a) = \{ v \in \mathbb{R}^n \mid \varphi(x) - \varphi(a) \geq \langle v, x-a \rangle, \forall x \in \mathbb{R}^n \},$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product on \mathbb{R}^n.

Recently, Giannessi [3] considered the following vector variational inequalities for a differentiable convex vector optimization (VP) (when $f_i, i = 1, \cdots, p$, are differentiable):

\begin{itemize}
 \item [(VVI)_\varphi] Find $\bar{x} \in D$ such that
 $$\langle \langle \nabla f_1(\bar{x}), x - \bar{x} \rangle, \cdots, \langle \nabla f_p(\bar{x}), x - \bar{x} \rangle \rangle \not\in -\mathbb{R}_+^p \setminus \{0\}, \forall x \in D,$$
 where $\nabla f_i(x)$ is the gradient of f_i at x and $\langle \cdot, \cdot \rangle$ is the scalar product on \mathbb{R}^n.
 \item [(MVVI)_\varphi] Find $\bar{x} \in D$ such that
 $$\langle \langle \nabla f_1(x), x - \bar{x} \rangle, \cdots, \langle \nabla f_p(x), x - \bar{x} \rangle \rangle \not\in -\mathbb{R}_+^p \setminus \{0\}, \forall x \in D.$$
 \item [(WVVI)_\varphi] Find $\bar{x} \in D$ such that
 $$\langle \langle \nabla f_1(x), x - \bar{x} \rangle, \cdots, \langle \nabla f_p(x), x - \bar{x} \rangle \rangle \not\in -int\mathbb{R}_+^p, \forall x \in D,$$
 where $int\mathbb{R}_+^p$ is the interior of \mathbb{R}_+^p.
\end{itemize}

He proved that if $f_i, i = 1, \cdots, p$, are differentiable, then

$$sol(VVI)_\varphi \subset sol(MVVI)_\varphi = Eff(\text{VP}) \subset WEff(\text{VP}) = sol(WVVI)_\varphi.$$

In this section, we will consider scalar or vector variational inequalities for the nonsmooth convex vector optimization problem (VP), which are formulated as below, to give theorems which extends the above Giannessi’s results to (VP).

\begin{itemize}
 \item [(VI)_\lambda] Find $\bar{x} \in D$ such that $\exists \xi_i \in \partial f_i(\bar{x}), i = 1, \cdots, p$, such that
 $$\langle \sum_{i=1}^p \lambda_i \xi_i, x - \bar{x} \rangle \geq 0 \ \forall x \in D,$$
 where $\lambda = (\lambda_1, \cdots, \lambda_p) \in \mathbb{R}_+^p \setminus \{0\}$.
\end{itemize}
(MVI)$_\lambda$ Find $\bar{x} \in D$ such that $\forall x \in D$, $\exists \xi_i \in \partial f_i(x)$, $i = 1, \cdots, p$,
$\langle \sum_{i=1}^{p} \lambda_i \xi_i, x - \bar{x} \rangle \geqq 0$.

(VVI)$_1$ Find $\bar{x} \in D$ such that $\forall x \in D$, $\forall \xi_i \in \partial f_i(\bar{x})$, $i = 1, \cdots, p$,
$\langle \xi_1, x - \bar{x} \rangle, \cdots, \langle \xi_p, x - \bar{x} \rangle \not\in -\mathbb{R}_+^p \setminus \{0\}$.

(VVI)$_2$ Find $\bar{x} \in D$ such that $\exists \xi_i \in \partial f_i(\bar{x})$, $i = 1, \cdots, p$, such that
$\langle \xi_1, x - \bar{x} \rangle, \cdots, \langle \xi_p, x - \bar{x} \rangle \not\in -\mathbb{R}_+^p \setminus \{0\}$ $\forall x \in D$.

(VVI)$_3$ Find $\bar{x} \in D$ such that $\forall x \in D$, $\exists \xi_i \in \partial f_i(\bar{x})$, $i = 1, \cdots, p$, such that
$\langle \xi_1, x - \bar{x} \rangle, \cdots, \langle \xi_p, x - \bar{x} \rangle \not\in -\mathbb{R}_+^p \setminus \{0\}$.

(MVVI) Find $\bar{x} \in D$ such that $\forall x \in D$, $\forall \xi_i \in \partial f_i(\bar{x})$, $i = 1, \cdots, p$, such that
$\langle \xi_1, x - \bar{x} \rangle, \cdots, \langle \xi_p, x - \bar{x} \rangle \not\in -\mathbb{R}_+^p \setminus \{0\}$.

(WVVI)$_1$ Find $\bar{x} \in D$ such that $\forall x \in D$, $\forall \xi_i \in \partial f_i(\bar{x})$, $i = 1, \cdots, p$,
$\langle \xi_1, x - \bar{x} \rangle, \cdots, \langle \xi_p, x - \bar{x} \rangle \not\in \text{int} \mathbb{R}_+^p$.

(WVVI)$_2$ Find $\bar{x} \in D$ such that $\exists \xi_i \in \partial f_i(\bar{x})$, $i = 1, \cdots, p$, such that
$\langle \xi_1, x - \bar{x} \rangle, \cdots, \langle \xi_p, x - \bar{x} \rangle \not\in \text{int} \mathbb{R}_+^p$ $\forall x \in D$.

(WVVI)$_3$ Find $\bar{x} \in D$ such that $\forall x \in D$, $\exists \xi_i \in \partial f_i(\bar{x})$, $i = 1, \cdots, p$, such that
$\langle \xi_1, x - \bar{x} \rangle, \cdots, \langle \xi_p, x - \bar{x} \rangle \not\in \text{int} \mathbb{R}_+^p$.

(WMVVI) Find $\bar{x} \in D$ such that $\forall x \in D$, $\forall \xi_i \in \partial f_i(\bar{x})$, $i = 1, \cdots, p$, such that
$\langle \xi_1, x - \bar{x} \rangle, \cdots, \langle \xi_p, x - \bar{x} \rangle \not\in \text{int} \mathbb{R}_+^p$.

We denote the solution sets of the above inequality problems by

$\text{sol}(VI)_\lambda$, $\text{sol}(MVI)_\lambda$, $\text{sol}(VVI)$, \cdots, $\text{sol}(WMVVI)$, respectively.

Now we give three theorems which show relations among solution sets of (VP) and the vector variational inequality problems, and present optimality conditions for (properly, weakly) efficient solutions of (VP). The following Theorem 2.1, 2.2 and 2.3 are found in [15].

Theorem 2.1 The following are true:

1. $\text{sol}(VVI)_1 \subset \text{sol}(VVI)_2$.
2. $\text{PrEff}(VP) = \bigcup_{\lambda \in \text{int} \mathbb{R}_+^p} \text{sol}(VI)_\lambda \subset \text{sol}(VVI)_2 \subset \text{sol}(VVI)_3 \subset \text{sol}(MVVI) = \text{Eff}(VP)$.

Theorem 2.2 The following relations hold:

$\text{sol}(WVVI)_1 \subset \text{WEff}(VP) = \bigcup_{\lambda \in \mathbb{R}_+^p \setminus \{0\}} \text{sol}(VI)_\lambda = \bigcup_{\lambda \in \mathbb{R}_+^p \setminus \{0\}} \text{sol}(MVI)_\lambda$.
Theorem 2.3 If D is a polyhedral convex set in \mathbb{R}^n, then
$$\text{sol}(VVI)_2 = \text{PrEff}(VP).$$

3 Sequential Optimality Conditions for Convex Vector Optimization Problems

Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a convex function. For $\epsilon \geq 0$, the ϵ-subdifferential of φ at $a \in \mathbb{R}^n$ is defined as the non-empty closed convex set
$$\partial_\epsilon \varphi(a) = \{ v \in \mathbb{R}^n \mid \varphi(x) - \varphi(a) \geq \langle v, x - a \rangle - \epsilon \quad \forall x \in \mathbb{R}^n \}.$$

In this section, we assume that $D = \{ x \in \mathbb{R}^n \mid g_j(x) \leq 0, \ j = 1, \cdots, m \}$, where $g_j : \mathbb{R}^n \to \mathbb{R}, \ j = 1, \cdots, m$ are convex functions, and the objective functions of (VP), $f_i, \ i = 1, \cdots, p$, are convex functions.

Now we give two theorems about sequential optimality conditions for an efficient solution of (VP). The following Theorems 3.1 and 3.2 can be obtained from results in [17].

Theorem 3.1 Let $(\theta_1, \cdots, \theta_p) \in \text{int} \mathbb{R}_+^p$ and $\bar{x} \in D$. Then the following are equivalent:

(i) $\bar{x} \in \text{Eff}(VP)$.

(ii) there exist $u \in \partial(\sum_{i=1}^p \theta_i f_i)(\bar{x}), \lambda^n := (\lambda_1^n, \cdots, \lambda_m^n) \in \mathbb{R}_+^m, \delta^n \geq 0, v^n \in \partial_\delta(\sum_{j=1}^m \lambda_j^n g_j)(\bar{x}), \mu^n := (\mu_1^n, \cdots, \mu_p^n) \in \mathbb{R}_+^p, \epsilon^n \geq 0, w^n \in \partial_\epsilon(\sum_{i=1}^p \mu_i^n f_i)(\bar{x})$ such that
$$u + \lim_{n \to \infty} (v^n + w^n) = 0,$$
$$\lim_{n \to \infty} \delta^n = \lim_{n \to \infty} \epsilon^n = 0 \quad \text{and}$$
$$\lim_{n \to \infty} \left(\sum_{j=1}^m \lambda_j^n g_j \right)(\bar{x}) = 0.$$
4 Necessary Optimality Conditions for non-Lipschitzian Vector Optimization Problems

We introduce the normal cone and the (singular) approximate subdifferential studied by Mordukhovich ([21], [22]).

Let C be a nonempty subset of \mathbb{R}^n and $x \in \mathbb{R}^n$. Define

$$P(C, x) := \{ w \in \text{cl}C \mid \|x - w\| = \inf_{z \in C} \|x - z\| \},$$

where $\text{cl}C$ is the closure of the set C. Let $\bar{x} \in \text{cl}C$. The normal cone to C at \bar{x} is defined by

$$N(C, \bar{x}) := \{ y \in \mathbb{R}^n \mid \exists y_k \rightarrow y, \ x_k \rightarrow \bar{x}, \ t_k \in (0, \infty),$$

$$c_k \in \mathbb{R}^n \text{ with } c_k \in P(C, x_k) \text{ and } y_k = t_k(x_k - c_k) \}.$$

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function and $x \in \mathbb{R}^n$. The approximate subdifferential of f at x is defined by

$$\partial^A f(x) := \{ x^* \in \mathbb{R}^n \mid (x^*, -1) \in N(\text{epi}f, (x, f(x))) \},$$

and the singular approximate subdifferential of f at x is defined by

$$\partial^\infty f(x) := \{ x^* \in \mathbb{R}^n \mid (x^*, 0) \in N(\text{epi}f, (x, f(x))) \}.$$

In this section, we assume that $D = \{ x \in C \mid g_j(x) \leq 0, \ j = 1, \cdots, m \}$, where $g_j : \mathbb{R}^n \rightarrow \mathbb{R}$ is a function and C is a closed subset of \mathbb{R}^n.

Now we give a theorem about a necessary optimality condition for a weakly efficient solution of a non-Lipschitzian vector optimization problem (VP) involving lower semicontinuous or continuous functions. The following Theorems 4.1 and 4.2 are found in [16].

Theorem 4.1 Let $\bar{x} \in D$. Assume that $f_i, i = 1, \cdots, p$ and $g_j, j \in I(\bar{x}) := \{ j \mid g_j(\bar{x}) = 0 \}$, are lower semicontinuous at \bar{x} and $g_j, j \in \{ 1, \cdots, m \} \setminus I(\bar{x})$ are continuous at \bar{x}. Suppose that

$$\sum_{j \in I(\bar{x})} (r_ja_j + \tilde{z}_j) + \sum_{i=1}^{p} z_i + \eta = 0, \ r_j \geq 0, \ a_j \in \partial^A g_j(\bar{x}),$$

$$\tilde{z}_j \in \partial^\infty g_j(\bar{x}), \ j \in I(\bar{x}) \text{ and } z_i \in \partial^\infty f_i(\bar{x}), \ i = 1, \cdots, p,$$

Then \bar{x} is a weakly efficient solution of (VP).
Let $\eta \in N(C, \bar{x})$

imply $r_j = 0$, $\tilde{z}_j = 0$, $j \in I(\bar{x})$, $z_i = 0$, $i = 1, \ldots, p$, and $\eta = 0$.

If $\bar{x} \in D$ is a weakly efficient solution of (VP), then there exist $\lambda_i \geq 0$, $i = 1, \ldots, p$, not all zero, $\bar{a}_i \in \mathbb{R}^n$, $i = 0, 1, \ldots, p$, such that

$$(\bar{a}_i, -\bar{\lambda}_i) \in N(epi f_i, (\bar{x}, f_i(\bar{x}))), i = 1, \ldots, p$$

and

$$0 \in \sum_{i=1}^{p} \bar{a}_i + \sum_{j \in I(\bar{x})} \left[\bigcup_{r_j > 0} r_j \partial^A g_j(\bar{x}) \right] \cup \partial^\infty g_j(\bar{x}) + N(C, \bar{x}).$$

Theorem 4.2 Let $\bar{x} \in D$. Suppose that $f_i : \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots, p$, are locally Lipschitz at \bar{x}. Assume that

$$\sum_{j \in I(\bar{x})} (\alpha_j a_j + \tilde{z}_j) + \eta = 0, \quad \alpha_j \geq 0, \quad a_j \in \partial^A g_j(\bar{x}),$$

$\tilde{z}_j \in \partial^\infty g_j(\bar{x}), j \in I(\bar{x})$, $\eta \in N(C, \bar{x})$

imply $\alpha_j = 0$, $\tilde{z}_j = 0$, $j \in I(\bar{x})$, $\eta = 0$.

If $\bar{x} \in D$ is a weakly efficient solution of (VP), then there exist $\bar{\lambda}_i \geq 0$, $i = 1, \ldots, p$, not all zero, such that

$$0 \in \sum_{i=1}^{p} \bar{\lambda}_i \partial^A f_i(\bar{x}) + \sum_{j \in I(\bar{x})} \left[\bigcup_{r_j > 0} r_j \partial^A g_j(\bar{x}) \right] \cup \partial^\infty g_j(\bar{x}) + N(C, \bar{x}).$$

5 **Necessary Optimality Conditions for Lipschitzian Vector Optimization Problems**

We first recall some notions of Nonsmooth Analysis ([1]). Let $\psi : \mathbb{R}^n \to \mathbb{R}$ be a locally Lipschitz function. The Clarke subdifferential of ψ at $x_0 \in \mathbb{R}^n$ is the set

$$\partial \psi(x_0) = \{ \xi \in \mathbb{R}^n \mid \langle x, \xi \rangle \leq \psi^0(x_0; x) \forall x \in \mathbb{R}^n \}$$

where

$$\psi^0(x_0; x) = \limsup_{x' \to x_0, t \downarrow 0} \frac{1}{t} \left[\psi(x' + tx) - \psi(x') \right].$$
The Clarke tangent cone and the Clarke normal cone of a subset \(C \subset \mathbb{R}^n \) at \(x_0 \in C \) are denoted by \(T_C(x_0) \) and \(N_C(x_0) \), respectively. Recall that
\[
T_C(x_0) = \{ \eta \in \mathbb{R}^n \mid \rho_C^0(x_0; \eta) = 0 \}, \\
N_C(x_0) = \{ \xi \in \mathbb{R}^n \mid \langle \xi, \eta \rangle \leq 0, \ \forall \eta \in T_C(x_0) \}
\]
where \(\rho_C(x) = \rho(x, C) \) i.e. \(\rho_C(x) \) is the distance from \(x \in \mathbb{R}^n \) to \(C \).

In this section, we assume that
\[
D = \{ x \in C \mid g_j(x) \leq 0, \ j = 1, 2, \ldots, m, \ h_l(x) = 0, \ l = 1, 2, \ldots, q \}
\]
where \(C \subset \mathbb{R}^n \) is a closed subset, and \(g_j \) and \(h_l \) are given functions. Let \(x_0 \in D \) and let
\[
I(x_0) = \{ j : g_j(x_0) = 0 \}.
\]
We say that condition (CQ) holds at \(x_0 \in D \) if there do not exist \(\mu_j \geq 0, \ j \in I(x_0) \), and \(r_l \in \mathbb{R}, \ l = 1, 2, \ldots, q \), such that \(\sum_{j \in I(x_0)} \mu_j + \sum_{l=1}^{q} r_l \neq 0 \) and
\[
0 \in \sum_{j \in I(x_0)} \mu_j \partial g_j(x_0) + \sum_{l=1}^{q} r_l \partial h_l(x_0) + N_C(x_0)
\]
where \(\partial g_j(x_0) \) and \(\partial h_l(x_0) \) are the Clarke subdifferentials of \(g_j \) and \(h_l \) at \(x_0 \), and \(N_C(x_0) \) stands for the Clarke normal cone to \(C \) at \(x_0 \).

Now we give a necessary optimality condition for a properly efficient solution of (VP). The following Theorem 5.1 is found in [14].

Theorem 5.1 Assume that all functions \(f_i, g_j \) and \(h_l \) of (VP) are locally Lipschitz. If \(\bar{x} \in D \) is a properly efficient solution of (VP) and if condition (CQ) holds at \(\bar{x} \), then there exist \(\lambda_i > 0, \ i = 1, \ldots, p, \ \mu_j \geq 0, \ j \in I(\bar{x}), \ r_l \in \mathbb{R}, \ l = 1, 2, \ldots, q \), such that
\[
0 \in \sum_{i=1}^{p} \lambda_i \partial f_i(\bar{x}) + \sum_{j \in I(\bar{x})} \mu_j \partial g_j(\bar{x}) + \sum_{l=1}^{q} r_l \partial h_l(\bar{x}) + N_C(\bar{x}).
\]

References

