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Preface 
 

I have always been interested in healthcare, probably, because I was often sick as a 

kid. I want to save people’ lives by being a pharmacist and doing research in the field of 

pharmaceutical sciences. Since I was born in the era of the Human Genome Project, I saw 

many health-related questions that the knowledge of genome had been expected to 

provide answers. However, they could not. Proteins are the main workhorse of the cell 

and perform most of functions to support life. I have believed that the study about 

proteins can yield new cellular biology and the understanding of health. Therefore, I 

decided to study proteomics in graduate school. 

The term “proteome” was invented to be similar to “genome”, which refers to a 

whole set of proteins expressed at a specific time in a cell, tissue, or an organism1. The 

study of proteome or proteomics offers a comprehensive view of biological processes and 

networks in the cell. Mass spectrometry(MS)-based proteomics has become a universal 

analytical approach for large-scale protein identification and quantification due to its 

high-throughput and high sensitivity2. Since advancements in instrumentation have 

pressured on the downstream data processing, computational proteomics has been 

increasingly challenged to extract the full information from the mass spectrograms3.  

Beside my interest in healthcare, I love mathematics. I am very fortunate to be able 

to combine my interests and start working on computational proteomics in Ph.D. I had 

never coded and had few mathematical backgrounds from mathematical Olympiad camp. 

However, with strong supports from my professor and co-advisor, I was introduced into 

the machine learning world, particularly in audio processing. Non-negative matrix 

factorization (NMF) is a well-used technique that is applicable for audio source 

separation4–6. The audio data can be viewed as 3-dimensional (3D) space of frequency, 

time, and intensity. Surprisingly, it is similar to mass spectrograms which can be 

described as 3D space of mass-to-charge ratio (m/z), time, and intensity. It is fascinating 

to explore NMF computation for proteomics mass spectrogram analysis.  

The challenging part is mass spectrograms of proteome samples have much higher 

complexity than spectrograms of audios. The current conventional proteomics software 

relies on picking only intense peaks from LC/MS mass spectrograms for quantification7,8, 

and determines LC/MS/MS mass spectrograms using over-simplified models for 

identification9. I would like to show the potential of NMF for proteome analysis in 

benchmarking with the software that the proteome research community depends on 

now. 

Peak identification and quantification in proteomics mass spectrograms using NMF 

is described herein. In chapter 1, a novel approach based on NMF was explored and 

developed to identify and quantify peaks in proteomics mass spectrograms using 

precursor ion information. In chapter 2, both precursor and product ion mass 

spectrograms were studied in order to design an integrated NMF framework for 
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proteomics applications. The overall goals are to improve miss-identification and miss-

quantification in LC/MS/MS proteome analysis by using NMF.    
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Chapter 1 

LC/MS-based Proteome Identification and 

Quantification using Non-negative Matrix 

Factorization 
 

Introduction 
Recent advances in LC/MS technologies have permitted detection of a wide range of 

signal parameters in a three-dimensional mass spectrogram, including m/z, retention 

time, and intensity. However, despite the high resolving power of modern LC/MS 

instruments, a large part of the mass spectrogram remains unresolved10,11. A new 

approach based on mathematical and statistical methods is required to interpret mass 

spectrograms accurately and with higher sensitivity. 

Various algorithms have been proposed for measuring peaks in mass spectrograms, 

but they often start by screening the peak shape or defining a threshold to remove 

presumed non-target ions.  However, these preprocessing steps inevitably eliminate 

target ions with either low abundance or irregular peak shapes7,8.  An alternative 

algorithm, multivariate curve resolution-alternating least squares (MCR-ALS) was 

recently proposed for application to high-resolution LC/MS data without the need for 

peak shape assumption or imposition of a prior threshold12. Since the mass spectrograms 

generated from LC/MS are sparse, meaning that a relatively small proportion of targeting 

signals are over a large space on the mass spectrogram, the algorithm incorporates a 

simple sparsity constraint. However, only eight resolved peak profiles from eight 

chemicals and four peak profiles from bacterial cell extracts were shown. The 

preprocessing requires manual selection of chromatographic windows to reduce 

complexity before data analysis. Moreover, the computation cannot remain non-negative, 

which conflicts with the non-negative nature of the mass spectrogram. 

Non-negative matrix factorization (NMF) is an unsupervised machine-learning 

technique that is well applicable for matrix-format data source separation. NMF 

guarantees non-negative computation and  effectively controls its sparse approximation 

with a sparsity constraint13. Unlike other factorizations, NMF learns a part-based 

representation of data input. According to the famous example of NMF application, NMF 

can recognize face image input from various components of face features while principal 

component analysis (PCA) and vector quantization (VQ) need similar whole face for 

recognition14. Therefore, NMF should be suitable for analyzing various signal 

components of non-negative m/z, retention time, and intensity in sparse proteomic mass 

spectrograms.  

It was reported that application of NMF to LC/MS was feasible, and enabled 

annotation of 11 out of 18 mixed chemicals15. However, the simple algorithm employed 
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in that work has substantial limitations, separating the data of a small number of chemical 

compounds with few common or overlapped peaks. It thus cannot be applied to 

proteomic mass spectrograms. So far, application of NMF for peak identification and 

quantification in proteomics has not been explored.  

In this study, I propose a new application of NMF-based approach, i.e., proteomics 

NMF (pNMF) for identifying and quantifying peaks in proteomics mass spectrograms. 

pNMF incorporates the isotopic m/z distribution, the predicted retention time of 

peptides, and the noise. I add a protein-peptide hierarchical relationship as a group 

information for a group sparsity constraint. pNMF shows a good performance without 

the need of thresholding, peak-picking, or complicated preprocessing that conventional 

approaches for proteomics require  
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Theory and Design 
NMF aims to decompose mixture data containing non-negative signals in a matrix 

𝑉 ∈ ℝ𝑚×𝑡  by finding two non-negative matrices, 𝑊 ∈ ℝ𝑚×𝑘  and 𝐻 ∈ ℝ𝑘×𝑡 , whose 

product approximates the mixture data. 𝑊 is a collection of signal components called as 

a dictionary, and 𝐻  is an activation matrix where its column 𝐻𝑡  represents the 

decomposition as activation coefficients that approximate each 𝑉𝑡 onto the dictionary.  

 

𝑉 ≃  𝑊𝐻 

 

The basic NMF (bNMF)16 finds 𝑊  and 𝐻 by minimizing the difference between 𝑉 

and 𝑊𝐻. The iterative approach of bNMF shows it is possible to update the initial values 

of both 𝑊 and 𝐻, but many applications is developed by updating only 𝐻 if it has a fixed 

dictionary for W17. The dictionary can be either preset or trained by many ways. The 

difference 𝐷(𝑉||𝑊𝐻) can be quantified by the cost function 𝐷 , such as the Euclidean 

distance or the Kullback–Leibler divergence (KL divergence). 

 

minimize
𝑊≥0,𝐻≥0

𝐷(𝑉||𝑊𝐻) 

 

I first examined the potential of bNMF for representing an observed mass 

spectrogram as matrix 𝑉 (m/z × retention time) by using a fixed dictionary of peptide 

signals with monoisotopic m/z of all theoretical peptide ions as matrix 𝑊 

(m/z × theoretical peptide ion). I employed  𝐷(𝑉||𝑊𝐻) as the KL divergence due to its 

superior performance in source separations18. The matrix 𝐻  (theoretical peptide ion 

× retention time) was updated for the activation of each theoretical peptide ion along the 

retention time profile. 

To improve bNMF representation, I then designed pNMF (Figure 1). Two subspaces, 

i.e., the peptide signal subspace 𝑊𝑆 and the noise subspace 𝑊𝑁, were incorporated into 

the dictionary. This subspace partitioning prevents noise from interfering with 

interesting signal approximations19.  𝑊𝑆  was supervised by isotopic m/z of theoretical 

peptides. 𝑊𝑁 was obtained by using learned noise patterns obtained from NMF with a 

blank region of the mass spectrogram. Since modern MS instruments can manage the 

fluctuation of background and lock certain chemical noise m/z before reporting the 

results2020, 𝑊𝑁 can help removing other remaining noises such as unexpected chemical 

noises from solvents in LC mobile phase, plasticizers from plastic devices, and metal 

adduct ions21. For the resulting matrix 𝐻 , instead of allowing the algorithm to update 

freely, I scoped the activation region of the peptide subspace 𝐻𝑆 using predicted retention 

time.  

Proteomic mass spectrograms have a unique group sparsity structure arising from 

the protein and peptide hierarchy, and it is appropriate to apply a group sparsity 

constraint Ω22. I imposed Ω on each protein using log/𝐿1 due to its simplicity and good 
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performance5.  Sparseness measure was invented and applied for controlling the level of 

sparsity as a weight factor in NMF13,23. Since the number of members in the group affects 

the algorithm result, I applied sparseness measure as weight 𝜆 and normalized it by the 

number of theoretical peptide ions per protein. 𝜆 was then incorporated into Ω. pNMF 

aims to solve: 

 

minimize
𝑊≥0,𝐻≥0

𝐷(𝑉||𝑊𝐻) +   Ω(𝐻𝑆) 

 

In detail, 𝐷 is the Kullback-Leibler divergence and Ω is log/𝐿1 weighted with λ 

 

𝐷(𝑉 ∥ 𝑊𝐻) =  ∑(𝑉𝑚𝑡 log
𝑉𝑚𝑡

(𝑊𝐻)𝑚𝑡
−  𝑉𝑚𝑡 +  (𝑊𝐻)𝑚𝑡)

𝑚𝑡

 

 

Ω =  log/𝐿1 = ∑ λ𝑔log(|| 𝐻𝑔||1  +  𝜀)

𝐺

𝑔=1

 

where 𝐻𝑔  is a group ( 𝑔 ) of peptide ions digested from the same protein. The 

majorizing function of 𝐷(𝑉||𝑊𝐻) +  Ω(𝐻𝑆)  can be derived for efficient multiplicative 

updates. The convergence of algorithm is shown in the previous study5. 

I presented two designs of pNMF for protein and peptide identifications. The most 

frequently used concept to identify peptides is database searching24, in which all protein 

sequences provided in the database are in silico digested for reference. I first designed 

pNMF using a database-based dictionary and evaluated the performances with two 

standard samples. An alternative to database searching is library searching25, in which 

the reference is constructed using a comprehensive collection of confident identification 

from previous experiments. With the reference as a strong prior knowledge, a library 

searching performs relatively quickly and provides a better identification, particularly for 

short-gradient and low-resolution experiments. I also designed pNMF using a library-

based dictionary and applied it to a proteome-scale mass spectrogram. 
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Figure 1. Overview of pNMF.  

In bNMF method, three matrices are designed to correspond to an observed mass 

spectrogram 𝑉  (m/z × retention time), a supervised dictionary of theoretical peptide 

monoisotopic m/z 𝑊  (m/z × theoretical peptide ion), and an activation matrix 𝐻  for 

updating the results (shown in orange). For pNMF, the supervised dictionary 

incorporates two subspaces: the peptide subspace 𝑊𝑆 and the noise subspace 𝑊𝑁. The 

 𝑊𝑆  column includes monoisotopic m/z and subsequent isotopic m/z, and 𝑊𝑁  contains 

learned noise patterns. For the activation matrix at  𝐻𝑆, instead of allowing the algorithm 

to update freely, the activation region is scoped with predicted retention time windows 

(shown in blue) (top).  

Specifically, the observed mass spectrogram 𝑉 can be viewed as the linear sum of the 

isotopic distribution profile of each peptide 𝑘 in the dictionary 𝑊𝑆 and noise profile in 𝑊𝑁 

scaled by retention time-varying activations. The group sparsity constraint uses protein 

and peptide selection to identify a few highly related patterns to approximate the mass 

spectrogram (bottom). 
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The workflow of pNMF 

The workflow comprises the following four steps. 

 

Step 1. Matrix construction 

1.1  The observed mass spectrogram 𝑽:  

Either an mzML or a text file of a raw file from LC/MS converted by ProteoWizard 

MSconvert26 can be processed by pNMF. The intensity values are normalized by 

mean and assigned to 𝑉 at appropriate m/z and retention time bins. Thresholding 

is not performed, so that low-abundance peptide ions are included in the 

computation.  

1.2 The dictionary 𝑾:  

𝑊 has two subspaces for protein-peptide signals and noise signals, respectively  

 𝑾𝑺: In silico digestion was performed for the database-based dictionary with trypsin 

up to two missed cleavage sites. Peptide ions ranging in length from seven to 50 

amino acids with charges ranging from +2 to +4 were included. Cysteine 

carbamidomethylation was set as a fixed modification. Methionine oxidation and N-

terminal cysteine ammonia loss were set as variable modifications. Features of six 

isotopic peaks including the monoisotopic peak are calculated, normalized, and 

assigned to columns of 𝑊𝑆.  

The library-based dictionary had the peptide ions identified by Mascot27 and the 

additional peptide ions from other possible charges of Mascot-identified peptides 

within m/z range. Cysteine carbamidomethylation and methionine oxidation were 

set as fixed and variable modifications, respectively. Features of six isotopic peaks 

including the monoisotopic peak are calculated, normalized, and assigned to 

columns of  𝑊𝑆. 

 𝑾𝑵: Noise was learned from a blank region of the mass spectrogram, i.e., the last 10 

min of gradient elution, which was free from peptides, by using scikit-learn2 NMF 

with 2 components. The obtained patterns were assigned to two columns of 𝑊𝑁.  

1.3  The activation 𝑯:  

 HS : The activations of each peptide are restricted to zero at retention time frames 

in which the peptide peaks are highly unlikely to be detected. 

 𝑯𝑵: The points in the peptide subspace were fully initialized with positive values. 

 

Step 2. Sparsity constraint weight calculation  

The sparseness measure13 with protein size 𝛌 = [𝛌𝟏, 𝛌𝟐, … , 𝛌𝐆]𝑇 can be calculated as 

follows 

 

𝛌 =
1

√𝑀
∑

√𝑇 − ||𝑉𝑚||1/||𝑉𝑚||2

√𝑇 − 1

𝑀

𝑚

𝒑 
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where the 𝑉 matrix has 𝑀 rows of m/z and 𝑇 columns of retention time (𝑚 ×  𝑡), 

and the 𝒑 vector represents the number of peptide ions for each protein group as 𝒑 =

[𝒑𝟏, 𝒑𝟐, … , 𝒑𝐆]𝑇. In the case of pNMF with the library-based dictioanry, since the update 

regions are constrained with narrow predicted time windows, a window-gradient ratio 

is incorporated into λ by multiplying 𝑤𝑖𝑛𝑑𝑜𝑤 (𝑚𝑖𝑛𝑢𝑡𝑒) 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑚𝑖𝑛𝑢𝑡𝑒)⁄ . 

 

Step 3. pNMF algorithm 

Since pNMF has a fixed dictionary, the algorithm aims to update 𝐻  by iterating 

between: 

1.  Updating 𝐻 

2.  Updating 𝐻𝑔 

3.  Checking 𝐷(𝑉||𝑊𝐻) +  Ω(𝐻𝑆). If the change since the last iteration is less than 

the tolerance, the algorithm declares convergence. 

 
where .∗ and ./ are component-wise multiplication and division, and (. )𝑇 is matrix 

transposition. 

 

Step 4. Post-processing for interpretation  

The resulting 𝐻 is multiplied by the mean to reverse the normalization in 1.1. The 

most confident peak in 𝐻𝑘, which has an activated intensity with a signal-to-noise ratio 

(S/N) > 3, is reported as a peptide candidate for identification and the criterion of S/N > 

10 is used for quantification. Protein identification is reported if there are at least two 

identified peptides, and quantification is calculated based on the sum of activated 

intensities of the reported peptides.  

For the detail of the most confident peak selection, the highest activation peak with 

cosine similarity more than 0.90 was selected as a default candidate. In the design of using 

the database-based dictionary, the additional post-processing was performed by 

The algorithm is summarized below: 

Algorithm 1: pNMF 

input  : 𝑉, 𝑊 = [𝑊𝑆  𝑊𝑁] 

initialize : 𝐻 

repeat 

 # updating 𝐻 

𝐻 ←  𝐻 .∗ (𝑊𝑇(𝑉./𝑊𝐻)); 

# updating 𝐻𝑔 

 for  g = 1:G  do 

𝐻𝑔 ←  
1

1+ λ𝑔/(||𝐻𝑔||1 + 𝜀)
𝐻𝑔; 

end 

until  convergence; 

return  H 
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evaluating the other two highest annotated peaks for each peptide ion. If one of them has 

cosine similarity more than 0.97 and 20% better than the others, the default candidate 

will be replaced. 

 

All computations were performed on a desktop computer with a 3.30 GHz E3-1226 

v3 4-core processor and 32 GB main memory. The raw MS data were deposited at the 

ProteomeXchange Consortium via jPOST partner repository28 with identifier 

JPST000663 for two standard proteins and JPST000765 for E. coli lysate. pNMF is 

available in Python 2.7 at GitHub https://github.com/pasrawin/ProteomicNMF and 

https://github.com/pasrawin/LibraryProteomicNMF. 

  

https://github.com/pasrawin/ProteomicNMF
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Experimental Section 
Mass spectrograms with three different levels of complexity were used in this study. 

Two standard protein mixtures were prepared in-house from four proteins and Universal 

Proteomics Standard (UPS1) containing 48 proteins. Escherichia coli data sets were 

collected from the previously described method29. 

 

Proteomics experiment setup and LC/MS/MS analysis 

Materials:  

Recombinant human albumin, catalase from erythrocytes, recombinant human 

epidermal growth factor, recombinant human leptin, and UPS1 were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). Dithiothreitol, iodoacetamide, Lys-C, trifluoroacetic 

acid (TFA), acetonitrile (ACN), and piperidine were obtained from Wako (Osaka, Japan). 

Trypsin was obtained from Promega (Madison, WI, USA). 

Sample preparation: 

For four-protein standard: 25 ng of albumin, catalase, EGF, and leptin were mixed. 

The sample was reduced with dithiothreitol (10% v/v) and alkylated with iodoacetamide 

(10% v/v) before Lys-C and trypsin digestion (1% w/w) for 3 h and overnight, 

respectively. Peptides were desalted with StageTips30 and suspended in the loading 

buffer (0.5% TFA and 4% ACN) for subsequent LC/MS analysis. 

For forty-eight-protein standard: a commercial UPS1 was premixed with 5 pmol of 

48 proteins ranging in molecular mass from 6000 to 83,000 Da. The processes of 

reduction, alkylation, digestion, and desalting for subsequent LC/MS analysis were the 

same as described for the previous sample. 

For E. coli sample: E. coli strain BW25113 cells grown in Luria−Bertani culture were 

digested according to the PTS protocol31. The resulting peptides were desalted with 

StageTips. 

LC/MS/MS analysis: 

For four-protein standard and forty-eight-protein standard, a self-pulled analytical 

column was prepared with ReproSil-Pur C18-AQ materials (Dr. Maisch, Ammerbuch, 

Germany). The mobile phases consisted of (A) 0.5% acetic acid and (B) 0.5% acetic acid 

in 80% ACN. A gradient condition with flow rate 500 nL/min was set: 5–10% B in 5 min, 

10–40% B in 60 min, 40–100% B in 5 min, 100% B for 10 min, and 5% B for 30 min. An 

Ultimate 3000 pump (Thermo Fisher Scientific, Germering, Germany) and an HTC-PAL 

autosampler (CTC Analytics, Zwingen, Switzerland) were used coupled to a Q-Exactive 

hybrid quadrupole-orbitrap mass spectrometer (Thermo-Fisher Scientific). Tandem 

mass spectra were acquired using data-dependent acquisition. The MS1 survey scan 

range was scanned at a resolution of 70,000 for m/z 300–1500, an AGC level of 3𝑒+6, and 

a maximum ion accumulation time of 100 ms. The top 10 ions having charges from +2 to 

+8 were selected in a scan range of m/z 200–2000 with an isolation window of m/z 2. The 

AGC target was 1𝑒+5, and the maximum ion accumulation time was 100 ms. A dynamic 

exclusion with a duration of 30 s was used to reduce repeated ions. 
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For E. coli sample, a self-pulled analytical column was prepared with ReproSil-Pur 

C18-AQ materials. A two‐step linear gradient of 5 % to 40 % B was set for 70 and 550 

minutes. An Ultimate 3000 pump and an HTC-PAL autosampler were used coupled to an 

LTQ-Orbitrap XL. The MS1 survey scan range was scanned for m/z 300–1500 and an AGC 

level of 5𝑒+5. The top 10 ions were selected and the AGC target at 1𝑒+4 was set for the 

MS2 scan. 

 

pNMF setup 

The further information of matrix inputs are described as follows. 

𝑽 input:  

For each axis of 𝑉, the full scan range of m/z and the peptide retention time were 

divided into fine equal-width bins of 0.01 and 0.005-min, respectively. The retention time 

was smoothed by a moving average technique using a 12-s time window and 6-s time 

shift forward. 

𝑯 input:  

The activations in peptide subspace are restricted by prior knowledge. For pNMF 

with the database-based dictionary, two initializations were combined using the 

predicted retention times and the similarities to the theoretical isotopic distribution, 

respectively. The predicted retention times were obtained from the algorithm, achrom3, 

which could be calibrated by using an in-house data set. The points within the possible 

retention times frame ( 𝑝𝑅𝑇 ) were initialized using Gaussian distribution ( 𝜇  = the 

predicted retention time, 𝜎  = the average peak width/4). The similarities to the 

theoretical isotopic distribution were calculated for peptide ions by using cosine 

similarity (𝑐𝑜𝑠) at time t as  

𝑐𝑜𝑠 =
𝒲𝓍 ⋅ 𝒱𝓍

∥𝒲𝓍∥ ∥𝒱𝓍∥
 

where 𝒲𝓍 is peaks in 𝑊𝑘 and 𝒱𝓍 is peaks at 𝓍 in 𝑉𝑡  

In order to include the surrounding distributions, 𝑐𝑜𝑠 were calculated at 𝑡 − 1, 𝑡 +

1, and 𝑥′ which included the previous isotopic index into 𝑥. All 𝑐𝑜𝑠 were summed and 

calculated for average of median and mean. In this work, the points outside 25-min 𝑝𝑅𝑇 

and the 𝑐𝑜𝑠  less than 0.5 were restricted to zero. Wide 𝑝𝑅𝑇  and low 𝑐𝑜𝑠   were set to 

exclude only highly unreasonable retention times, and they could be adjusted according 

to the experiment. 

For pNMF with the library-based dictionary, the predicted retention times were 

collected from references by combining between Mascot peak retention times from 70-

min gradient experiment and converted retention times of 550-min gradient experiment 

using linear regression. Although Mascot-identified retention times are triggered by MS2, 

they are very dependable. 𝑝𝑅𝑇 were set for 5 minutes and 𝑐𝑜𝑠 was not used.  
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Results and Discussion 

1. Four-protein standard 

1.1 Effects of the NMF modifications 

I applied bNMF method to the four-protein mixture to separate 1057 peptide ions. 

The correlation between the observed total ion currents (TICs) and the total NMF-

activated signals at each time point was examined (Figure 2). I observed a proportional 

relationship with a correlation coefficient of 0.846. On average, 20% of TICs were 

accounted for. To improve the performance of the algorithm, I developed pNMF to 

incorporate precursor ion isotopic distributions, noise models, sparsity constraints, and 

other factors as described in the Theory and Design section, and evaluated the correlation 

to the observed TICs. With pNMF, I obtained a correlation coefficient of 0.982 and 

accounted for 70% of the TICs. As expected, I observed a significant improvement in 

terms of the extraction of peptide ion chromatograms from the mass spectrogram. The 

unaccounted-for signals were from peptides in unsupervised charged states and 

modifications, contaminants, and non-electronic noise outside the pNMF dictionary, since 

TICs included all signal contributions observed during LC/MS.  

Next, I compared the peptide retention times approximated by the NMFs with those 

determined by Mascot and Skyline32, two conventional software programs used in 

proteomics. I imported Mascot search results into Skyline MS1-Full Scan Filtering to 

obtain MS1 parameters. For the peptide ions commonly annotated by NMFs and 

Mascot/Skyline, the retention times by bNMF agreed with those determined by 

Mascot/Skyline, with y = 1.003x, R = 0.902 (Figure 3, left), while pNMF provided better 

accuracy in measuring the retention times of peptide ions, with y = 1.000x, R = 0.999 

(Figure 3, right). These results indicate that our modifications to bNMF were effective for 

annotating peptide ions in the mass spectrogram. 
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Figure 2. Effects of NMF modifications on chromatogram extraction.  

The observed total ion current chromatogram (top). bNMF approximated chromatogram 

(middle). pNMF approximated chromatogram (bottom). Correlation coefficients were 

calculated between the observed total ion currents and total activated intensities of each 

NMF at the same retention time points. 
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Figure 3. Effects of NMF modifications on the accuracy of peptide retention time 

annotation.  

Proportional relationship between bNMF (x-axis) and the conventional method (y-axis) 

for commonly annotated peptide ions (left). Proportional relationship between pNMF (x-

axis) and the conventional method (y-axis) for commonly annotated peptide ions (right). 
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1.2 Peptide identification  

Peptide identification by current conventional approaches, including 

Mascot/Skyline, is based on the use of MS/MS spectra to acquire sequence-related 

information, meaning that the success of peptide identification depends to a large extent 

on the quality of the MS/MS spectra, whereas NMF-based approaches require the signal 

in MS1. pNMF identified 297 out of 303 (98.02%) of Mascot-identified peptides (Figure 

4, left), and the remaining six peptides had 52.29 times lower intensity, 20.78 lower 

Mascot Peptide Score (PeptScore), and 4.12% lower Skyline isotope dot product (idotp) 

than the peptides identified in common, calculated by median (Figure 5). In other words, 

these six peptides have limited intensities in MS1. 

Moreover, pNMF identified an additional 299 peptide ions, and provided 100% 

sequence coverage for the four proteins, whereas the conventional method gave only 

94.83% coverage on average (Figure 6). Generally, MS1-based methods possess higher 

sensitivity to detect a larger number of peptides regardless of MS2 information, although 

MS1 information alone is insufficient for identifying peptides in some cases when the 

poor profiles, such as distorted isotopic patterns, are obtained. 
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1.3 Protein and peptide quantification 

I compared the peak intensities obtained by pNMF with those obtained by Skyline 

for commonly identified ions at the peptide level. The comparison at the protein level was 

done using the sum of the intensities of the common peptide ions in both methods. The 

quantification results for both methods agreed well with each other. Correlation 

coefficients of 0.997 and 0.914 were obtained at the protein and peptide levels, 

respectively. I observed four peptide ion outliers calculated from Tukey's fences, or 1.5 

times the interquartile range above the third quartile of the ratio of absolute intensity 

difference (Figure 4, right). 

I identified two causes of the four outliers, exemplifying the advantage and 

disadvantage of the algorithms. For the outlier 1, Skyline and pNMF reported 

uncorrelated intensities of KLVAASQAALGL with +2 charge for 1.41𝑒+05 at 42.1 min and 

5.12𝑒+09 at 41.60 min. According to Skyline data visualization, I found that this peptide 

ion had three significant hits at 41.47, 42.10, and 43.13 min by Mascot, but the maximum 

MS1 intensity was located at 42.10 min, within a dynamic exclusion time. Since Skyline, 

which uses an MS2-triggered MS1-peak integrated approach, was able to find an 

appropriate peak close to the significant hit at 42.10 min, it missed the true maximum 

intensity at 41.61 min because of the distance. Consequently, Skyline underestimated the 

intensity from the subordinated peak due to dynamic exclusion (Figure 7). In contrast, 

pNMF is a completely MS1-dependent approach, and can report the maximum MS1 peak 

intensity as an alternative peak quantification tool. The outliers 2, 3, and 4 resulted from 

HPYFYAPELLFFAKR with charges of +2, +3, and +4. This mixture contains 

RHPYFYAPELLFFAK, which shares the same precursor isotopic distribution profile as 

HPYFYAPELLFFAKR; an MS1-based algorithm such as pNMF therefore cannot distinguish 

between these two peptides. More features are necessary to quantify peptide isomers 

exclusively.   
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Figure 4. pNMF for four-protein standard. 

The Venn diagram represents the peptide ions identified using pNMF and Mascot (left). 

The peak intensities of peptide ions commonly identified by pNMF (x-axis) and Skyline 

(y-axis) show correlation coefficients of 0.916, with four outliers at the peptide level, and 

0.999 at the protein level (right).  

 

 

 
Figure 5. Profile of peptides exclusively identified by Mascot in four-protein 

standard.  

The box plot shows that the six peptides exclusively identified by Mascot have 52.29 

times lower intensity, 20.78 lower Mascot Peptide Score (PeptScore), and 4.12% lower 

Skyline isotope dot product (idotp) than the 297 peptides commonly identified by both 

Mascot and pNMF. 
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Figure 6. Sequence coverage comparison between 303 peptides identified by 

Mascot and 596 peptides identified by pNMF.  

Mascot and pNMF yielded medians of 94.83% and 100.00% coverage, respectively. 

 

 

 

 
 

Figure 7. Outlier investigation for KLVAASQAALGL++ of m/z 571.35.  

Skyline graphic interface shows the extracted chromatogram with peak retention time at 

41.60 min (left). Detailed examination shows that the Skyline peak integration boundary 

selecting the peak closest to the significant hit at 42.10 min results in incorrect 

quantification. 
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2. Forty-Eight-Protein Standard 

2.1 Protein and peptide identification 

Universal Proteomics Standard (UPS1) is a premixed standard containing 5 pmol of 

48 proteins ranging in molecular mass from 6000 to 83,000 Da. It represents a simple 

proteome complexity with 9319 in silico peptide ions from 4045 unique peptides. In 

benchmarking with the conventional method, pNMF reported 1322 out of 1481 peptide 

ions or 89.26% of Mascot identification. In terms of accuracy in measuring the retention 

times of commonly identified peptide ions, the correlation between the two methods was 

excellent, with y = 0.999x, R = 0.986 (Figure 8).  

 

 
Figure 8. Accuracy of peptide retention time annotation in forty-eight-protein 

standard.  

Proportional relationship between pNMF (x-axis) and the conventional method (y-axis) 

for commonly annotated peptide ions. 

 

 

The conventional method and pNMF exclusively identified 159 and 2103 peptide 

ions, respectively (Figure 9, left). The complexity of the proteomics standard increased 

both exclusive identifications, presumably because of the larger proportion of low-

intensity peptide ions and poor or overlapped MS1 peaks. I observed a 3.45 times lower 

intensity, 8.59 times lower PeptScore, and 3.37% lower idotp values for the 159 peptides 

exclusively identified by Mascot, similar to the case of four-protein standard (Figure 10). 

The conventional method and pNMF identified all proteins present in the sample, and 

yielded median sequence coverages of 62.02% and 87.29%, respectively (Figure 11). 
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2.2 Protein and peptide quantification 

I compared the peak intensities of 1322 commonly identified peptides obtained by 

the conventional method with those obtained by pNMF. For 1319 peptides, after 

eliminating three peptide ions with S/N ≤ 10, the quantification results from both 

methods agreed with each other. Correlation coefficients of 0.976 and 0.909 were 

obtained at the protein and peptide levels, respectively. I observed 39 outlier peptides, 

or 2.96% of the total, calculated from Tukey's fences (Figure 9, right). I investigated the 

reasons for uncorrelated quantification. It is unclear to judge whether which algorithm 

presented the most accurate amounts among 34 cases but 14 of them have poor isotopic 

patterns or limited MS1 intensities. pNMF was unable to distinguish exactly overlapped 

MS1 patterns for 3 cases, and Skyline missed the right peak top for 2 cases. 

 

 
 

Figure 9. pNMF for forty-eighty-protein standard. 

The Venn diagram represents the peptides identified using pNMF and Mascot (left). The 

peak intensities of peptide ions commonly identified by pNMF (x-axis) and Skyline (y-

axis) show correlation coefficients of 0.909 at the peptide level, and 0.976 at the protein 

level (right). 
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Figure 10. Profile of peptides exclusively identified by Mascot in forty-eight-

protein standard.  

The box plot shows that the 159 peptides exclusively identified by Mascot have 3.45 times 

lower intensity, 8.59 lower PeptScore, and 3.37% lower idotp than the 1322 peptides 

commonly identified by both Mascot and pNMF. 

 

 

 
Figure 11. Sequence coverage comparison between 1481 peptides identified by 

Mascot and 3425 peptides identified by pNMF.  

Mascot and pNMF yielded medians of 62.02% and 87.29% coverage, respectively. 
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3. Proteome-scale application   

Library searching has been continuously developed to improve the identification 

speed, accuracy, and sensitivity33–35. I applied pNMF with a library-based dictionary for 

proteome-scale data using whole E. coli cell lysates with 70-min gradient. The reference 

library was the combination of the detected peptides analyzed from E. coli cell lysates 

with 70-min gradient and 550-min gradient by Mascot at 1% false discovery rate (FDR) 

confidence. The dictionary was then constructed to cover all library peptides and 

extended to include every charge states possible within m/z range. The result from the 

longer gradient separation provides a larger number of peptides for creating a 

comprehensive dictionary and offers retention times for initializing an activation matrix. 

I converted observed retention times to reference retention times by linear regression 

with ±2.5 min window. 

 

3.1 Protein and peptide identification 

In benchmarking with the conventional method, pNMF identified 3286 out of 3509 

or 93.64% of Mascot-identified peptides. The correlation between two methods for 

measuring the retention times of commonly identified peptide ions was very well agreed, 

with y = 0.999x, R = 0.996 (Figure 12). In protein level, pNMF identified more than twice 

of Mascot identification number and covered 497 out of 502 or 99.00% of Mascot 

identification (Figure 13, top). The conventional method and pNMF identified provided 

median sequence coverages of 14.80% and 25.12%, respectively (Figure 14). 

 

3.2 Protein and peptide quantification 

Finally, I quantified the peak intensities of commonly identified peptide ions and 

proteins. After eliminating peaks with S/N ≤ 10, the correlation coefficient of was 

observed at 0.982 and 0.941 at the protein and peptide levels, respectively (Figure 13, 

bottom). 
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Figure 12. Accuracy of peptide retention time annotation in proteome-scale 

application.  

Proportional relationship between pNMF (x-axis) and the conventional method (y-axis) 

for commonly annotated E. coli peptide ions. 

 

 

 
 

Figure 13. pNMF for proteomics application.  

The Venn diagram represents the E. coli peptide ions and proteins identified using pNMF 

and Mascot (top). The peak intensities of peptide ions commonly identified by pNMF (x-

axis) and Skyline (y-axis) show correlation coefficients of 0.941 at the peptide level, and 

0.982 at the protein level (bottom).  
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Figure 14. Sequence coverage comparison between 3774 peptides identified by 

Mascot and 10749 peptides identified by pNMF.  

Mascot and pNMF yielded medians of 14.80% and 25.12% coverage, respectively. 
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4. Computational performance 

The computational cost of pNMF depends on the sizes of the matrices. For four-

protein standard, pNMF required approximately 7.30 min on the system I used. 

Specifically, reading the mzML file, running in silico digestion, learning noise, constructing 

𝑉  and 𝑊  matrices, initializing 𝐻  matrix, updating pNMF, and printing report took 

approximately 1.11, 0.38, 1.92, 2.41, 0.95, 0.35 and 0.18 min, respectively. The forty-

eight-protein standard by pNMF took approximately 45.78 min. Despite the size of the 

computational tasks, which involve several million elements, the computation time and 

space required by pNMF are manageable on a common desktop computer, based on code 

optimization and appropriate choices of libraries for sparse computation, particularly, 

scipy-sparse36. For proteome-scale application using E. coli sample, pNMF could reduce 

running time due to precise predicted retention times to narrow down update regions. 

The algorithm took 24.17 min for all processing. The memory footprints for all sample 

processing were less than 2 GB. 
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Conclusion 
I have proposed NMF-based approach to specifically analyze three-dimensional 

mass spectrograms obtained from proteomics studies efficiently. Our pNMF incorporates 

isotopic distribution, learns noise, exploits a protein-peptide hierarchical relationship by 

using a group sparsity constraint, and configures a reasonable initialization by using 

predicted retention times. The proposed update rule with the constraint of choice 

guarantees convergence to a local optimum, meaning that with appropriate initialization, 

pNMF guarantees convergence to the right solution.  

In the case of four-protein standard, pNMF gave a better resolved chromatogram 

with a higher accuracy of peptide retention times than bNMF. For forty-eight-protein 

standard and E. coli samples, pNMF provided the results with excellent correlations to 

the conventional methods, Mascot/Skyline for both identification and quantification 

without the need for preprocessing. Additionally, pNMF increased number of identified 

peptides and enabled quantification of more than a thousand proteins. In this study, I 

have focused on protein identification and quantification, but the same approach should 

be readily applicable for various purposes related to the interpretation of mass 

spectrograms.  

The present results indicate that the NMF algorithm-based approach is very 

effective for mass spectrometry-based proteome analysis, particularly by using the 

library-based dictionary. Further improvements should also be possible by incorporating 

other significant features such as product ions from proteomic mass spectrograms, which 

are presented in the next chapter. 
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Chapter 2 

An Integrated Non-negative Matrix Factorization 

Framework to Analyze LC/MS/MS Spectrograms in 

Proteomics 
 

Introduction 
Popular conventional approaches for peptide identification require LC/MS/MS 

information, since precursor m/z, retention times, and intensities from LC/MS are 

insufficient dimensions to separate peptide ion peaks in mass spectrograms derived from 

highly complex proteome, i.e., human proteome. Product ion patterns from the peptide 

fragmentation process provide another 3D information of product ion m/z, times, and 

intensities. The typical algorithm relies on peptide-spectrum match (PSM) where the 

peptide answer of an experimental product ion patterns are concluded by the similarity 

to the reference product ion patterns from other experiments or the theoretical pattern 

simulations9,34. However, the lack of reference patterns restricts the discovery of new 

peptides, and the perfect theoretical simulations are not established due to the 

incomplete knowledge in fragmentation process, particularly the intensity dimension. As 

a result, the experimental patterns cannot resemble the theoretical ones which leads to 

miss-identification. One of the current trends for the theoretical product pattern 

generation is predicting product ion intensities by sophisticated probabilistic models or 

machine learning methods for the subsequent PSM37–39. 

In this study, I propose an extension of NMF-based approach for identifying product 

ion mass spectrograms. The previous chapter pNMF approach is modified for precursor 

mass spectrogram inputs. 𝑉’  is input with top product ion peak picking with special 

inclusion for y1- and b2-ion peaks. 𝑊’ dictionary is then constructed for the precursor 

candidates using precursor m/z filter from 𝑉’ . Lastly, 𝐻’  is updated with the group 

sparsity constraint using a precursor-product ion hierarchical relationship. The results 

of product ion pNMF can integrate to precursor pNMF by replacing the in silico digestion 

dictionary of precursor pNMF. Our new computational method can identify product ion 

mass spectrogram without the need of intensity prediction algorithms or similarity 

measurement functions for PSM. The integrated information of precursor and product 

ion mass spectrograms in statistical framework is prospective to identify more peptides 

and enhance the accuracy in protein quantification. 
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Design 
I designed an extension of pNMF for analyzing product ion mass spectrograms. First, 

a vector is used for representing a mass spectrogram of each time as 𝑉′ (m/z × 1). A 

supervised dictionary presents peptide candidates. According to precursor m/z 

information of 𝑉′, it can be used as a filter to select a list of candidates from in silico 

digestion database. The theoretical m/z with a single charge for all possible b-ions and y-

ion types are calculated and designated to each column as 𝑊′ (m/z × ion type). All ion 

types from the same peptide candidates provide a group structure as 𝑔′. An activation 

vector 𝐻′ (ion type × 1) is allowed to update with a group sparsity constraint. The highest 

sum of activation of 𝐻′𝑔′  in 𝐻′  provides the precursor candidate for integrating to 

precursor pNMF. 

The precursor candidates from the product ion level of pNMF can integrate to 

precursor pNMF by replacing in silico digestion dictionary. Features of six isotopic peaks 

of activated precursor candidates 𝐻′𝑔′  are calculated and multiplied by its original 

intensity from 𝑉′ . Precursor candidates from the same parent peptide are stacked, 

normalized, and assigned to columns of the precursor dictionary  𝑊′𝑘  in  𝑊′𝑆 . This 

particular stacked design exploits the nature of precursor information, since all peptide 

ion precursors of the same peptide share the same retention time profile. In other words, 

the algorithm activates the corresponding row 𝐻′𝑘  in 𝐻′𝑆  along retention time for all 

stacked precursors with the same profile instantaneously. Furthermore, instead of 

depending on retention time prediction algorithm, time 𝑡𝑥  of each product ion mass 

spectrogram is useful information for initializing the precursor activation matrix. The 

pNMF for precursor mass spectrogram is then computed for peptide identification and 

quantification. 
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Figure 1. Overview of integrated pNMF for product ion and precursor mass 

spectrograms.  
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The workflow of pNMF 

The workflow comprises the following four steps. 

 

Step 1. Matrix construction 

1.1 The observed mass spectrogram 𝑽′: 

A vector is used to represent mass spectrogram of product ion information for each 

time. Top 6 in window ± 30 approach is applied to select top intensities due to its 

best performance among preprocessing techniques40. According to theoretical 

calculation, possible y1- and b2-ion peak intensities are included regardless their 

intensities. The intensity values are transformed by log and assigned to 𝑉  at 

appropriate m/z bins.  

1.2 The dictionary 𝑾′: 

Peptide precursor candidates are selected into the dictionary from in silico 

digestion. For in silico digestion, peptide ions ranging in length from seven to 50 

amino acids with charges ranging from +2 to +8 were included. Cysteine 

carbamidomethylation was set as a fixed modification. Methionine oxidation and N-

terminal methionine excision were set as variable modifications. For selection, 

according to precursor m/z information of 𝑉, it can be used as a filter to exclude 

peptides candidates unless its m/z is in the range of ±0.01 m/z. In case of no peptide 

candidates are selected, the range up to ±0.03 m/z is applied with maximum number 

of two candidates. Except b1-ion, all theoretical masses of b-ions and y-ions are 

calculated and input into each column with intensity as 1. Decoy subspace is 

constructed by the concept of a concatenated target-decoy approach using a shuffle 

sequence41,42. 

1.3 The activation 𝑯′: 

𝐻′ is allowed to be updated with a group sparsity constraint according to precursor-

product ion group structure. 

 

Step 2. Sparsity constraint weight calculation  

Since 𝑉′ is extremely sparse, a maximum sparseness measure13 for vector is used as 

1. The weight is then multiplied with square root peptide length for standardization. 

 

Step 3. pNMF algorithm 

pNMF algorithm is as same as the previous chapter where 𝐷 is the Kullback-Leibler 

divergence and Ω is log/𝐿1. 

 

Step 4. Post-processing for interpretation  

The resulting 𝐻′𝑔′  is summed and divided by square root of its length to refer the 

activation of each peptide candidate. For statistical evaluation, 1% FDR is used for 

calculating minimum activation cut-off.   
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All computations were performed on a desktop computer with a 3.30 GHz E3-1226 

v3 4-core processor and 32 GB main memory.  

 

 

Experimental Section 

Proteomic experiment setup and LC/MS/MS analysis 

Mass spectrogram obtained from four-protein standard was prepared as described 

in the previous chapter. 
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Results and Discussion 

1. The proteome complexity in precursor mass spectrograms 

I first investigated the ambiguities of precursor mass spectrograms. Precursor m/z 

and retention times provide sufficient information to separate peaks of peptide ions in 

mass spectrograms derived from moderate complex samples. However, a highly complex 

proteomics sample, such as human proteome, increases substantially the number of 

peptide ions with both similar m/z and retention times.  

In previous pNMF design, I represented peaks with 0.01 m/z bin and 0.2 min 

retention time bin. According to this setting criteria, I quantified the numbers of 

overlapped experimental peptide precursor peaks in human proteome based on the 

Mascot-identified human peptide ions of cytoplasmic, organelle, and nuclear fractions in 

60-min gradient-experiment43. Using ±0.01 monoisotopic m/z bin and ±0.2 min retention 

time bin, 11896 of 11961 peaks or 99.46% were distinguishable from other precursor 

peaks without overlaps (Figure 2a). However, precursor peaks cannot be described by 

only monoisotopic m/z peaks, the isotopic peaks are usually presented in mass 

spectrograms. I included the first monoisotopic peaks into calculation and found that the 

number of non-overlap peaks decreased to 10116 of 11961 peaks or 84.57%. Number of 

more than one overlap peaks were also discovered at 2.85% (Figure 2b). The overlap 

peaks harden NMF to identify peaks since the isotopic distribution pattern of each 

peptide becomes unclear and different from theoretical isotopic distribution. The 

quantification is also worsened by peaks unresolved in time. These results indicate that 

while precursor m/z and retention times are useful information, more parameters are 

necessary to distinguish peptide ions for identification and quantification in the large 

proteome-scale sample. 

 

 
Figure 2.  The complexity of experimental human proteome precursor mass 

spectrogram. 

(a) The overlap of monoisotopic m/z peaks with similar retention times. 

(b) The overlap of monoisotopic and first isotopic m/z peaks with similar retention 

times. 
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2. Prior knowledge analysis of product ion mass spectrogram 

The process of fragmentation using low-energy collision produces a predominant 

series of b- and y-ions. Unlike precursor isotopic distributions, fragment peptide ions do 

not possess theoretical patterns. The product ion mass spectrograms cannot be 

predicted. In order to provide prior knowledge for NMF, I explored the types and 

numbers of ions used for identification. 

I applied web scraping to extract Mascot-detected and identified fragment peptide 

ions from ion matches used for scoring and all possible ion matches in detection, 

respectively. Collecting 3818 high-quality product ion spectra with Mascot-identification 

from E. coli sample, I found b6-, b5-, and b7-ions were top three ion types used for scoring 

and in overall profile. Mascot unconsidered approximately 30% of overall detection for 

scoring (Figure 3a). In case of y-ions, y6-, y5-, and y4-ions were top three for scoring and 

in overall profile (Figure 3b).  

Here, peptide precursors were fragmented and identified with the minimum length 

at seven amino acids. The small ion types from three to eight were likely to be reported 

more than the large ion types. I normalized each type of ion with the number of 

precursors possibly possessing the ion. In other words, the numbers of spectra with the 

possibility to possess each ion, i.e. the length of peptide precursors is longer than the type 

of product ion, were used as 100%. Surprisingly, the fragmentation provided up to 

94.53% in case of b6-ion and 97.43% in case of y6-ion. Both ion types from three to eight 

were detected more than 80% in all spectra possibly possessing them. These high 

percentages of ions could be a result of analyzing high-quality spectra collection. Mascot 

discarded approximately less than 50% of each ion type for scoring. Assignments of small 

N- and C-terminal ions, such as y1- and b2-ions, provide very useful information for 

peptide sequence. I found that although only 27.74% and 53.30% of all spectra possibly 

having y1- and b2-ions respectively, but 19.17% and 42.98% of y1- and b2-ions were 

identified and used for scoring, which emphasized their importance for peptide 

sequencing process (Figure 3c-3d). 

For numbers of ions used for scoring, Mascot mainly took both y- and b-ions less 

than ten ions. However, plenty of ions detected were not considered. I found that more 

than 80% of spectra had more than ten y- and b-ions (Figure 4). 
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Figure 3.  The b-ion and y-ion distribution profiles in Mascot-scoring and overall 

detection. 

(a) Types of b-ions in Mascot-scoring (shown in yellow) and overall detection (shown 

in blue). 

(b) Types of y-ions in Mascot-scoring (shown in yellow) and overall detection (shown 

in blue). 

(c) The percentage used of b-ions in Mascot-scoring (shown in yellow) and overall 

detection (shown in blue).  

(d) The percentage used of y-ions in Mascot-scoring (shown in yellow) and overall 

detection (shown in blue).  
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Figure 4.  The number of b-ions and y-ions per each product ion mass spectrum in 

Mascot-scoring and overall detection. 

(a) Numbers of b-ion for scoring (shown in yellow) are generally less than in the 

overall detection profile (shown in blue). 

(b) Numbers of y-ion for scoring (shown in yellow) are generally less than in the 

overall detection profile (shown in blue). 
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3. pNMF for product ion identification 

I first examined the possibility of using NMF for identifying product ion spectrum 

without integrating with precursor level. I collected 346 high quality spectra with Mascot 

identification results of four-protein standard and applied pNMF. I obtained all accurate 

identified peptide sequences for 346 spectra (100%).   

I then tested integrated pNMF for all 21865 spectra, regardless of qualities and 

identification results, of four-protein standard. pNMF identified 707 out of 730 (96.85%) 

of Mascot-identified spectra (Figure 5a). I referred to identified peptides from spectrum 

identification results. pNMF identified 341 out of 342 (99.71%) of Mascot-identified 

spectra (Figure 5b). The remaining one peptide belonged to an unidentified spectrum 

with few singly charged production ions as illustrated above. For the peptides commonly 

identified by pNMF and Mascot, the retention time correlation was excellent with y = 

1.000x, R = 0.997 (Figure 5c). pNMF identified an additional 126 peptides, and provided 

97.59% sequence coverage for the four proteins, whereas the conventional method gave 

96.59% coverage on average. 

 

 

 
Figure 5. Product ion identification.  

(a) The Venn diagram represents the common spectra identified using pNMF and 

Mascot. 

(b) The Venn diagram represents the common peptide ions identified using pNMF and 

Mascot. 

(c) Accuracy of peptide retention time annotation in four protein standard shows 

proportional relationship between pNMF (x-axis) and the conventional method (y-axis) 

for commonly annotated peptide ions. 

 

 

I investigated the causes for the remaining 23 spectra that were exclusively 

identified by only Mascot. Actually, pNMF identified 19 of them but their activations were 

below 1% FDR cut-off. These 19 spectra also had low PeptScore, indicating of poor peak 

profiles. Other four spectra were not identified due to very low product ion intensities 

(Figure 6a) or few singly charged product ions (Figure 6b).   
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Figure 6. Example cases of unidentified product ion spectra.  

(a) Very low product ion intensities of CQYRDLKWWELR at 438.97, 4+ 

(b) Few singly-charged product ion peaks of   

DGPMCMQDNQGGAPNYYPNSFGAPEQQPSALEHSIQYSGEVRR at 960.63, 5+ 

 

 

I compared the peaks of precursor ions (Figure 7a), peptides (Figure 7b), and 

proteins (Figure 7c) commonly quantified by pNMF and Skyline. The correlations in 

precursor ion level is less than peptide level and protein level. The correlations calculated 

by peak intensities at the top are less than peak areas in all levels. These results suggest 

that pNMF is effective for calculating peptide and protein quantification. However, the 

design of the algorithm can be improved with refinements to address the peak tops and 

to model each precursor ratios more precisely. 
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Figure 7. The peak intensities and areas of commonly quantification by pNMF (x-

axis) and Skyline (y-axis).  

(a) Commonly quantified precursor ions show correlation coefficients of 0.803 and 

0.824 calculated from peak intensities and peak areas, respectively. 

(b) Commonly quantified peptides show correlation coefficients of 0.881 and 0.942 

calculated from peak intensities and peak areas, respectively. 

(c) Commonly quantified proteins show correlation coefficients of 0.994 and 1.000 

calculated from peak intensities and peak areas, respectively. 
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Conclusion 
I have applied the pNMF algorithm to analyze product ion mass spectrograms using 

prior knowledge. The new extension of pNMF exploits precursor m/z for filtering peptide 

candidates for the dictionary and specially includes y1- and b2-ion peaks for analysis. The 

search space, i.e., the dictionary, is reasonably reduced from the number of all precursors 

provided by in silico digestion to the number of activated precursor candidates provided 

by product ion pNMF. Instead of arranging these activated precursor candidates into the 

column of the dictionary one-by-one, they are configured in stack of the same parent 

peptide. This particular stacked design fits the nature of precursors which share the 

parent peptide will share the retention time profile. Furthermore, the integration of 

product ion pNMF improves an initialization of precursor pNMF by providing times. As a 

result, pNMF can identify more spectra and peptide ions than the conventional methods 

at 1% FDR. 

The prior knowledge analysis of product ion mass spectrogram provides a number 

of possible ways to leverage the approach using more significant product ions for the 

dictionary. Future improvements should be possible by incorporating +2 and more 

charge states for b-ions and y-ions, and more ion types such as a-ions and immonium-

ions. In the current design, y1- and b2-ions are promoted and b1-ions are suppressed 

according to the prior knowledge, but other ions can also be adjusted.  
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Summary 
In this thesis, I show that NMF is suitable to identify and quantify peaks in mass 

spectrograms obtained from LC/MS and LC/MS/MS analyses. Our major modifications to 

the bNMF are the incorporation of group sparsity constraints by exploiting the 

hierarchical relationships of protein-peptides and peptide precursor-product ions.  

 

In chapter 1, our pNMF can perform chromatogram extraction, identify and quantify 

more peptides than the conventional approaches using the proteome-scale sample. The 

simultaneous identification and quantification are another strong point of pNMF, since 

the conventional methods only calculate the peaks after the identification in LC/MS/MS 

which leads to miss-quantification problem. In chapter 2, pNMF shows the capability to 

identify LC/MS/MS mass spectrograms with improved numbers in all levels of spectrum, 

peptide precursor ion, and peptide. The workflow of pNMF does not need the theoretical 

spectrum prediction which is one of the weak points in computational proteomics due to 

lack of the complete knowledge of fragmentation. In other words, I provide the evidence 

that the intensity prediction algorithm, which is a popular research at this moment, is not 

important. In overall, I show the new possibility to use NMF algorithm in mass 

spectrogram analysis and solve persistent problems of proteomics in miss-identification 

and miss-quantification. 

 

In my perspective, machine learning will have become an important technique for 

computational proteomics. The appropriate mathematical and statistical models will 

solve the persistent problems such as identifying unidentified peptides in mass 

spectrograms, accelerating the process of analyzing large data, and improving the 

understandings of MS-based proteomics. In these few years, I expect to see more 

algorithms incorporated into the conventional pipeline and provide significant 

improvements. Interdisciplinary research, such as computational proteomics, is always 

not easy, since people tend to misunderstand the complexities of other fields. The 

requests for higher sophisticated algorithms or larger data are unavoidable from the 

professionals of each discipline. However, I think we should step out to show the 

possibilities of our inventions. In this way, we can fill the gap of knowledge and discover 

new solutions to improve people’ lives. 
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Supplementary Information 
 

An Introduction to Conventional Proteomics Mass Spectrogram 

Generations and Analyses 
Proteomics is a large-scale study of proteins. Since proteome samples are often 

highly complex with numerous proteins involved, they need strong separation 

techniques and proper representations that ensure the feasibility of subsequent data 

interpretation. Shotgun proteomics44 has become a universal method to identify and 

quantify peptides in a mixture by integrating two effective separation systems: LC and 

MS, and representing the analytical results in the form of mass spectrograms.  

 

Shotgun Proteomics for Mass Spectrogram Generations 
Shotgun proteomics starts from protease digestion to cleave proteins into peptides. 

Peptides are comparatively simple and easy than proteins for separating by LC/MS 

system. LC separates peptides in the mixture, according to their physicochemical 

properties. Peptide samples are injected and passed through a stationary phase column 

with mobile phase. The time required to elute a particular peptide from LC system is 

called as retention time. The retention time becomes the first dimension of separation in 

the mass spectrograms. In MS, eluted peptides are ionized by electrospray, and separated 

based on m/z by mass analyzer as the second dimension. Lastly, separated peptide ions 

are counted by detector to record the signal intensity as the third dimension (Figure 1).  

 

Figure 1. An overview of common shotgun proteomics experiment using LC/MS. 

 

Modern MS has fast scan speed with high mass resolving power to resolve the 

adjacent m/z, isotopic patterns, and other fine details of peptide ions. Thus, all 

dimensions are outspread and peptide information is located sparsely due to the precise 

scales. The final mass spectrograms can be depicted as a profile of peptide peaks at very 

specific locations in large non-negative 3D space (Figure 2). 

 

Currently, mass spectrometers are commonly operated in tandem. Tandem MS 

(MS/MS) employs two mass analyzers, MS1 and MS2. The configuration consists of a 

fragmentation region in between two stages. In MS1, peptide ions or precursor ions are 

analyzed, detected, and selectively passed to be fragmented with low-energy collision-
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induced dissociation. Product ions resulting from fragmentation are scanned and 

recorded in MS2 as product ion mass spectrograms.  

 
Figure 2. Precursor mass spectrogram representation as a large sparse non-

negative 3D space with m/z, retention time, and intensity. 

 

The first dimension of product ion analysis is time, which is correlated to retention 

time in precursor mass spectrogram. However, at a particular retention time, many 

precursors are possibly eluded from LC column. In order to separate the overlapped 

precursors, MS2 quickly performs scanning several times for each selected precursor 

found in a mass spectrum of MS1. The second dimension is m/z of product ions. Product 

ion m/z patterns are a result of low-energy collision. Low-energy collision dominantly 

breaks C–N bonds and produces b- and y-ions from N-terminal and C-terminal precursor 

ions, respectively. The last dimension is product ion signal intensity (Figure 3). 

 

 
Figure 3. Product ion mass spectrogram representation by m/z, time, and intensity.  
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Computational Proteomics for Mass Spectrogram Analyses 

Conventional approaches 

The increasing size and complexity of mass spectrograms demand mathematics and 

statistics for data interpretation. The algorithms underlying computational proteomics 

platforms are a key factor to identify and quantify peptide peaks from the large 

dimensional data in accurate and efficient manners. Mostly, the conventional approaches 

remove the complexities in mass spectrogram by performing preprocessing prior to 

peptide identification. 

 

Preprocessing 

Preprocessing demonstrates the improvements for analysis45 by deciding which 

peaks to remove from precursor mass spectrograms in order to simplify big data into 

statistically manageable information. Several techniques are applied for recovering 

peptide peaks from baseline, noise, and contamination. 

 Deisotoping and deconvolution: deisotoping and deconvolution simplify data 

by reducing the number of peaks originated from the same peptides. Elements 

naturally have multiple masses due to their stable isotopes. The combination of 

key elements of peptides: carbon (C), hydrogen (H), oxygen (O), and nitrogen 

(N), creates a series of m/z peaks with isotopic distribution. For deisotoping, it 

merges or collapses isotopic peaks of each peptide to a single peak. For 

deconvolution, it replaces peptides peaks at multiple charged states with one 

peak of singly charged peptide. The resulting mass spectrogram is thus cleaner 

and easier to interpret46. 

 Peak picking:  Peak picking relies on feature detection techniques to obtain the 

information of peptide intensities with the least interferences from non-peptide 

compounds. Several theories have been proposed using signal-to-noise ratio, 

continuous wavelet transform, or Gaussian function model. However, 

completely accurate models of the peptide features do not exist. The resulting 

picked peaks are possibly included non-peptide peaks and excluded peptide 

peaks47,48. 

 Noise: Noises in mass spectrograms are inherent and ubiquitous. The noise 

peaks come from air particles, small molecules released from materials 

contacted in the experimental procedures, and protein-related contaminants 

introduced from human sources. The lists of common mass spectrometry 

contaminants have been reported49. Another type of noise is electronic noise. 

Appropriate techniques, such as baseline subtraction and smoothing, are 

applied to filter their uniformly distributed peaks throughout the profile. 

However, low-abundance peptides, which have weak signals in mass 

spectrogram, are likely discarded by these processes.  
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For product ion mass spectrograms, preprocessing methods mainly discard peaks 

with low intensities by selecting a limited number of top peaks. Three main categories of 

preprocessing include top X intensity approaches, top X intensity in Y regions, and top X 

intensity in a window of ±Z40. 

Although preprocessing eases the subsequent data analysis, it is arguable how many 

peptide signals are lost during the process, particularly low abundant peptides, the 

delicate part of proteomics study. 

 

Peptide identification 

Precursor mass spectrograms provide necessary information of separated m/z 

features of peptides in order to perform identification. The separated m/z can be 

observed in mass spectrum, a subspace of mass spectrogram with dimensions of m/z and 

intensity (Figure 4).  

 
Figure 4: Mass spectrum, the subspace of mass spectrogram with dimensions of 

m/z and intensity, for peptide identification 

 

Tandem mass spectrometry has become a routine task for conventional 

identification. Currently, the common computational methods perform peptide 

identification from product ion mass spectrograms from MS2 only with one of three 

strategies: database searching, spectral library searching, and de novo sequencing. 

 

 Database searching: Database search is a process of statistical comparison 

between an experimental spectrum and a theoretical spectrum in the database 

and calculating a confidence of match from built-in score function. Database 

searching is currently the most popular approach with several well-used 

platforms, such as SEQUEST24, Mascot27, X! Tandem50, and MS-GF+51. However, 

the variability of peptides, such as post-translational modifications, can weaken 

the search performance due to expanding the search space.  Complicated 

fragmentation process is also not yet completely understood to design 

appropriate theoretical fragment spectra and suitable scoring functions for 
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comparison. The database search engines also require the expertise from users 

to define parameters, such as protein molecular mass range, mass tolerance, 

possible charges, and possible modifications, to obtain the correct output. 

 

 Spectral library searching: Spectral library searching has emerged as an 

alternative of database search engines for peptide identification. The search 

utilizes a reference library of a set of confidently assigned spectra obtained from 

previous experiments as a template for comparison. The result of search heavily 

relies on the choice of library of template spectra which should be of high quality 

and similar in analytical process. Reliable sources of spectra are provided52–54. 

The major limitation of this method is the incapability to identify novel peptides 

or unexpected mutations and modifications due to lack of references. 

 

 De novo sequencing: De novo sequencing identifies peptide without 

constructing database or library, and thus can discover novel identifications 

regardless of the reference. The process takes the mass difference between two 

neighboring peaks to compute the mass of an amino acid present in a candidate 

peptide. The popular de novo sequencing software are such as PEAKS55, 

PepNovo56 and NovoHMM57. However, the wrong identification can be caused 

by fragment peaks are unclear by overlaps, shifts, or losses. De novo peptide 

sequencing also generally requires more time and high precision data as an 

input. 

 

The conventional algorithms have different strengths and weaknesses for peptide 

identification. However, it is unquestionable that all approaches abandon too many useful 

features of mass spectrograms. Several alternative platforms have proposed to exploit 

mass spectrograms obtained from both LC/MS and LC/MS/MS analyses58,59. Integrating 

information of precursor ions with product ions solves miss-identification caused by 

missing data in either one of two mass spectrograms and improves poor identification 

caused by ambiguities of both mass spectrograms. 
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Protein identification 

One of the most common challenges in proteomics studies revolves around protein 

identification, i.e., protein inference, the process of inferring the accurate present 

proteins in the experimental peptide mixture generated by shotgun proteomics.  

The ambiguities arise from too low dependencies or too high redundancies between 

peptide and protein evidence. A “one-hit wonder” refers to an insufficient dependency to 

draw a confident conclusion for a protein which has only one peptide identified. 

Generally, the identification with at least two peptides is the criteria to determine a 

particular protein identification, but the situation likely remains unresolved if identified 

peptides are shared products of multiple proteins60. Tracing peptides back to the parent 

protein is a complicated issue. The suitable statistical analysis that can incorporate the 

dependency between protein and peptide are necessary to solve these problems.  

 

Peptide and protein quantification 

Peptide and protein quantifications enable more meaningful interpretations for 

proteomics than solely depend on identification. The simple quantification strategy, 

namely label-free quantification, provides high reproducibility performance without 

extra modifications on peptide sample. Chromatogram, a subspace of precursor mass 

spectrogram with the dimensions of retention time and intensity, provides information 

for measuring peptide and protein abundances (Figure 5). A typical way of quantification 

integrates signal intensities of a particular identified peptide over the retention time 

profile for area under the curve. The difficulties in quantification present when different 

peptides have both similar m/z and retention time profiles. Without any other features of 

mass spectrogram, the issue becomes mathematically underdetermined system, where 

information or equation are insufficient to solve the variables.  

The most common freely available platforms for proteome quantification are 

Skyline32 and MaxQuantLFQ58, based on different modified statistical models. Skyline can 

build its own spectral library or import identification results from other searches, such 

as Mascot search engine. The built-in algorithm includes peak picking, ion intensity 

trapezoidal summation of peptide isotopic peaks, background subtraction, and scoring 

system before reporting total area and height parameter for each peptide. Skyline 

platform is well-used because of the compatibility with mass spectrograms from four 

major vendors and the graphical interface that allows users to explore and modify the 

results manually. MaxQuantLFQ obtains the identification result from Andromeda search 

engine61 to calculate the area. Peptide peaks are fitted into Gaussian shape, smoothed, 

and extracted by significant local minima for integration. The algorithm applies a 

sophisticated intensity normalization procedure to report precise answers. 

The limitation of the conventional methods is due to its workflow where 

identification is needed before quantification. However, the identification can be missed 

by several reasons such as a bias in selecting high-abundance precursors for 

fragmentation, a low ionization efficiency or a poor fragmentation process. Without the 
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product ions, the conventional methods skip to quantify these peptides even their peaks 

are prominent in precursor mass spectrograms. 

 
Figure 5: Chromatogram, the subspace of mass spectrogram with dimensions of 

retention time and intensity, for peptide quantification 
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Machine learning approaches 

Machine learning has emerged as a tool to solve persistent problems in mass 

spectrogram analysis. Currently, a prominent implementation has been trending to the 

downstream analysis of proteomics data. Although, the gold-standard approach based on 

machine learning techniques for peak identification and quantification in proteomics 

mass spectrogram is not yet available, many new algorithms are investigated and applied 

to aid some steps in a pipeline of peptide identification and quantification. The goals of 

this section is not to present an exhaustive list of all available software tools but to focus 

on well-known applications for analyzing retention time, m/z, and intensity dimensions 

of mass spectrograms. 

Retention time prediction algorithms has become a valuable source of prior 

knowledge. Predicted retention times can be applied as a filter to remove false positive 

and increase the accuracy of protein identification. The reliable model based on its 

extensive tests using a large number of real samples still depends on using properties of 

amino acid individually and collectively without machine learning techniques such as 

SSRCalc62. For machine learning, small-scale experiments under specific 

chromatographic conditions were studied using support vector machine63,64 and neural 

network65–67 

In order to reduce complexity of m/z dimension, isotopic clustering techniques are 

helpful as preprocessing step. There are many applications search the isotopic pattern of 

peptide peaks based on the rule of selected isotopic peptide peak properties68–70. 

Bayesian network was recently introduced to cluster of peaks into envelopes 71. 

The prediction of intensity dimension of LC/MS/MS is highly challenging since the 

fragmentation process is not well understood. However, the predicted intensities can 

significantly improve peptide identification because they are required for generating the 

correct template for database search engine or defining the right rule for de novo 

sequencing. A probabilistic decision tree is the first successful technique to model the 

probability of observing a fragment intensity in mass spectrograms72 and develop as a 

tool 73,39. Deep learning has emerged because of the capability to understand complex 

data. The current applications are developed to increase the accuracy of prediction in 

various experimental conditions74,75.  

Another noteworthy implementation of machine learning is to enhance the quality 

of identification after database search. Percolator76 is a well-used postprocessing 

algorithm aiming to validate the correct identification of a database search algorithm. A 

support vector machine is chosen to learn from correct and incorrect groups. The 

features, such as mass, length, and misclevage, of fragment mass spectra are evaluated to 

return a confident score of final identification results.  

Challenges in mass spectrogram analysis have remained. Integrating appropriate 

machine learning techniques with maximizing the utilities of mass spectrogram features, 

i.e. both precursors and product ions, is promising to identify, quantify, and verify public, 

yet undiscovered, truth about proteome. 
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