Acute Medicine & Surgery

The epidemiology and volume-outcome relationship of extracorporeal membrane oxygenation for respiratory failure in Japan: A retrospective observational study using a national administrative database

Journal:	Acute Medicine & Surgery
Manuscript ID	AMS-2019-0137.R1
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Muguruma, Kohei; Kyoto University Graduate School of Medicine Faculty of Medicine Kunisawa, Susumu; Kyoto University Graduate School of Medicine Faculty of Medicine Fushimi, Kiyohide; Tokyo Medical and Dental University Graduate School of Medicine, Department of Health Policy and Informatics Imanaka, Yuichi; Kyoto University Graduate School of Medicine Faculty of Medicine,
Keywords:	Respiration
Optional Keywords:	Extracorporeal membrane oxygenation
Abstract:	Aim: To describe the epidemiology of patients on extracorporeal membrane oxygenation (ECMO) and investigate the possible association between outcomes for respiratory ECMO patients and hospital volume of ECMO treatment for any indications. Methods: Using data from the Diagnosis Procedure Combination database, a nationwide Japanese inpatient database, between July 1, 2010, and March 31, 2018, we identified inpatients aged \geq 18 years who underwent ECMO. Institutional case volume was defined as the mean annual number of ECMO cases; eligible patients were categorized into institutional case volume tertile groups. The primary outcome was inhospital mortality. For ECMO patients with respiratory failure, the association between institutional case volume group and in-hospital mortality rate was analyzed using a multilevel logistic regression model including multiple imputation. Results: ECMO was performed on 25,384 patients during the study period; of those, 1,227 cases were for respiratory failure. Respiratory cases were categorized into low- (<8 cases/year), medium- (8–16 cases/year), and high-volume groups (\geq 17 cases/year). The overall inhospital mortality rate for respiratory ECMO was 62.5% in low-, 54.7% in medium-, and 50.4% in high-volume institutions. With reference to low-volume institutions, the adjusted odds ratios (95% confidence interval) of the medium- and high-volume institutions for in-hospital mortality were 0.72 (0.50–1.04; P = 0.082) and 0.65 (0.45–0.95; P = 0.024), respectively.

1	
2	
3 4 5 6 7	Conclusions: The present study showed that accumulating the experience of using ECMO for any indications may positively affect the outcome of ECMO treatment for respiratory failure, which suggests the effectiveness of consolidating ECMO cases in high-volume centers in Japan.
8 9	
10	
11	
12 13	SCHOLARONE™
14	Manuscripts
15 16	
17	
18	
19 20	
20	
22	
23 24	
25	
26	
27 28	
29	
30	
31 32	
33	
34	
35 36	
37	
38	
39 40	
40	
42	
43 44	
44	
46	
47 48	
48	
50	
51 52	
52 53	
54	
55	
56 57	
58	
59	
60	

1	Title
2	The epidemiology and volume-outcome relationship of extracorporeal membrane oxygenation for respiratory
3	failure in Japan: A retrospective observational study using a national administrative database
4	
5	The full names of the authors
6	Kohei Muguruma ¹ , Susumu Kunisawa ¹ , Kiyohide Fushimi ² , Yuichi Imanaka ¹ *
7	
8	The addresses of the institutions at which the work was carried out
9	¹ Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto
10	University
11	Institutional address: Yosihida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto 606-8501, Japan
12	
13	² Department of Health Policy and Informatics, Graduate School of Medicine, Tokyo Medical and Dental
14	University
15	Institutional address: 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
16	
17	The e-mail address, telephone and fax numbers of the corresponding author
18	*Correspondence: Email: imanaka-y@umin.net/Tel: +81-75-753-4454/Fax: +81-75-753-4455
19	
	1

1 2		
3		
4 5	20	
6 7 8	21	Abstract
9 10 11	22	Aim: To describe the epidemiology of patients on extracorporeal membrane oxygenation (ECMO) and
12 13 14	23	investigate the possible association between outcomes for respiratory ECMO patients and hospital volume
15 16 17 18	24	of ECMO treatment for any indications.
19 20 21	25	Methods: Using data from the Diagnosis Procedure Combination database, a nationwide Japanese inpatient
21 22 23 24	26	database, between July 1, 2010, and March 31, 2018, we identified inpatients aged \geq 18 years who underwent
24 25 26 27	27	ECMO. Institutional case volume was defined as the mean annual number of ECMO cases; eligible patients
28 29 30	28	were categorized into institutional case volume tertile groups. The primary outcome was in-hospital mortality.
30 31 32 33	29	For ECMO patients with respiratory failure, the association between institutional case volume group and in-
34 35	30	hospital mortality rate was analyzed using a multilevel logistic regression model including multiple
36 37 38	31	imputation.
39 40 41 42	32	Results: ECMO was performed on 25,384 patients during the study period; of those, 1,227 cases were for
42 43 44 45	33	respiratory failure. Respiratory cases were categorized into low- (<8 cases/year), medium- (8-16 cases/year),
43 46 47 48	34	and high-volume groups (≥17 cases/year). The overall in-hospital mortality rate for respiratory ECMO was
49 50	35	62.5% in low-, 54.7% in medium-, and 50.4% in high-volume institutions. With reference to low-volume
51 52 53 54	36	institutions, the adjusted odds ratios (95% confidence interval) of the medium- and high-volume institutions
54 55 56 57	37	for in-hospital mortality were 0.72 (0.50–1.04; $P = 0.082$) and 0.65 (0.45–0.95; $P = 0.024$), respectively.
57 58 59 60	38	Conclusions: The present study showed that accumulating the experience of using ECMO for any indications

1 2		
3	20	
4 5 6	39	may positively affect the outcome of ECMO treatment for respiratory failure, which suggests the
7 8	40	effectiveness of consolidating ECMO cases in high-volume centers in Japan.
9 10 11	41	
12 13 14	42	Keywords
15 16 17	43	Acute respiratory failure, Extracorporeal membrane oxygenation, In-hospital mortality, Volume-outcome
18 19 20	44	relationship
21 22 23	45	
24 25 26	46	
27 28 29	47	Manuscript Introduction Extracorporeal membrane oxygenation (ECMO) is used for patients with acute severe cardiac or respiratory
30		
31 32 33	48	Introduction
34 35	49	Extracorporeal membrane oxygenation (ECMO) is used for patients with acute severe cardiac or respiratory
36 37 38	50	failure who are refractory to optimal conventional therapy. ¹ Recent studies reported on the increasing number
39 40 41	51	and improving outcomes of ECMO cases, especially for patients on ECMO for respiratory support. ^{2,3}
42 43 44	52	Significantly, most of the favorable outcomes of adult respiratory ECMO were reported by high-volume
45 46 47	53	ECMO centers. ⁴⁻⁷
48 49 50	54	Because ECMO is a complex and high resource-using procedure, consolidating ECMO treatment
51 52 53	55	in high-volume, dedicated centers has been proposed to improve outcomes and optimize health-care
54 55 56	56	resources.8 It has been also suggested that any ECMO indications would contribute to the accumulation of
57 58 59 60	57	experience in respiratory ECMO, as ECMO for respiratory failure may be one component of the full spectrum

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22 23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
43 44
45
46
47
48
49
50
51
52
53
55 54
54 55
56
57
58
59

60

58 of extracorporeal support.⁸

59By contrast, in Japan, insufficient centralization of respiratory ECMO treatment is clinically often said to adversely affect mortality and pursuing the centralization of respiratory ECMO cases remains an 60 61issue.⁹ However, few studies other than some involving small- sized questionnaire surveys or registry data have attempted to describe institutional ECMO volume in Japan,^{10,11} which implies that the efficacy of 6263 centralizing ECMO cases remains unclear. Thus, the aim of this study was two-fold: to investigate the epidemiology of ECMO in Japan by 64 using a national-level inpatient database and to examine the possible association between mortality in 6566 respiratory ECMO cases and the institutional case volume of ECMO for any indications. 67 68Methods 69 <Data source> For our analysis, we used the national level Diagnosis Procedure Combination (DPC) administrative claims 7071database. The DPC system involves a case-mix classification for insurance reimbursements and is used in more than 1,700 acute-care hospitals with approximately 490,000 beds. In 2018, DPC hospitals accounted 72for 83% of all acute-care beds in Japan.¹² The data were collected by the DPC Study Group, funded by the 73Japanese Ministry of Health, Labour and Welfare, and were obtained from approximately 80% of all DPC 7475hospitals, with approximately 8 million inpatient episodes per year. The DPC data contain not only claims 76data for all clinical procedures and prescribed drugs during hospitalization, but also clinical summaries of

2
3
4
•
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
57
40
41
42
43
44
45
46
47
48
49
50
51
52
54
55
56
57
58
59

77	the hospitalizations, such as patient demographics, diagnoses, comorbidities, and outcomes at discharge.
78	Diseases are classified on the basis of the International Classification of Diseases, 10th Revision (ICD-10),
79	codes.
80	<patient selection=""></patient>
81	We identified patients aged \geq 18 years who underwent ECMO between July 1, 2010, and March 31, 2018.
82	ECMO procedure codes in DPC contain codes for cardiopulmonary bypass used in the operating room for
83	cardiac surgery, so we excluded patients who underwent ECMO only on the operation day. Based on previous
84	studies using an administrative database, ECMO indications for ECMO-treated patients were classified by
85	the operation codes or highest resource-use diagnoses as follows: post-cardiotomy, cardiogenic shock (ICD-
86	10 codes, I05–08, I20–28, I33–35, I40–42, I46, and I49–51), cardiopulmonary failure (I26–28), respiratory
87	failure (J09-18 and J40-99), trauma/hypothermia/drowning (S%, T0%, T68, T751, and W65-74), sepsis
88	(A40-41), pre- and post-heart transplant status, and pre- and post-lung transplant status. ^{3,13,14} The
89	classification process was performed by using a hierarchical system of diagnostic or procedure code criteria
90	to create mutually exclusive groups.
91	<variables and="" outcomes=""></variables>
92	Institutional case volume, the main independent variable of interest, was defined as the mean annual
93	number of patients receiving any ECMO at each institution during the study period. We calculated this
94	mean annual number of cases considering the data available periods of each of the institutions. The
95	institutions were categorized into tertiles based on the institutional case volume, with approximately equal

1
2
3
4
5
6
7
8
9
) 10
11
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
<u> </u>

96	numbers of patients in each group. We included patient age, sex, and the institutional case volume group as
97	baseline characteristics of the ECMO cases classified by ECMO indication. The primary outcome was all-
98	cause in-hospital mortality. The secondary outcome was the fraction of patients who were transferred to
99	other institutions while on ECMO.
100	For the patients with ECMO indications for respiratory failure, the following patient
101	characteristics, stratified by institutional volume, were also evaluated based on several variables included in
102	the Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) Score, ¹⁵ the model for
103	predicting survival for patients receiving ECMO for respiratory failure. These variables were age (18–49,
104	50–59, and \geq 60 years), immunocompromised status, central nervous system dysfunction, acute associated
105	nonpulmonary infection, cardiac arrest, the etiologies of acute respiratory failure, and procedures
106	performed before ECMO including bicarbonate infusion, neuromuscular blockade agents, and the duration
107	of mechanical ventilation use prior to initiation of ECMO (0–2, 3–6, and \geq 7 days). The etiologies of acute
108	respiratory failure were extracted based on the RESP score as well, such as viral pneumonia (ICD- 10
109	codes, J13–18), bacterial pneumonia (J09–12 and A%), asthma (J45–46), trauma and burn (S60–70 and
110	T60–70), aspiration pneumonia (J69), other acute respiratory diagnoses (J90–94), or nonrespiratory and
111	chronic respiratory diagnoses. ¹⁵
112	<statistical analyses=""></statistical>
113	Continuous variables were calculated as means and standard errors; categorical variables were calculated as
114	percentages (proportions). The Kruskal-Wallis test and the Pearson χ^2 test were performed as appropriate to

1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

115	assess differences between groups. For the respiratory failure group, a multivariable logistic regression
116	analysis was performed to investigate the association of in-hospital mortality with various factors, including
117	institutional case volume and several components of the RESP score,15 while also accounting for the
118	correlation among the patients treated at the same institution using random effects models. As some values
119	for the duration of mechanical ventilation use prior to initiation of ECMO were missing, we performed
120	multiple imputation to replace these missing values with a set of substituted plausible values by creating 20
121	filled-in complete datasets using the chained equations technique that modifies the predictive mean matching
122	method to impute missing data. ¹⁶ We regarded the missing pattern as missing completely at random or
123	missing at random, and assumed that any systematic differences between the missing and observed values
124	could be explained by differences in the observed data. ¹⁷ We performed complete case analysis as well. As
125	a sensitivity analysis, we examined the volume-outcome relationship by redefining the institutional case
126	volume groups as the cutoff points $6 <$, $6-14$, $15-30$, and > 30 based on previous studies on institutional
127	volume of ECMO. ⁷ All hypotheses were tested using a two-sided test with a significance level of 0.05, and
128	all statistical analyses were performed using the R statistical version 3.5.0 software.
129	<ethical considerations=""></ethical>
130	This study was approved by the ethics committee of the Kyoto University Graduate School of Medicine

131(approval No. R0135). In accordance with the Japanese Ethical Guidelines for Medical and Health Research Involving Human Subjects as stipulated by the Japanese national government, the requirement for informed 132

consent was waived in the present study because of the patients' anonymity. 133

1		
2 3 4	10.4	
4 5	134	
6 7 8	135	Results
9 10 11	136	<epidemiology ecmo="" in="" japan="" of=""></epidemiology>
12 13 14	137	We identified 25,384 patients from 725 hospitals who received ECMO during the study period. Table 1
15 16 17	138	presents the size, baseline characteristics, and outcome variables of each indication group. 1277 cases of
18 19 20	139	respiratory ECMO were performed at 347 hospitals during the study period. Of all the ECMO indications,
21 22 23	140	the fraction of respiratory failure was 5.0%, while that of cardiogenic shock was 70.5%. With regard to
24 25 26	141	institutional case volume, ECMO for respiratory failure, trauma, sepsis, and heart or lung transplant tended
27 28 29	142	to be performed in high-volume institutions. The in-hospital mortality rate was lowest in the respiratory
30 31 32	143	failure group other than the transplant groups. In the respiratory failure group, the fraction of patients who
33 34 35	144	were transferred to other institutions after initiating ECMO was not as high as in the other groups.
36 37 38	145	<baseline ecmo="" failure="" for="" of="" respiratory="" variables=""></baseline>
39 40 41	146	Table 2 shows the backgrounds and outcomes of the respiratory ECMO cases stratified by the institutional
42 43 44	147	case volume groups. These respiratory cases were categorized into 400 low- (<8 cases/year, $n = 200$
45 46 47	148	institutions), 419 medium- (8–16 cases/year, n = 96 institutions), and 498 high-volume groups (≥ 17
48 49 50	149	cases/year, $n = 51$ institutions). No significant differences were found in the distribution of patient age, sex,
51 52 53	150	respiratory ECMO indications, central nervous system dysfunction, acute associated nonpulmonary infection,
54 55 56	151	or use neuromuscular blockade agents before ECMO among the three institutional-volume groups. The most
57 58 59	152	common cause of respiratory ECMO was bacterial infection. The high-volume group tended to initiate
60		8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24
24 25
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40 41
41 42
44
45
46
47
48
49
50
51
52
53
54
55
55 56
57
57 58
58 59
60

153	ECMO soon after starting mechanical ventilation. While the number of patients with cardiac arrest before
154	ECMO was significantly high in the high-volume group, the number of those with immunocompromised
155	status and those with bicarbonate infusion before ECMO was significantly low in the high-volume group.
156	The low-, medium-, and high-volume groups showed mortality rates of 62.5%, 54.7%, and 50.4%,
157	respectively. The number of patients referred to other institutions while on ECMO was quite small and nearly
158	equal among the three groups.
159	<predictors ecmo="" of="" respiratory=""></predictors>
160	Table 3 shows the results of a multivariable logistic regression model clustered by institutions with multiple
161	imputation. After adjusting for the institutional case volume, baseline patient characteristics, respiratory
162	ECMO etiologies, and medical procedures before ECMO, the high-volume group showed a significantly
163	lower mortality rate than the low-volume group (odds ratio [OR], 0.65; 95% confidence interval [CI], 0.45–
164	0.95; $P = 0.024$), whereas the mortality rate in the medium-volume group tended to be lower, but not
165	significantly so, than that in low-volume group (OR, 0.72; 95% CI, 0.50–1.04; $P = 0.082$). The same tendency
166	was observed in the complete case analysis and the sensitivity analysis involving redefining the cutoff points
167	of annual institutional case volume (Table 4, 5).
168	
169	Discussion
170	The present study characterized the current practices of ECMO cases in Japan and revealed a volume-
171	outcome relationship for adult respiratory ECMO by using nationwide administrative data. Contrary to

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 19
20
20 21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 37
37
38
39
40
41 42
42 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

4 5	172	previous studies using Extracorporeal Life Support (ELSO) registry data or an administrative database in the
6 7 8	173	US, the present study showed that the majority of the ECMO indications were for cardiac support; the
9 10 11	174	proportion of ECMO indications for respiratory failure was relatively small. Thus, the selection of pumps,
12 13 14	175	oxygenators, or cannulae might not be especially well-suited for respiratory support in some institutions, a
15 16 17	176	fact that may affect the prognosis of respiratory ECMO.
18 19 20	177	The present study showed a mortality rate for respiratory ECMO of 55.6%, which was less than
21 22 23	178	the rate from the ELSO registry data but comparable to the rate shown in the US administrative data. ^{2,13}
24 25 26	179	During the H1N1 pandemic, the survival rate of patients on respiratory ECMO in Japan was markedly low
27 28 29	180	compared to that in other countries. ⁹ Therefore, the Japanese Society of Respiratory Care Medicine started a
30 31 32	181	training course for organized ECMO-based respiratory programs in 2012 to introduce the routine practice of
33 34 35	182	respiratory ECMO and to build a functional ECMO network system in Japan. ¹⁸ Recent studies demonstrated
36 37 38	183	that outcomes for ECMO use in cases involving influenza-associated acute respiratory failure in Japan
39 40 41	184	markedly improved between 2009 and 2016. ¹⁹ One of the contributing factors may be an improvement of the
42 43 44	185	ECMO management skills for adult respiratory failure due to such ECMO training courses.
45 46 47	186	To the best of our knowledge, this is the first study based on administrative data to suggest that
48 49 50	187	accumulating experience in the use of ECMO for any indications may positively affect the outcome of ECMO
51 52 53	188	for respiratory failure. Generally, a volume-outcome relationship has been found in some medical or surgical
54 55 56	189	cases. ^{20,21} Previous studies using registry data between 1989 and 2013 showed a traditional volume-outcome
57 58 59	190	relationship in ECMO for respiratory failure; however, a study using US administrative data between 2002
60		

Acute Medicine & Surgery

and 2011 did not.^{7,13} Of course, ECMO is merely a procedure for supportive care, so volume alone does not guarantee best practices or good outcomes; still, high-volume centers may maintain robust expertise in the care and ventilatory management of patients with severe respiratory failure. Moreover, the criteria for determining ECMO implementation may differ depending on ECMO experience. Thus, consolidating ECMO cases by assigning them to expert referral centers may contribute to the improvement of outcomes. Despite evidence suggesting the efficacy of consolidation, this study found that only a few patients under ECMO were transferred to higher-volume facilities, which may indicate that consolidating ECMO cases has been promoted only on a very limited basis in Japan. Of course, transferring patients under severe conditions always involves risks. However, several studies have indicated that the transfer of patients on ECMO may not significantly increase mortality beyond the already-high risk of ECMO itself when accompanied by high-level technical expertise or equipment.^{22,23} Recently, the establishment of a mobile ECMO system has been underway in Japan, a development that can be expected to advance the centralization of ECMO cases.24 This study has several limitations. First, the DPC database does not include complete data on physiology, illness severity, or the details of medical procedures, such as ventilator settings or cannulation strategies. This lack of clinical information is a fundamental limitation of administrative data. Therefore, the severity adjustment in this study may be insufficient. However, we employed the high impact factors included in the RESP score-the prognostic factors of hospital discharge for respiratory ECMO-as independent

variables.¹⁵ Moreover, we determined the robustness of our model by imputing variables with missing values

1	
2	
3	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 23 24 25 26 27 28 29 30 31 32 33 34 35 37 37 37 37 37 37 37 37 37 37	
21	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56	
57 58	
58 59	
60	

210	using the multiple imputation method or through sensitivity analysis. Second, our study samples were
211	restricted to hospitals in the DPC Study Group, which may lead to a certain degree of selection bias.
212	Nonetheless, this database included approximately 8 million inpatient records from > 80% of all acute-care
213	beds in Japan. ¹² Thus, the large sample size and diverse characteristics of the hospitals may reduce the
214	potential selection bias. Given these factors, our sample may be reasonably considered representative of
215	ECMO cases in Japan. Finally, the present study sampled only ECMO cases, which means that the results do
216	not represent all patients with severe respiratory failure. Since there may be no explicit standard for the
217	introduction of ECMO, the criteria for determining ECMO implementation may differ between institutions.
218	Further studies investigating severe respiratory failure both with and without ECMO are desirable for
219	supporting our results.
220	
221	Conclusions
222	The present study showed that many of the institutions in Japan performed ECMO mainly for cardiac support.
223	For cases involving ECMO for respiratory failure, a higher institutional case volume of ECMO treatment for
224	any indications was significantly associated with lower in-hospital mortality. Centralizing ECMO cases may
225	improve the outcomes of patients needing respiratory ECMO.
226	
227	
228	Acknowledgement

1 2		
3 4 5	229	This study was supported by Health Sciences Research Grants (H30-seisaku-shitei-004;
6 7 8	230	http://www.mhlw.go.jp) from the Ministry of Health, Labour and Welfare of Japan, and Grant-in-Aid for
9 10 11	231	Scientific Research (Grant No. [A] 16H02634 and [A] 19H01075; https://www.jsps.go.jp/j-grantsinaid/)
12 13 14	232	from Japan Society for the Promotion of Science. The funders had no role in the study design, data collection
15 16 17	233	and analysis, decision to publish, or preparation of the manuscript.
18 19 20	234	
21 22 23	235	Disclosure
24 25 26	236	Approval of the research protocol: This study was approved by the ethics committee of the Kyoto University
27 28 29	237	Graduate School of Medicine (approval No. R0135).
30 31 32	238	Informed consent: N/A.
33 34 35	239	Registry and the registration no. of the study/trial: N/A.
36 37 38	240	Animal studies: N/A.
39 40 41 42	241	Conflict of interest: None declared.
42 43 44	242	
45 46 47	243	References
48 49 50 51	244	1. Extracorporeal Life Support Organization. General Guidelines for all ECLS cases. [cited 2 Octover
52 53 54	245	2019.]
54 55 56 57	246	https://www.elso.org/Portals/0/ELSO%20Guidelines%20General%20All%20ECLS%20Version%201_
57 58 59 60	247	4.pdf
		13

1 2			
3 4 5	248	2.	Thiagarajan RR, Barbaro RP, Rycus PT et al. Extracorporeal Life Support Organization Registry
6 7 8	249		International Report 2016. ASAIO J. 2017;63:60-7.
9 10 11	250	3.	Sanaiha Y, Bailey K, Downey P et al. Trends in mortality and resource utilization for extracorporeal
12 13 14	251		membrane oxygenation in the United States: 2008–2014. Surgery. 2019;165:381–388.
15 16 17 18	252	4.	The Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza
19 20 21	253		Investigators, Davies A, Jones D et al. Extracorporeal Membrane Oxygenation for 2009 Influenza
22 23 24	254		A(H1N1) Acute Respiratory Distress Syndrome. JAMA. 2009;302(17):1888–95.
25 26 27	255	5.	Noah MA, Peek GJ, Finney SJ et al. Referral to an extracorporeal membrane oxygenation center and
28 29 30	256		mortality among patients with severe 2009 influenza A(H1N1). JAMA. 2011;306(15):1659-68.
31 32 33	257	6.	Roch A, Lepaul-Ercole R, Grisoli D et al. Extracorporeal membrane oxygenation for severe influenza
34 35 36	258		A (H1N1) acute respiratory distress syndrome: A prospective observational comparative study.
37 38 39	259		Intensive Care Med. 2010;36(11):1899–905.
40 41 42	260	7.	Barbaro RP, Odetola FO, Kidwell KM et al. Association of hospital-level volume of extracorporeal
43 44 45	261		membrane oxygenation cases and mortality: Analysis of the extracorporeal life support organization
46 47 48	262		registry. Am J Respir Crit Care Med. 2015;191(8):894–901.
49 50 51	263	8.	Combes A, Brodie D, Bartlett R et al. International ECMO Network (ECMONet). Position paper for
52 53 54	264		the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in
55 56 57	265		adult patients. Am J Respir Crit Care Med. 2014;190(5):488–96.
58 59 60	266	9.	Takeda S, Kotani T, Nakagawa S et al. Extracorporeal membrane oxygenation for 2009 influenza

1 2			
3 4 5	267		A(H1N1) severe respiratory failure in Japan. Journal of Anesthesia. 2012;26(5):650–7.
6 7 8	268	10.	Japanese society of Percutaneous Cardio-Pulmonary Support/Extracorporeal Membrane Oxygenation.
9 10 11	269		Questionnaire result. (in Japanese.) [cited 2 Octover 2019.]
12 13 14	270		http://www2.convention.co.jp/pcps/dl/enquete.pdf
15 16 17	271	11.	Nonprofit Organization Japanese Society of Education for Physicians and Trainees in Intensive Care.
18 19 20	272		Questionnaire result. (in Japanese.) [cited 2 Octover 2019.]
21 22 23	273		http://www.jseptic.com/rinsho/questionnaire.html
24 25 26	274	12.	Ministry of Health, Labour and Welfare. Overviews of revised medical fee in 2018. (in Japanese.)
27 28 29	275		[cited 2 Octover 2019.] https://www.mhlw.go.jp/file/06-Seisakujouhou-12400000-
30 31 32	276		Hokenkyoku/0000197983.pdf
33 34 35	277	13.	McCarthy FH, McDermott KM, Spragan D et al. Unconventional Volume-Outcome Associations in
36 37 38	278		Adult Extracorporeal Membrane Oxygenation in the United States. Ann Thorac Surg.
39 40 41 42	279		2016;102(2):489–95.
42 43 44 45	280	14.	Bailey KL, Downey P, Sanaiha Y et al. National trends in volume-outcome relationships for
46 47	281		extracorporeal membrane oxygenation. J of surg res. 2018;231:421-7.
48 49 50	282	15.	Schmidt M, Bailey M, Sheldrake J et al. Predicting survival after extracorporeal membrane
51 52 53	283		oxygenation for severe acute respiratory failure: The Respiratory Extracorporeal Membrane
54 55 56	284		Oxygenation Survival Prediction (RESP) score. Am J Respir Crit Care Med. 2014;189(11):1374–82.
57 58 59	285	16.	Rubin DB, Schenker N. Multiple Imputation in Health-Care Databases : an Overview and Some
60			15

1 2			
3 4 5	286		Applications. Stat Med. 1991;10(4):585–98.
6 7 8	287	17.	Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and
9 10 11	288		clinical research: potential and pitfalls. BMJ. 2009;338:b2393.
12 13 14	289	18.	Japanese Society of Respiratory Care Medicine. Overviews of simulation-based training of ECMO. (in
15 16 17	290		Japanese.) [cited 2 Octover 2019.] http://square.umin.ac.jp/jrcm/contents/ecmo/index.html
18 19 20	291	19.	Ohshimo S, Shime N, Nakagawa S, Nishida O, Takeda S. Committee of the Japan ECMO project.
21 22 23	292		Comparison of extracorporeal membrane oxygenation outcome for influenza-associated acute
24 25 26	293		respiratory failure in Japan between 2009 and 2016. J Intensive Care. 2018;11(6):38.
27 28 29	294	20.	Kahn JM, Goss CH, Heagerty PJ, Kramer AA, O'Brien CR, Rubenfeld GD. Hospital volume and the
30 31 32	295		outcomes of mechanical ventilation. N Engl J Med. 2006;355(1):41-50.
33 34 35	296	21.	Nallamothu BK, Gurm HS, Ting HH et al. Operator Experience and Carotid Stenting outcomes in
36 37 38	297		Medicare beneficiaries. JAMA. 2011;306(12):1338–43.
39 40 41	298	22.	Bryner B, Cooley E, Copenhaver W et al. Two decades' experience with interfacility transport on
42 43 44	299		extracorporeal membrane oxygenation. Ann Thorac Surg. 2014;98:1363-70.
45 46 47	300	23.	Biscotti M, Agerstrand C, Abrams D et al. One hundred transports on extracorporeal support to an
48 49 50	301		extracorporeal membrane oxygenation center. Ann Thorac Surg. 2015;100:34-9.
51 52 53	302	24.	Hagiwara Y, Shimizu K, Suzuki M et al. Simulation training aimed at the establishment of a mobile
54 55 56	303		ECMO system. (in Japanese.) Journal of Japanese Association for Acute Medicine. 2017;28:314-20.
57 58 59 60	304		

	Respiratory		iratory Cardiogenic		Post-		а :		Cardiopulmonary		Trauma/hypothermia		Lung		Heart		D 1
	fai	lure	sh	ock	cardiotomy		20	epsis	failure		/dro	wning	transplant		transplant		P value
Number of patients	1277 347		17887 709		3184 448		1330 350		1167 427		478 208		49 9		12 4		
Number of institutions																	
Male (%)	938	(73.5)	13680	(76.5)	1971	(61.9)	984	(74.0)	448	(38.4)	303	(63.4)	25	(51.0)	9	(75.0)	< 0.001
Age (mean (SD))	61.35	(15.2)	63.2	(14.8)	66.77	(13.9)	62.37	(14.8)	59.85	(16.1)	64.11	(20.4)	42.76	(12.0)	39.42	(8.1)	< 0.001
Institutional case volume																	<0.001
(cases/year) (%)																	< 0.001
Low (8<)	400	(31.3)	6550	(36.6)	1242	(39.0)	427	(32.1)	521	(44.6)	140	(29.3)	15	(30.6)	0	0.0	
Medium (8-16)	419	(32.8)	5711	(31.9)	1021	(32.1)	418	(31.4)	365	(31.3)	147	(30.8)	3	(6.1)	0	0.0	
High (≥17)	458	(35.9)	5626	(31.5)	921	(28.9)	485	(36.5)	281	(24.1)	191	(40.0)	31	(63.3)	12	(100.0)	
Transfer while on ECMO	7	(0.5)	180	(1.0)	2	(0.1)	2	(0.2)	18	(1.5)	4	(0.8)	0	0.0	0	0.0	< 0.001
(%)	,	(0.0)	100	(1.0)	-	(0.1)	2	(0.2)	10	(1.5)		(0.0)	Ũ	0.0	Ū	0.0	0.001
Death (%)	710	(55.6)	12558	(70.2)	2065	(64.9)	1035	(77.8)	721	(61.8)	294	(61.5)	15	(30.6)	3	(25.0)	< 0.001

Table 1. Patient demographics and outcomes of ECMO cases in Japan classified by ECMO indications

Page 19 of 21

Annual institutional case volume groups (cases/year)		Low-Volume		Medium-Volume		High-Volume	
		(<8)		(8–16)		(≥17)	
Number of patients	400		419		458		
Number of institutions		200		96	:	51	
Age group, years (%)							0.877
18–49	86	(21.5)	96	(22.9)	97	(21.2)	
50–59	63	(15.8)	67	(16.0)	82	(17.9)	
≥60	251	(62.7)	256	(61.1)	279	(60.9)	
Male (%)	285	(71.3)	320	(76.4)	333	(72.7)	0.228
Immunocompromised status (%)	75	(18.8)	66	(15.8)	55	(12.0)	0.023
Duration of mechanical ventilation use before ECMO, days							0.004
(%)							0.001
≤2	213	(53.2)	268	(64.0)	308	(67.2)	
3–6	46	(11.5)	39	(9.3)	41	(9.0)	
≥7	65	(16.2)	51	(12.2)	52	(11.4)	
Null	76	(19.0)	61	(14.6)	57	(12.4)	
Acute respiratory diagnosis group (%)							0.58
Viral pneumonia	24	(6.0)	40	(9.5)	44	(9.6)	
Bacterial pneumonia	170	(42.5)	181	(43.2)	200	(43.7)	
Asthma	19	(4.8)	14	(3.3)	15	(3.3)	
Trauma and burn	5	(1.2)	4	(1.0)	5	(1.1)	
Aspiration pneumonia	21	(5.2)	17	(4.1)	27	(5.9)	
Other acute respiratory diagnoses	69	(17.2)	57	(13.6)	65	(14.2)	
Nonrespiratory and chronic respiratory diagnoses	92	(23.0)	106	(25.3)	102	(22.3)	
Central nervous system dysfunction before ECMO (%)	20	(5.0)	26	(6.2)	21	(4.6)	0.542
Acute associated nonpulmonary infection (%)	113	(28.2)	130	(31.0)	153	(33.4)	0.265
Neuromuscular blockade agents before ECMO (%)	229	(57.2)	259	(61.8)	279	(60.9)	0.369
Bicarbonate infusion before ECMO (%)	125	(31.2)	146	(34.8)	123	(26.9)	0.037
Cardiac arrest before ECMO (%)	11	(2.8)	11	(2.6)	29	(6.3)	0.006
Transferred to other institutions while on ECMO (%)	2	(0.5)	3	(0.7)	2	(0.4)	0.845
Death (%)	250	(62.5)	229	(54.7)	231	(50.4)	0.002

52 ECMO, extracorporeal membrane oxygenation.

Table 3. Multivariable logistic regression with multiple imputation for analysis of annual institutional volume and other variables

clustered v	within	institutions	

	OR	(95% CI)	P value
Institutional case volume groups (cases/year)			
Low (<8)	I	Reference	
Medium (8–16)	0.72	(0.50-1.04)	0.082
High (≥17)	0.65	(0.45-0.95)	0.024
Age group, years			
18–49	Ι	Reference	
50–59	1.59	(1.06–2.41)	0.027
≥60	2.85	(2.05-3.96)	< 0.00
Immunocompromised status	1.30	(0.91–1.88)	0.151
Duration of mechanical ventilation use before ECMO, days			
≤2	Reference		
3–6	1.75	(1.12–2.75)	0.016
≥7	1.50	(0.97–2.31)	0.077
Acute respiratory diagnosis group			
Viral pneumonia	I	Reference	
Bacterial pneumonia	1.10	(0.68–1.77)	0.694
Asthma	0.91	(0.41–2.01)	0.817
Trauma and burn	0.93	(0.25-3.42)	0.910
Aspiration pneumonitis	1.23	(0.60-2.54)	0.570
Other acute respiratory diagnosis	1.16	(0.66–2.03)	0.607
Nonrespiratory and chronic respiratory diagnosis	0.76	(0.44–1.29)	0.308
Central nervous system dysfunction before ECMO	1.90	(1.06–3.42)	0.032
Acute associated nonpulmonary infection	1.16	(0.84–1.60)	0.377
Neuromuscular blockade agents before ECMO	0.53	(0.41–0.70)	< 0.00
Bicarbonate infusion before ECMO	2.70	(2.01-3.62)	< 0.00
Cardiac arrest before ECMO	0.94	(0.49–1.80)	0.846

OR, odds ratio; CI, confidence interval; ECMO, extracorporeal membrane oxygenation.

	OR	(95% CI)	P value
Institutional case volume groups (cases/year)			
Low (<8)	Reference		
Medium (8–16)	0.77	(0.52–1.15)	0.201
High (≥17)	0.58	(0.39–0.87)	0.008

Table 4. Adjusted odds ratios of annual institutional volume and other variables clustered within institutions in complete case analysis

OR, odds ratio; CI, confidence interval.

Results of multivariable logistic regression analysis with adjustment for the same factors as those listed in Table 3.

to Review Only

Table 5. Adjusted odds	ratios of annual institutional volume (cutoff points: $6 <$, $6-14$, $15-30$, and > 30) and other variables clustered	
within institutions with	multiple imputation	

	OR	(95% CI)	P value
Annual institutional case volume, cases/year			
<6		Reference	
6–14	0.87	(0.59–1.28)	0.478
15–30	0.6	(0.40-0.91)	0.016
>30	0.78	(0.41–1.46)	0.436

OR, odds ratio; CI, confidence interval.

Results of multivariable logistic regression analysis including multiple imputation with adjustment for the same factors as those listed in Table 3.

to Review Only