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Abstract 

 

The availability of massive passive transit data has provided a variety of feasibilities for the public 

transit operators to deliver better service that is of high reliability and characterizes users’ demand. 

Among these data sources, Automatic Vehicle Location (AVL), Automatic Fare Collection (AFC) and 

Automatic Passenger Counting (APC) data are commonly used, and they are playing significant roles 

in different aspects of improving transit services. AVL data contain the spatiotemporal coordinates of 

the transit vehicles which not only offer service reliability metrics, but also indicate the general traffic 

condition. AFC and APC data are presenting passenger demand patterns, including boarding flows, 

alighting flows, passenger loads and, in case of AFC only, origin-destination (OD) flows. 

 

AVL data are easier to obtain compared to AFC data. Existing literature shows the effectiveness of 

AVL data in predicting future arrival times and headways, and providing useful inputs for the models 

to control bus vehicles in terms of operation velocity and headway in real time. However, the 

methodology for using bus AVL data to estimate demand has been fairly undeveloped. 

 

This research has two main objectives. Firstly, it aims to illustrate the characteristics of bus AVL data, 

overview the conventional applications which are using this data source to make predictions on various 

items of operators’ concern and further extend the existing literature by taking bus bunching as the 

prediction object. Secondly, it proposes an innovative idea and a novel methodology to estimate bus 

route OD flows using the bus AVL data as the main data source. It expands the potential of bus AVL 

data in inferring passenger demand beyond the design purpose of AVL system. This can help the 

operators having limited access to AFC and APC data. 

 

In the first part of the dissertation, a logistic regression model is developed to compute the probability 

that a bus is going to be caught in bunching instead of answering the question in a deterministic yes-

or-no form based on the exact value predicted for headway. The prediction performance of the 

proposed method is compared with two headway-based methods using linear regression and support 

vector machine. Bus AVL data from Kyoto City, Japan, are used for the case study. The advantages of 

the probabilistic method are illustrated by Receiver Operator Characteristic (ROC) analysis in which 

the ROC curve is interpreted as an efficient front providing the operators with trade-off options. 
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In the second part of the dissertation, the feasibility of estimating passenger OD flows for a bus transit 

route using AVL data is explored. Dwell time models are used to build connections between the 

information extracted from bus AVL data and passenger OD flows. A modified gravity model is 

applied to reduce the number of unknown parameters. Bayesian inference and Markov Chain Monte 

Carlo (MCMC) methods are implemented to estimate the mean and confidence intervals for the 

unknown parameters. The methodology is validated with bus AVL data from Shizuoka City, Japan 

where AFC data for nearly all passengers in the same observational period are available and thus can 

be taken as the ground truth. It is found in the case study that the estimation performance derived by 

using bus AVL data matches that using independent passenger boarding/alighting counts. Furthermore, 

additional input data that roughly characterize the importance of bus stops improve the performance 

of OD estimation. 

 

Finally, complex dwell time models considering the effect of various methods of payment, in-vehicle 

crowding and bus bunching are discussed. It is shown that the estimated demand might be biased in 

case a too simplistic dwell time model is applied and bus bunching and crowding are frequently 

occurring. 

 

Keywords: Automatic Vehicle Location data; Bus bunching prediction; Origin-destination matrix; 

Bayesian inference; Bus dwell time 
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 Introduction 

1.1    Background and research motivation 

1.1.1    Passive transit data 

Generally two types of passive transit data are distinguished (Trépanier and Yamamoto, 2015). The 

first one is voluntarily provided by the users, e.g. via using a smart phone application or carrying a 

portable GPS device. The second, and also the more common one, is collected without notifying the 

users, which includes the datasets from bus GPS devices, passenger counting sensors, smart card 

readers, roadside Bluetooth detectors or Wi-Fi package sensors, and so forth. Different from traditional 

active ways of data collection, such as travel survey which captures users’ occasional travel behavior 

and in a small sample, passive datasets are in a significantly larger sample and can trace the dynamic 

travel behavior in a long term, albeit at a cost of missing socio-demographic attributes. 

 

The emerging of passive transit data has drastically changed the ways of transit planning and operation, 

leading to a transition from traditional ways to data-driven methods. In planning aspects, data-driven 

bus route design and adjustment, optimized scheduling and timetable synchronization can efficiently 

accommodate the changing user demand including new transfer demand due to the expansion of the 

transit network. Furthermore, in contrast to static datasets such as survey data and map data, the 

availabilities of dynamic passenger and vehicle information provided by these passive transit datasets 

in particular offer advanced online operational strategies such as timed transfer scheme, bus signal 

priority, real-time bus headway control including bus holding, stop skipping and speed control, 

boarding limitation and bus injection. These control strategies enable the operators to maintain reliable 

service against the randomness due to passenger behavior, traffic flows, weather and so forth. 

 

1.1.2    The characteristics of AVL, APC and AFC data 

Automatic Vehicle Location (AVL) data provide a variety of possibilities to monitor, predict and 

control the service for the bus transit operators. AVL data usually contain 3-dimensional (latitude, 

longitude, time) coordinates which are recorded by a GPS device installed on the bus. The device 

restores the coordinate or uploads it to the server at a determined frequency. There is thus a time 

interval which is depending on the specification of the AVL system employed between two successive 

coordinates. The time interval could vary significantly (5 – 120 seconds) in different AVL systems. In 

some other cities, AVL data coordinates are more straightforward, presenting 2-dimensional 
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information (bus stop, arrival time) or (bus stop, departure time). Instead of a frequency, the 

coordinates are recorded by drivers’ opening door or closing door or pressing a button. 

 

Automatic Passenger Counting (APC) data is collected by the sensors installed at the bus doors. It 

provides reliable information on passenger boarding and alighting flows if they board and alight at 

separate doors in order. Operators can easily obtain 3-dimensional information (bus stop, number of 

boarding passengers, number of alighting passengers), and derive the number of onboard passengers 

by processing boarding-alighting data streams since the first stop. We note that the boarding and 

alighting flows are at aggregated level in APC datasets, and they provide valuable information on how 

busy a bus stop is as well as to where the system has capacity bottlenecks. 

 

Automatic Fare Collection (AFC) systems require the user to tap a smart card at boarding and/or 

alighting in order to collect the fare. As a result, for each passenger, the boarding time, boarding stop, 

alighting time, alighting stop are recorded in the database, namely a time-stamped origin-destination 

(OD) entry. Here we assume that AFC data are available for a specific bus run. On one hand, it can 

replicate the AVL data to some degree. By taking the time stamps, it is feasible to reconstruct the 2-

dimensional coordinate (bus stop, arrival/departure time) for the stops where passenger flows using 

smart card occur, although the reliability of inferred temporal information is strongly dependent on 

the number as well as the percentage of passengers using smart card. On the other hand, it can naturally 

reproduce the APC data by aggregating the passenger trips by bus stop. However, for some AFC 

systems e.g. a flat fare structure is employed, it may require the user to tap only at the boarding or 

alighting, then some extra efforts are needed to conduct the reconstructions of AVL and APC data, 

including destination inference, origin inference. Nevertheless, clearly AFC datasets are more 

informative than the other two ones, due to the unique disaggregated OD information and the 

capability of replicating the other two datasets 

 

1.1.3    Understanding the pros and cons of AVL data 

AVL systems are designed to monitor real-time location of the bus vehicle and investigate the actual 

deviation from the schedule. From the perspective of transit operators, lower cost is required by AVL 

systems than AFC and APC systems, since installing a small device such as a tiny chip for each vehicle 

can fully establish an AVL system thanks to the Global Position System (GPS). AVL systems can also 

include onboard computers that store event data such as stopping and starting to move, opening and 
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closing door (Furth, 2000). For the AVL systems collecting spatiotemporal coordinates as well as the 

event data, it is possible to obtain detailed time components in a bus trip including inter-stop travel 

time, dwell time, vehicle activity time and passenger activity time. If the event data record every 

stopping, the time spent on waiting due to traffic signals traffic congestion can also be produced by 

analyzing the stoppings that do not happen near the bus stops. Large quantities of observations 

gathered every day can indicate the mean, the confidence interval, the distribution of the travel time 

over a link and the dwell time at a bus stop, so that reasonable scheduling and travel time prediction 

become practical for the operators owning AVL data. We can conclude that the AVL system can 

provide accurate and plentiful information in terms of the location of the bus vehicles given a specific 

time point, or reversely the time given a location, e.g. arrival time given a bus stop. The noteworthy 

advantage of AVL data over APC and AFC is that the collection of spatiotemporal coordinates is 

independent of passenger flows so that AVL datasets contain more complete and reliable bus 

trajectories. In light of the continuous knowledge on the spatiotemporal movements of the buses, 

multiple-stop-ahead predictions on bus arrival times, bus headways and the bus trajectories have been 

investigated in many studies. The existing literature is reviewed in detail in Chapter 2. 

 

The bottleneck of the dataset quality relies on the time interval of two coordinates or the data recording 

frequency. When the operators are trying to conduct a schedule adherence analysis or arrival time 

prediction, the information of concern or the needed model inputs are supposed to be the time points 

given the bus stops (exact arrival time or departure time at the stop is ideal). Long record interval may 

generate a bus trajectory consisting of sparse points whose spatial coordinate is not necessarily close 

to any of the bus stop, which can critically limit the usefulness of the AVL datasets. It may require 

extra effort to interpolate the data for the bus stops, and the interpolated time is likely to deviate from 

the truth. The difficulty of interpolation increases the longer the data interval between records. 

Furthermore, the data transmission sometimes is not reliable, due to signals being blocked by tall 

buildings, which further breaks the bus trajectory. 

 

1.1.4    Bus bunching prediction: leveraging the strength of AVL data 

With the help of bus AVL data, it is feasible to obtain the bus trajectories of successive buses, including 

the arrival time and departure time at each stop albeit interpolated time is of less reliability. These data 

can be used to predict bus bunching, and data-driven operation solutions. Bus bunching is the 

occurance of irregular bus arrivals and uneven headways. It can be defined as the phenomenon of a 
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group of at least two successive services of a single bus line - or of multiple lines on a shared corridor 

- arriving at stops with a much shorter headways than the designed one. Bus bunching may be caused 

by the first service being delayed due to unforeseen traffic congestion along the route or unplanned 

high demand at previous stops. The subsequent service then has fewer passengers to pick up at that 

stop and departs earlier than scheduled. At downstream stops the effect is emphasized as the (small) 

delay to the first vehicle and the (slight) early arrival of the second vehicle result in increasingly longer 

dwell times for the first bus and increasingly shorter dwell times for the second bus. The time 

components such as dwell time, travel time, headway are available in the AVL datasets with some data 

processing, thus it is promising to analyse the causes and seek solutions for bus bunching problems 

based on AVL data. Bus bunching prediction is considered a useful application that leverages the data 

advantages. 

 

1.1.5    Route demand estimation: bridging the gap between AVL data and APC/AFC data 

An obvious shortcoming of bus AVL data compared with APC and AFC data is the lack of passenger 

demand information. Precisely speaking, AVL data is not designed to collect this kind of information. 

Ideally, combing bus AVL data with APC and AFC data can provide a full picture of the real problems 

that bothers the users, including delays, crowding, congestion and unreasonable route design. Thus it 

can help the operators to figure out better transit planning that ensures high punctuality/regularity and 

accommodates the demand dynamics better. A large body of literature integrate multiple datasets of 

AVL, APC and AFC to solve transport problems, which is reviewed in Chapter 2. It is undeniable that 

more limitations confront the operators that only have access to bus AVL data. 

 

In order to support the “data-poor” operators, a primary objective of this dissertation is to explore a 

methodology that can successfully estimate passenger OD flows for a bus route using bus AVL data 

as the main data source. This might help to bridge the gap for the “data-poor” operators to the operators 

with access to more, and higher quality data. In this big data era, the “data-rich” operators utilize their 

data with advanced methodologies to improve their services further. 

 

1.2    Research objectives 

According to aforementioned background and research motivation, this research aims to achieve two 

main objectives using bus AVL data 

1) Bus bunching prediction 
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Firstly, this research makes use of the rich information on time components in the bus trips and applies 

a logistic regression model to predict bus bunching events. 

 

And through this analysis answer in particular following research questions. 

 The identification of bunching event 

 The selection of dependent and independent variable 

 The difference between the newly proposed model and the existing literature that predict the bus 

headways, and more importantly, the advantages of the new method 

 

2) Route demand estimation 

Secondly, this research tries to explore the potentials beyond the design purpose of the bus AVL data, 

in order to make up the gap between AVL data and AFC/APC data. This research proposes a 

methodological framework to estimate OD flows for a bus transit route using bus AVL data. It cast the 

attention on the time components observed from AVL data such as dwell time and headway. It also 

investigates the estimation performance on passenger OD flows for each stop-level OD pair, for 

boarding, alighting flows and passenger loads (defined as onboard number of passengers at the arrival 

in this research) for each bus stop by aggregating the estimated OD flows. 

 

And, as part of this, answer following research questions: 

 The difference between expected OD rate matrix estimation and OD matrix reconstruction 

 The effective methods to address the under-specification of this estimation problem given such 

limited and indirect observations on passenger flows 

 Modeling the connection between the time components observed from bus AVL data and 

passenger flows 

 The efficient solution algorithm 

 The gap in estimation performance between using AVL data only and using additional AFC and 

APC 

 How to maximize the improvement thanks to AFC and APC and meanwhile minimize the 

intervention degree. 

 The reliability of the estimated results in terms of all the demand components: OD flows, 

boarding flows, alighting flows and passenger loads. 
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Also importantly, limitations and future extensions of estimating demand using AVL data is illustrated, 

with an emphasis on  

 Other additional data sources that are easy to collect and can improve the estimation performance 

 The feasibility of demand prediction in real time based on the proposed methodology 

 

Finally, as a follow-up research objective of the second one, the effect of different dwell time models 

on estimation results is investigated. Complex dwell time models might be necessary for the cities 

where bus bunching and in-vehicle crowding are serious issues, since the relation between passenger 

flows and observed dwell time might greatly change. This research builds dwell times considering bus 

bunching and crowding, and tests the resulting estimation performance on demand. 

 

1.3    Research contributions 

Both research objectives are expected to significantly benefit the bus operators as well as extending 

the existing literature. The newly developed bus bunching prediction tool is expected to provide more 

reliable prediction results. The logistic regression estimates and predicts the probability of bunching 

occurrence, while existing methods predict headways and then judge the occurrence of bunching in a 

deterministic way. In long term or multiple-stop-ahead prediction, deterministic results are not 

convincing for the operators to make decision on controlling the bus in advance or not, as the 

prediction results inevitably tend to deteriorate.  

 

The innovative methodology to estimate demand estimation from bus AVL data is considered to make 

noteworthy contributions in both methodological and practical aspects. It is a first attempt to solve 

such a highly underspecified problem as using observed time components to estimate passenger OD 

flows, which can be considered an important methodological contribution. In practical aspects, it 

explores the potential hidden in the bus AVL data in terms of inferring passenger boarding flows, 

alighting flows, passenger loads, crowding level, and OD flows. It illustrates the new roles that AVL 

data can play in improving bus transit service, which is expected to significantly help the operators 

that have difficulties in collecting AFC data and APC data.  

 

This methodology parameterizes the OD flows by mean (expected) OD-paired arrival rate matrix in 

an observational period. Even if only bus AVL data observations are available, it can provide offline 

forecasts on the OD flows based on pre-determined schedule, online estimation on the boarding, 
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alighting and onboard number of passengers based on actual headway. It can be further applied to 

predict the boarding and alighting number of passengers, passenger loads and crowding level at the 

downstream stops, by combing the estimation model with dwell time/headway/bunching prediction 

models which have been already developed or newly proposed in this research. 

 

1.4    Outline of the dissertation 

After the introduction provided by Chapter 1, Chapter 2 reviews existing literature including a broad 

range of related aspects: 1) Studies using AVL data; 2) Studies combining AVL data with APC/AFC 

data; 3) Studies on bus bunching problem: corrective and predictive models; 4) Studies on OD 

estimation, in particular for public transport. Many of them employ AFC, APC and traditional survey 

data as the main data source, and some of them involve AVL data to enrich the model input or to solve 

the technical problems for which AVL data is more suitable. Then, 5) Studies on passenger load and 

crowding level estimation and prediction are reviewed. 

 

Chapter 3 develops a bus bunching prediction methodology based on logistic regression and AVL data. 

It also introduces two existing methods using linear regression and support vector machine as the 

benchmark. The difference between the newly developed method and benchmark methods relies on 

that the former one directly computes the probability of a bunching event to occur while the latter ones 

compute the future headways and then judge if a bunching event is going to occur. A comprehensive 

comparison is elaborated to display the advantages of the new method. The data of a busy circular bus 

line in Kyoto City are used for the case study. 

 

Chapter 4 proposes a methodology to estimate OD flows using bus AVL data as the main data source. 

A basic dwell time model is implemented to capture the connections between time components 

provided by AVL data and passenger flows. Considering the under-specification of this estimation 

problem, Bayesian inference is conducted to estimate the parameters and Markov Chain Monte Carlo 

(MCMC) methods are used as the solution algorithm. Estimation performance by using bus AVL data 

is compared with that by adding boarding or alighting counts data to the model input. The AVL data 

and AFC data are collected in a same observational period to validate the methodology. 

 

Chapter 5 discusses complex dwell time models that consider the effect of in-vehicle crowding and 

bus bunching. In addition, it also investigates the improvements that are made by implementing 
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complex dwell time models on the demand estimation, compared with the performance in Chapter 4 

based on a basic dwell time model. An onboard survey is conducted to collect the needed data in Kyoto 

City where busy and crowding bus services are challenging the operators. 

 

Chapter 6 summarizes main findings of this research. Also it points out the limitations in the proposed 

bunching prediction tool and demand estimation methodology. Finally, it provides future research 

directions in light of the contributions of this research. 
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 Literature review 

In Chapter 1, a brief introduction is conducted on the characteristics of three common passive transit 

datasets, in particular the bus AVL data. In this chapter, existing literature using one or multiple of 

these datasets is comprehensively reviewed, in order to form a better understanding on the roles that 

these datasets can play in solving transportation problems, and the state-of-art functions so far having 

been discovered for these datasets.  

 

As is discussed in Chapter 1, AVL systems are effective at obtaining time components in the bus trips, 

and APC/AFC systems are powerful at inferring passenger flows. With a specific focus on the bus 

AVL data due to the reasons explained in the background, firstly this chapter aims to illustrate the 

advantages of bus AVL data and the state-of-the-art applications of bus AVL data. Secondly, it reviews 

the collaborations between the AVL data and APC/AFC data to improve the transit service, illustrating 

the limitation due to the lack of passenger demand data. Thirdly, it reviews the analytical and predictive 

control strategies that have been developed by a large body of literature towards bus bunching. In 

predictive control models, the AVL data and the collaboration among multiple datasets are playing 

crucial functions. It appears that the focus of the items to control is mainly narrowed on the headway, 

and it is difficult to control passenger flow if little knowledge concerning passenger demand is 

available, which cannot be inferred from the AVL data. Fourthly, the existing literature on OD 

estimation is reviewed. OD estimation is fundamental albeit challenging in demand estimation. 

Passenger boarding demand and alighting demand can be reliably derived if there is an inferred OD 

matrix for each transit route or the transit network. As a result, the expected dwell time and passenger 

load indicating capacity bottleneck at each stop can be estimated as well. Here the demand and dwell 

time estimation is considered equivalent to the offline demand planning. The online demand prediction 

is also developed by some studies with emphasis on passenger load and crowding level prediction  

 

2.1    Overview of bus AVL data 

Furth et al. (2003) define the detail levels of spatial and temporal information that can be captured by 

automated systems, mainly considering AVL and APC systems. Table 2.1 shows the data richness of 

various AVL-APC systems. Level A and B are both AVL systems of fairly low frequency, and Level 

B records the events such as stopping, moving or accident at sending the data to the server or local 

computer. Level C and D are the products of the AVL system collaborating with the APC system, so 
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that they record data for each stop instead of based on frequency. The data collection can be activated 

by door opening and de-activated by door closing, or triggered by driver’s pressing a button to avoid 

missing the data for skipped stops. Level D records the events occurring during the inter-stop travel 

of the bus in addition to Level C. As the stop-focused bus operation data are of greater concern from 

the perspective of both passengers and operators, e.g. arrival time, crowding level, Level C and D are 

considered more useful than Level A and B, although they cannot provide the speed profile and 

indicate traffic condition along the bus route. Level E is continuously recording the data, and of the 

highest richness. 

 

Furth et al. (2003) further summarize a variety of analysis purposes and decision-making objectives 

for the bus operators, and relate appropriate detail level to each objective. They suppose that the AVL 

system is to some degree tied with an APC system in Level C, D and E so that these levels also collect 

passenger demand information. We here present a modified discussion from their version based on our 

definition on those levels that passenger demand data is not available. We also change the function 

category. As is illustrated in Table 2.2, few analysis can be conducted with the very limited detail 

levels as A and B. They are only useful in obtaining rather general knowledge on the bus operation 

status, such whether the bus vehicle is currently on the route, whether any severe accident strikes the 

bus vehicle or the segment. It can roughly characterize spatiotemporal bus trajectories by interpolating, 

however the low frequency greatly reduces the reliability of the replicated trajectory. In fact, many bus 

AVL systems are between Level B and Level E, as they record the data at a frequency between every 

5 seconds to 30 seconds. In these cases, it can generate a complete trajectory much closer to the truth 

than A and B, although the interpolated stop-based time information is still inferior to those provided 

by C, D and E. The bus AVL datasets we obtain from two Japanese cities: Kyoto and Shizuoka, for 

the case studies in Chapter 3 and Chapter 4 are of different detail level. In Kyoto, the data recording 

is planned to be conducted every 8 seconds but the frequency actually varies from 5 to 60 seconds 

perhaps due to some technical problems of data transmission. And it provides door opening or closing 

information for each recorded time point. Small movements over a series of time points with door 

closing can indicate congestion or signal effect given Geographic Information System (GIS) data. This 

dataset refers to a level between B and E, and it is inconclusive on its superiority or inferiority to C 

and D as it provides richer information on bus running over the segments albeit slightly less accurate 

with respect to stop-correlated time components. In Shizuoka, the operator only records the arrival 

time for each stop, which refers to Level C but underperforms some datasets of Level C that provide 
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as well departure time when it comes to the analysis requires dwell time and departure time. 

 

We can conclude that Level B with a higher recoding frequency and Level C are capable of conducting 

a variety of analysis serving for operator’s decision making. Precisely speaking, the desired detail level 

is the sources that can decompose the bus trip and obtain each time component such as bus arrival 

time, dwell time, departure time, segment running time and bus headway, and the noteworthy events 

or indicators of the events such as door opening/closing status and speed are a plus. The dwell time 

can be further decomposed into vehicle activity time and passenger activity time if the events 

indicators are available. With attaching passenger demand to the time point as bus arrival time or to 

the time period as bus headway, a primary 3-dimensional database integrating vehicle spatiotemporal 

information and passenger demand can be established, based on which almost all the analyses are 

feasible given other static data sources such as bus timetable and GIS data. 

 

It should be noted that the demand analysis is currently impossible for the AVL system independent 

of APC or AFC system, at least according to the existing literature. Also it is difficult to investigate 

the real impact of delay and possible impact of schedule or route adjustment on the passengers with 

only the AVL data. The studies combining APC or AFC datasets with AVL data for demand analysis, 

estimation and forecast as well as bus control modeling are reviewed in Section 2.4 and 2.5. And a 

methodology using AVL system of Level C detail as the main data source to estimate demand is 

developed in Chapter 4 by this research. 
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Table 2.1 Levels of spatial and temporal detail for data capture 

Level Description Event-independent 

records 

Event records Between-stop 

performance data 

A AVL without real-

time tracking (or 

data transmission) 

Infrequent (typically 60 

to 120s) 

  

B AVL with real-

time tracking 

Infrequent (typically 60 

to 120s) 

Each time point  

C APC or Event 

recorder 

 Each stop  

D Event recorder 

with between-stop 

summaries 

 Each stop and 

between-stop 

events 

Recorded events and 

summaries 

E Event 

recorder/trip 

recorder 

Very frequent (every 

second) 

All types All events, full 

speed profile 

Source: Use of archived AVL-APC data to improve transit performance and management: Review and 

potential (Furth et al., 2003).  
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Table 2.2 Functions and required data detail level 

Function Analysis item Least detailed 

level needed  

External data 

needed 

General 

performance 

analysis 

Missed trips, off-route incidents A  

The reasons of incidents B  

Bus trajectory tracking and reconstruction C or E  

Punctuality 

analysis 

Schedule adherence C Schedule 

Impact of schedule deviation on passenger 

waiting time 

C Schedule 

The reasons of schedule deviation D Schedule 

Run time 

analysis  

Segment running time C  

Continuous running time E  

Impact of traffic signals D or E GIS, signal data 

Speed analysis E  

Dwell time 

analysis 

Delay due to unexpectedly long dwell time C  

Bus holding time C  

Headway 

analysis 

Stop-based headway C  

Continuous headway A or E  

Bus bunching C  

Impact of irregular headway on the 

passengers 

C APC 

Demand 

analysis 

Time-dependent OD demand C AFC 

Time-dependent boarding/alighting demand C APC 

Time-dependent load profile C APC 

Transfer demand C AFC 

Schedule rationality considering transfer 

demand 

C Schedule, AFC 

Geographic 

and planning 

analysis 

Mapping the bus trajectories with 

landmarks, road network and intersections  

A GIS 

Relating time-dependent passenger demand 

with geographic information 

C APC, GIS 
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2.2    Studies using bus AVL data as the main data source 

Making use of the time component database obtained from the bus AVL data, two research objectives 

are mainly considered by the existing literature. Firstly, many studies measure the reliability metrics 

for the bus transit service of status quo, in order to understand the problems confronting the current 

service, such as service regularity indicated by headway and schedule adherence indicated by the 

deviation of arrival time from schedule. Provided with this correct knowledge on the inadequacies of 

the service, modifications can be applied to the schedule. However, offline data-driven planning and 

adjustment cannot guarantee that the service is always on schedule or of designed headway due to the 

randomness introduced by traffic flows and passenger flows to the system. Online operational 

strategies thus are required for maintaining reliable bus service. As a result, secondly some studies 

focus on prediction models on these time components such as arrival time and headway, which 

provides sources for real-time decision-making. Two types of equally important prediction should be 

distinguished in this problem, predicting the time point or location at which the unfavorable event 

might occur, and forecasting the consequences if control strategies are conducted. 

 

2.2.1    In bus network assessment and planning 

Ceder and Wilson (1986) broke down the comprehensive process of bus network planning into five 

levels: network design, setting frequencies, timetable development, bus scheduling and crew 

scheduling. A global review including 69 approaches that address the problems in the first three stages 

can be found in Guihaire and Hao (2008). They identify Stage 1 as strategic, and Stage 2 and 3 as 

tactical. The inputs and output of each stage are summarized in Table 2.3. Output of the previous stage 

together with the independent inputs frame the next stage planning. The foremost stage is to determine 

the configuration of a set of routes considering passenger demand and operator supply capacity of 

sustaining the current service and future extensions. Route performance indices can indicate the gap 

between demand and supply, also the need for new routes or route adjustment. Route performance 

indices can be obtained from the bus AVL data. In addition, the real arrival times, departure time and 

running times derived from the data suggest improvement directions on frequency and timetable for 

the bus planner.  
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Table 2.3 Bus network planning 

Independent inputs Planning activity Output 

 

Demand data 

Supply data 

Route performance indices 

 

Level A 

Network design 

Route changes 

New routes 

Operating strategies 

 

Subsidy available 

Buses available 

Service policies 

Current patronage 

 

Level B 

Setting frequencies 
Service frequencies 

 

Demand by time of day 

Times for first and last trips 

Running times 

 

Level C 

Timetable development 

Trip departure times 

Trip arrival times 

 

Deadhead times 

Recovery times 

Schedule constraints 

Cost structure 

 

Level D 

Bus scheduling 
Bus schedules 

 

Drive work rules 

Run cost structure 

 

Level E 

Driver scheduling 
Driver schedule 

Source: Bus network design (Ceder and Wilson, 1986). 
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Chen et al. (2009) propose three indices to measure the reliability for transit bus at network, route and 

stop level, which are a punctuality index based on route (PIR), a deviation index based on stops (DIS) 

and an evenness index based on stops (EIS). PIR is the probability that a bus can arrive at the bus stops 

in a given time window. It is the mean value of the probabilities at all the stops of a route indicating a 

route-level schedule adherence degree. DIS then focuses on the stop-level reliability. DIS calculates 

the probability that the headway can be held within a threshold by every two successive buses at a 

specific stop. EIS is the headway evenness considering coefficient of variation of headways and it is 

especially useful to assess the service of high frequency. A large-scale on-board survey is conducted 

by more than 300 surveyors to collect the arrival times and departure times of 30 bus routes for 3 days 

in Beijing, China though, the time data can be gathered in a much more efficient way if bus AVL data 

is available. In order to calculate the reliability metrics weighted by boarding demand, they also collect 

the boarding numbers. Camus et al. (2005) investigate reliability using AVL data in Trieste, Italy. Their 

case study is based on a dataset of four routes during the peak hour of a month, which can characterize 

the daily fluctuating reliability performance. Lin et al. (2008) develop a quality control framework for 

bus schedule reliability using AVL data. They employ running time adherence and headway regularity 

as the key indicators of reliability, and their case study is based on 24 routes (48 route directions) over 

29 weeks in Chicago, USA. In their AVL datasets, the arrival time of bus is recorded when it passes a 

series of locations whose number is fewer than that of bus tops on the bus route. These assessment on 

bus network reliability identify the need of schedule adjustment, and indicate the problem in network 

design if GIS data is integrated.  

 

Bus AVL data also provide input for schedule planning algorithms. Bie et al. (2015) use bus AVL data 

to split the bus operating hours of one day into multiple time-of-day intervals characterized by 

observed bus dwell time and inter-stop travel time. They suggest that different schedule plans should 

be imposed on the buses in different operating interval. Bus dwell time is employed as an indicator of 

passenger boarding/alighting demand in various intervals, and inter-stop travel time indicates the 

traffic condition. Here bus dwell time is considered as a remedy for lack of directly observed passenger 

flows which can be provided by APC or AFC datasets. The case study is based on one bus route in 

Suzhou, China. The AVL data contains frequency-based spatiotemporal coordinates and speed of 

buses and the arrival/departure times are obtained by mapping the coordinates with GIS data. The data 

recording frequency is not disclosed though, the cutting of dwell time and travel time can be reliably 
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conducted with the speed information. As a more common function, the AVL data can provide 

observed stochasticity on bus arrival time, departure times, and running times, which can provide 

mean and confidence intervals for the schedule optimization algorithms. Mean values are useful for a 

variety of mathematical and heuristic approaches using deterministic assumptions on these time 

components (refer to the review by Guihaire and Hao, 2008). And confidence intervals can be the 

inputs to simulation approaches such as Bookbinder and Desilets (1992). 

 

2.2.2    In bus operation 

Bus AVL data has made noteworthy contributions to bus network assessment especially in terms of 

reliability analysis, and to schedule optimization though, the contribution is limited considering that 

bus network planning is user-oriented, the user-weighted reliability and the impact of schedule 

adjustment remain unmeasurable with the AVL data only. Nevertheless, it is rather more useful in bus 

operational aspects, such as predicting bus arrival times and running times. With this predicted 

information, a variety of control strategies have been developed to timely deal with a series of 

complicated operational problems due to the stochastic behavior of users and vehicles, and the 

resulting uncertainties. The real-time strategies have been designed for timed transfer (distinguished 

from schedule planning considering synchronization), bus bunching elimination or headway 

regularization and so forth. Recent research by Bie et al. (2020) comprehensively summarizes the 

strategies in the existing literature including bus holding strategy, signal priority, stop skipping and so 

on. Combination of multiple strategies are also reviewed. They review the literature from the 

perspective of bus bunching mitigation though, some of the control strategies are also widely used for 

timed transfer, such as bus holding (Dessouky et al., 2003), stop skipping (Nesheli and Ceder, 2014), 

short turn (Hadas and Ceder, 2010) and speed control (Hadas and Ceder, 2010). The main difference 

lies in the control objective. 

 

Real-time control is unnecessary if bus arrival times and departure times are always as scheduled, 

which is almost impossible due to the randomness in inter-stop running times caused by uncontrollable 

traffic condition and in dwell times usually resulting from stochastic passenger behavior. In order to 

address the randomness issue in modelling a dynamic strategy albeit the lack of data, a lot of studies 

assume various probability distributions for these important time components as bus arrival time, 

travel time or delay from the schedule. Dessouky et al. (1999) summarize the distribution assumed by 

a number of studies. Normal, lognormal and Gamma distributions are commonly assumed for travel 
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time and arrival time, while exponential distribution is assumed for lateness and delay. Based on the 

random environment structured for bus operation, a simulation is then conducted to evaluate the 

control performance of the strategies (Andersson et al. 1979; Senevirante, 1990). The emerging of the 

bus AVL data enables these studies to calibrate the probability function with the observations in the 

real world, and to verify these methodologies with realistic settings. Dessouky et al. (1999) and 

Dessouky et al. (2003) propose real-time control schemes incorporating arrival time forecast model 

and dispatching/holding control model for timed transfer, the bus AVL data in Los Angeles, USA is 

applied in the simulation experiment. Nesheli and Ceder (2014) use the AVL data in Auckland, New 

Zealand and consider three real-time strategies: bus holding, individual stop skipping and segment (a 

series of successive stops) skipping for transfer synchronization. Similarly, bus bunching elimination 

models also require predicted time components in the bus trips to be the model inputs. Noteworthy 

studies by Moreira-Matias et al. (2016), Andres and Nair (2017), Berrebi et al. (2018) combine forecast 

and control models in bunching problem. The former two studies build forecast model on bus headway 

based on bus AVL data, and the third one forecasts the future bus trajectories using multiple data 

sources. The studies on the prediction models of bus trip time components using one or multiple data 

sources and the solutions on the bus bunching problem including analytical and data-driven control 

models are reviewed in detail in Section 2.3. 

 

2.3    Studies combining bus AVL data and APC/AFC data 

As is introduced in Chapter 1, the strength of the bus AVL data is richness in the time components of 

bus trips. The APC data can provide usually the start and the end of the passenger alighting/boarding 

process, which indicate the bus arrival time, bus departure time and bus dwell time excluding the 

vehicle activity time. The data quality is roughly the Level C detail. It can take the place of bus AVL 

data if Level C is enough for the analysis or modeling. Chen et al. (2009) collect the arrival time, 

departure time and boarding number at each bus stop to conduct passenger-weighted bus reliability 

analyses at stop, route and network level. APC datasets provide all the information needed for this 

analysis, while AVL data can only generate reliability indices without considering the weight of 

passengers. Bie et al. (2015) use bus dwell time as the indicator of demand to split the time-of-day 

interval. More reliable separation can be realized by directly using demand data if APC data is 

available. Cham (2006) build a reliability analysis framework based on AVL and APC data. The 

usefulness of APC data in explaining the causes of unreliability is illustrated. Strathman et al. (2003) 

investigate the causation between headway deviation and bus passenger loads by combining AVL and 
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APC data, and conclude that headway deviation is a primary cause to passenger overload. 

 

The collaboration between AVL and APC/AFC data is very helpful for operational aspects. In many 

control strategy models, deterministic or probabilistic passenger boarding and alighting rates are 

assumed to generate passenger boarding and alighting flows. Real observations on passenger flows 

from the APC datasets can calibrate the incorporated passenger arrival and alighting models, and then 

make the experiment results more realistic and convincing. Berrebi et al. (2018) integrate the AVL 

data and APC data in Portland, USA as model inputs and conduct an experiment to compare the control 

performance of five bus control strategies previously proposed by Dagazo (2009), Xuan et al. (2011), 

Daganzon and Pilachowski (2011), Bartholdi and Eisenstein (2012) and Berrebi et al. (2015). 

 

APC or AFC data is also used in prediction models on bus time components, independently or 

collaborating with the AVL data, and the related studies are reviewed in Section 2.4.2. The 

collaboration as well appears in OD estimation and passenger load estimation/prediction studies where 

the AVL data is no longer a main data source, and the related studies are respectively reviewed in 

Section 2.5 and 2.6. 

 

2.4    Bus bunching problem 

2.4.1    Bus control strategies 

Most of the relevant existing literature can be cast into two categories according to their objective: 

bunching prediction and corrective strategies. A large body of literature discussed how to eliminate 

bus bunching using analytical or simulation methods following the seminal work by Newell and Potts 

(1964). Osuna and Newell (1972) and Newell (1974) tried to maintain the bus schedule by a single 

control point. In contrast, advanced control methods such as dynamic holding control proposed by 

Eberlein et al. (2001), Daganzo (2009), Xuan et al. (2011), Bartholdi and Eisenstein (2012), Zhang 

and Lo (2018) and velocity control developed by Daganzo and Pilachowski (2011). Stop skipping 

discussed by Sun and Hickman (2005) also assumes frequent and efficient communication between 

bus drivers and the control center. Berrebi et al. (2018) tested the control strategies proposed by 

Dagazo (2009), Xuan et al. (2011), Bartholdi and Eisenstein (2012), Daganzo and Pilachowski (2011) 

on a bus route in Portland, Oregon. The experiment was based on real bus AVL (Automatic Vehicle 

Location), APC (Automatic Passenger Counter) and traffic signal data. The effectiveness of each 

strategy to stabilize bus headways was confirmed. Further, the effect of incorrect future headway 
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prediction on each strategy was discussed. The variance of controlled headway was found rising 

significantly as the prediction errors increased. Instead of actively adjusting the headway, Schmöcker 

et al. (2016), Wu et al. (2017), Sun and Schmöcker (2018) discussed passenger re-distribution and 

overtaking strategies which are activated when bunching occurs. These strategies aim to equalize 

passenger boarding numbers for bunched buses through queue management. 

 

Here we classify the existing literature according to the type of control strategy, with a focus on the 

data required for model validation and whether a prediction module is incorporate to generate the 

model inputs. We can summarize mainly eight types of bus control strategies in addressing the bus 

bunching problem: bus holding, bus signal priority, speed control, stop-skipping, short turn, overtaking, 

boarding limitation and bus injection. 

 

Bus holding is the most commonly considered strategy. It extends the dwell time of a bus at a control 

point, usually an intermediate stop or terminal stop. We can simply distinguish three sub-categories 

for bus holding: based on schedule, based on forward-looking headway, and based on backward-

looking or two-way looking headway. Holding based on schedule is usually conducted at one or 

multiple pre-determined controlling stop. The dwell time is forced to extend so as to maintain the 

schedule. Schedule adherence and minimizing passenger waiting time are the objectives. However, it 

is likely to greatly increase the total time of a bus trip and reduce the bus frequency. Besides, it is not 

effective to correct the delayed bus and improve the service regularity. Daganzo (2009) proposes a 

forward-headway-based approach to dynamically control the bus using a headway threshold, the 

holding time is a function of scheduled headway, actual headway and adjustment parameter. We note 

that prediction is not required in this case where only actual forward headway is the dynamic model 

input. At the arriving of the bus of concern, the forward headway from its previous bus is always 

measurable. This method requires few data and is easy to implement. It significantly increases the bus 

travel speed comparing with the schedule-based strategy. Bartholdi and Eisenstein (2012) suggest the 

importance of considering backward headway, and Daganzo and Pilachowski (2011) propose a 

combined strategy of speed adjustment and holding based on two-way headway. The calculation of 

backward headway involves a prediction on the arrival time of the next bus. This kind of prediction 

becomes possible with the emerging of bus AVL data. And reliable prediction can be obtained as the 

prediction horizon is usually short, considering the future arrival time of one or two buses to the control 

stop. Berrebi et al. (2015) consider a horizon of n buses coming to the control stop, and the backward 
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headway is calculated based on the joint probability distribution of next n bus arrival times. 

 

Most of the studies on control strategies employ a bus propagation model to simulate the outcomes. 

Forecast on resulting headway, or passenger waiting time determines whether the control is to be 

conducted. AVL and APC data are interpreted as historical observations from which the distribution 

of link travel time and passenger boarding/alighting demand can be inferred. Some studies draw the 

travel time or demand from the distribution randomly to replicate the stochastics in reality, while some 

others use mean values to simplify the bus propagation model. Another main stream is noting the 

function of data and assuming virtual constant/random travel time/passenger demand (Berrebi et al., 

2015; Sánchez-Martínez et al. 2016). In Table 2.4, AVL or APC in bold denote that the real data is 

applied to obtain the distribution or mean (Wu et al., 2017; Bie et al., 2020), otherwise the data is 

simulated in the studies. It obviously shows that AVL data is widely used or assumed by the studies. 

APC data is used or assumed by the studies paying specific attention on passenger demand, such as 

boarding limitation and stop-skipping. 

 

Many studies model the passenger boarding and alighting demand independently. They assume 

passenger arrival rate/boarding rate for each stop, based on APC data (Wu et al., 2017) or purely 

assumption (Berrebi et al., 2015). For the alighting demand, Liu et al. (2013), Berrebi et al. (2015), 

Chen et al. (2015) and Wu et al. (2017) assume that the passenger boarding at a specific stop will 

evenly alight at the remaining stops. In this way, passenger arrival rate and alighting probability of all 

the on-board passengers can be obtained for each bus stop. Delgado et al. (2012), Schmöcker et al. 

(2016), Sun and Schmöcker (2018) ignore the alighting process in their models, which further simplify 

the randomness of passenger behavior. Sánchez-Martínez et al. (2016) is the only research that models 

the demand with time-varying mean arrival rates at the origin-destination pair level, assuming the 

availability of time-dependent origin-destination matrices or AFC data. They note the recent research 

in the use of automatically collected data to infer travel patterns enables estimating dynamic origin-

destination matrices (Gordon et al., 2013). Matrix estimation methods such as iterative proportional 

fitting may be used when only boarding and alighting data are available (McCord et al., 2010). This 

OD-pair arrival rate assumption is most realistic but requires highest quality of data which is only 

available in onboard survey or AFC data. Boarding limitation, stop-skipping and overtaking are the 

strategies that control or affect passenger boarding behavior, however the simplified alighting behavior 

might make the controlling results biased. The considerations on the connections between passenger 
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boarding and alighting behavior e.g. OD-pair arrival rate, are expected to uncover new insight on the 

strategy performance. OD-wise assumptions make the random alighting demand predictable. Limiting 

the boarding passenger at a specific stop may consequently limit the alighting at another specific stop, 

if dominant OD-pairs exist. New strategies can be developed to split and limit the boarding passenger 

to not only alleviate in-vehicle crowding, but also create more stop-skipping opportunities due to the 

alighting demand at the skipped stop has been already controlled. Furthermore, AFC data or OD 

information is very helpful to establish effective short turn strategies as in Cortés et al. (2011) and 

Tirachini et al. (2011). 
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Table 2.4 Control strategies on bus bunching 

Control strategy Author(s) 
Data for model 

validation 

Prediction for 

model inputs 

Bus holding, 

based on 

Schedule Osuna and Newell (1972) AVL, APC No 

Newell (1974) AVL, APC No 

Xuan et al. (2011) AVL Headway 

Forward 

headway 

Eberlein et al. (2001) AVL No 

Daganzo (2009) AVL No 

Backward 

or two-

way 

headway 

Bartholdi and Eisenstein (2012) AVL Headway 

Berrebi et al. (2015) AVL, APC Arrival time 

Sánchez-Martínez et al. (2016) AVL, AFC Headway, demand 

Andres and Nair (2017) AVL Headway 

Zhang and Lo (2018) AVL Headway 

Bus signal priority He et al. (2016) 
AVL (bus and 

traffic), APC 

Headway, passenger 

load, traffic flow 

Bus signal priority and 

holding 

Koehler and Kraus (2010) AVL Traffic flow 

Estrada et al. (2016) AVL Headway 

Speed control and holding Daganzo and Pilachowski (2011) AVL Headway 

Speed control and signal 

adjustment 
Bie et al. (2020) AVL, APC Travel time 

Stop skipping 

Sun and Hickman (2005) AVL, APC No 

Liu et al. (2013) AVL, APC No 

Chen et al. (2015) AVL, APC No 

Stop skipping and holding Moreira-Matias et al. (2016) AVL, APC 

Travel time, 

headway, bunching 

likelihood 

Short turn 
Cortés et al. (2011) OD, AFC No 

Tirachini et al. (2011) OD, AFC No 

Overtaking 
Schmöcker et al. (2016) APC No 

Sun and Schmöcker (2018) APC No 

Overtaking and holding Wu et al. (2017) AVL, APC Headway 
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Control strategy Author(s) 
Data for model 

validation 

Prediction for 

model inputs 

Boarding limitation and 

holding 

Delgado et al. (2009) AVL, APC Headway, demand 

Delgado et al. (2012) AVL, APC Headway, demand 

Bus injection Morales et al. (2019) AVL Headway, demand 

 

2.4.2    Bunching prediction 

Rather than predicting bus bunching events, most existing literature focuses on bus arrival time and 

headway. Though clearly closely related, this literature can again be grouped into three subcategories: 

bus trajectory, bus arrival time and headway prediction. Complete bus trajectory prediction is most 

challenging but also most informative. It provides predicted stop arrival and departure time, stop-to-

stop travel time, as well as the headway between consecutive buses for bus operators and users. Hans 

et al. (2015) developed a sequential mesoscopic simulation that elaborately considered the stochastics 

generated during bus dwell time and link travel time. A bundle of possible future trajectories is 

simulated based on the distribution assumed for the time components in a bus trip and the associated 

parameters are calibrated with AVL, APC and traffic signal data. This method delivering robust 

prediction results to the operator. Distribution or range for future arrival time and headway can also 

be easily obtained. A shortcoming of this method is that the predicted range of arrival time or headway 

might be too wide to be conclusive for operators’ decision making. Recent research by Dai et al. (2019) 

also modeled bus dwell time and link travel time in detail to reproduce the trip travel time variability 

for a bus line. They specifically considered the bus waiting time due to the interaction between buses 

at the stop intersected by multiple bus lines, which is also defined as common-line bunching in 

Schmöcker et al. (2016). They inferred the probabilities of the bus from a specific line queueing 

(bunching) after the other common lines at the stop from bus GPS data. Yu et al. (2016) and Yu et al. 

(2017) conducted a solid literature review on the methods addressing bus arrival time/travel time 

prediction. They reviewed the implemented data source and algorithm of each relevant literature. Here 

we re-classify the reviewed literature and add some new studies in Table 2.4. It shows that SVM 

(Support Vector Machine), KF (Kalman Filter), KNN (K-Nearest Neighbor), ANN (Artificial Neural 

Network) and regression-based methods are frequently used. Yu et al. (2011) used SVM, ANN, KNN, 

and LR to predict arrival time for a 0.7km common line section where more than 10 bus routes 

overlapped in Hong Kong. Kumar et al. (2018) combined KF and KNN to tackle the prediction of bus 

travel time and arrival time. In this hybrid model, KNN classifier is used to refine the model input of 
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KF model. 

 

Future headway is the difference between the predicted arrival times of two consecutive buses and can 

be obtained by arrival time prediction methods. There are also some studies directly focusing on the 

prediction of headway itself. Yu et al. (2017) proposed a probabilistic prediction approach using RVM 

(Relevance Vector Machine) to attach a confidence interval for each predicted headway for 2- and 3-

stop-ahead. RVM presents better robustness by comparing the results with the deterministic single 

values derived by SVM, KF, KNN and ANN algorithms. Andres and Nair (2017) integrated headway 

prediction and bus holding control strategies. Regression, ANN and autoregressive models are used in 

their work to predict future headways with 5min and 10min prediction horizons. The prediction results 

are applied as input to an analytical model extending Daganzo (2009). 

 

Table 2.5 Bus arrival time prediction methods and data sources 

Author(s) Data Algorithm 

Chien et al. (2002) AVL (historical) data ANN 

Jeong and Rilett (2004) AVL data ANN 

Yu et al. (2006) AVL and weather data SVM 

Chang et al. (2007) AVL data KNN 

Coffey et al. (2011) AVL data KNN 

Yu et al. (2011) AVL data SVM, ANN, KNN, LR 

Liu et al. (2012) AVL data KNN 

Sinn et al. (2012) AVL data Kernel regression 

Moreira-Matias et al. (2016) AVL and historical data ANN 

   

Chen et al. (2004) APC data ANN and KF 

Patnaik et al. (2004) APC data Regression 

   

Shalaby and Farhan (2003) AVL and APC data KF 

Lin et al. (2013) AVL and AFC data ANN 

 

Although headway prediction methods have made great advancement, it remains a challenging work 

to successfully identify coming bunching events in multiple-stop-ahead prediction. The accuracy of 
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bunching prediction is heavily dependent on the reliability of headway prediction whose results 

deteriorate gradually as the prediction horizon extends. Yu et al. (2016) used several well-developed 

algorithms to predict headway first then convert the result to binary bunching occurrence. RMSE for 

headway prediction is 2min and 99% sensitivity is realized for bunching in 2-stop-ahead prediction, 

but the performance deteriorates to 6min for RMSE and 73% for sensitivity for 5-stop-ahead 

prediction. Moreira-Matias et al. (2016) built a regression-based model to predict the headway for a 

downstream stop and calculate the likelihood of bus bunching to occur for all the further downstream 

stops. The focus of their study was to propose a proactive control framework in which every suspicious 

event triggers a bunching alarm. The effect of bunching likelihood thresholds was not investigated. It 

should be noted that Moreira-Matias et al. (2016), Andres and Nair (2017), Berrebi et al. (2018) 

combined prediction and correction, and tested the feasibility and benefit of putting corrective 

strategies into practice. Instead of bunching prediction, Arriagada et al. (2019) used bus GPS data and 

smartcard data to investigate the causes of bus bunching, with an emphasis on the planning side. 

Scheduled frequency, stop location and configuration (number of the berths), traffic signal and bus 

lane design are found to be influential. Such research provides insight into bunching prevention in the 

planning stage. 

 

It can be concluded that few literature considers a straightforward method to predict bus bunching. 

Headway-based prediction method for bus bunching is effective as many strategies are based on 

headway, such as bus holding. Some strategies instead are triggered by bunching events or other 

indicators, such as overtaking and boarding limitation. We here aim to extend the family of prediction 

tools for bus bunching by providing a new direct method to predict bunching event. 

 

In addition, few literature models passenger demand at OD-pair level in the bus propagation model 

for bus bunching, which reduces the contribution to real operation. We suppose the simplification on 

passenger demand also results from the difficulty to obtain OD data. Obtaining APC data appears 

easier and we will discuss the method to estimate OD matrix from APC data in the next section. Table 

2.4 also shows that AVL data is more widely used in the studies concerning bus bunching. We expect 

more strategies to be developed if the OD matrix can be inferred from bus AVL data, which further 

enhances the contribution of this research. 
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2.5    OD estimation 

In this section, a comprehensive literature review on OD estimation is provided to overview the 

contributions and challenges of estimating OD matrices from bus AVL data. The OD estimation 

problem has received long-lasting attention in transportation studies as it plays a fundamental role in 

transport planning and management. Clearly, the OD flow estimation performance strongly depends 

on the quality of the observations. It is a highly underspecified problem as in most cases the number 

of observations is much less than the number of OD pairs in the network. Early seminal studies 

estimate traffic OD flows from link counts and employ a base OD matrix as prior information to 

counter the underspecification problem. Estimation methods include the maximum entropy and 

minimum information principles (Van Zuylen and Willumsen, 1980), Bayesian inference (Maher, 

1983), maximum likelihood models (Spiess, 1987) and generalized least square approaches as in Bell 

(1991). The studies related to the latter three methods are also reviewed by Cascetta and Nguyen 

(1988). 

 

For the estimation of public transport OD flows in urban networks similar approaches can be used 

although an additional problem is the need to infer transfer flows. Onboard OD surveys are a 

straightforward way, but need to be conducted manually and are hence infrequent, randomly capturing 

travel behavior from a small sample size of transit users. Unchained boarding-alighting count data 

which can be massively recorded by APC devices are considered as an alternative. Ben-Akiva (1985), 

Mishalani et al. (2011) and Ji et al. (2015) combine unchained boarding-alighting counts and a base 

OD matrix derived from onboard survey data to update OD flows, based on the Iterative Proportional 

Fitting method. Mishalani et al. (2011) find that increasing the sample size of the onboard OD survey 

improves the estimation performance. Li and Cassidy (2007) and Li (2009) estimate the OD flows for 

a transit route using the count data only. It is an underspecified problem as the observed counts are 

only two vectors characterized by the number of the stop. Inferring connections between the vectors 

are required to transform the independent boarding and alighting flows into a matrix. Li and Cassidy 

(2007) introduce the conditional probabilities of a passenger alighting at a specific stop given a 

boarding stop as parameters for the OD matrix. They categorize all the bus stops into major and minor 

stops to greatly decrease the number of parameters. The parameters are estimated by balancing 

methods using counts data and calculated passenger loads. Li (2009) reduces the number of parameters 

for the alighting probability matrix by a Markov chain model. The probability of a passenger’s 

alighting at a specific stop is considered only dependent on whether he/she is on-board at the previous 
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stop so that the alighting probability matrix is reduced to a vector. Hazelton (2010) suggests that this 

is unrealistic and proposes an MCMC method interpreting the transition probabilities derived by Li 

(2009)’s model as the proposal distribution in Metropolis sampling. 

 

The emergence of smart cards and other electronic payment systems has drastically changed the status 

of the OD estimation problem for transit routes. If the transit system requires the passenger to tap a 

smart card both when boarding and alighting, the transaction data can be naturally feed into a complete 

OD matrix. However, the boarding or alighting entries might be missing if only one tap is required, 

e.g. a flat fare structure is applied on the transit route. Barry et al. (2002), Trépanier et al. (2007) and 

Zhao et al. (2007) discuss the approaches of destination inference and OD matrix estimation using 

smart card datasets without alighting entries. A unique user ID is recorded in smart card datasets based 

on which personal trip itinerary can be created. By applying distance and time thresholds, the alighting 

stop can be inferred. Munizaga and Palma (2012), Gordon et al. (2013) use AFC and AVL data to infer 

the origin-destination flows of AFC users including their transfer points. They also discuss expansion 

methods to infer the flows of all users, i.e. including those who do not use the smart card for payment. 

Gordon et al. (2018) investigate the estimation of the “origin-interchange-destination” flow problem 

containing both AFC and non-AFC users by combining APC data with AFC and AVL data. Detailed 

reviews on the studies using smart cards can be found in Pelletier et al (2011) and Hickman (2017). 

Pelletier et al (2011) review the studies regarding transit planning and categorized them into strategic-

level, tactical-level and operational-level. Hickman (2017) narrows the focus on transit OD estimation. 

 

However, as noted in the introduction, transit operators do not always have access to smart card or 

passenger count data. Cash payment is still prevalent in many cities. In other cases passengers might 

not have to pay at all, particularly commuters or concessionary passengers are often only showing 

their travel permission at boarding or alighting without leaving any record of having been on-board. 

Therefore, we consider the problem of estimating OD flows given very few observations on passenger 

flows. We focus on using bus AVL data in this thesis and seek the solution from Bayesian inference 

which is proved powerful in inferring OD trips given limited observations or observations with 

uncertainty by Maher (1983), Hazelton (2001), Hazelton (2008) and Hazelton (2010). Such Bayesian 

inference frameworks are found useful also in solving other transportation problems, e.g. using travel 

time observations to estimate the link cost and the route choice parameters simultaneously in a metro 

passenger assignment problem by Sun et al. (2015), and missing traffic data imputation by Chen et al. 
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(2019). The posterior distribution of each parameter derived by Bayesian inference can provide the 

transit operators with the confidence interval of the estimated OD flows, which better accounts for the 

inherent randomness existing in passengers’ behavior. The main challenge of this study is that we try 

to estimate OD flows by taking a series of bus dwell times obtained from bus AVL data as the 

observations, which makes it methodologically different from the existing literature. The problem we 

tackle is more underspecified in that unique solution is neither available for boarding and alighting 

number given dwell time, nor for OD flows given unchained boarding-alighting flows. 

 

Hazelton (2001) emphasizes the subtle distinction between two problems in OD inference: 

reconstructing the actual number of OD trips and estimating mean OD trip rates (expectation) which 

are also defined as the unknown parameters in contributions such as Spiess (1987); Li and Cassidy 

(2007) or Li (2009). The aim of reconstruction is to precisely replicate the actual number of OD trips 

during the observational period while that of estimation is to infer the expected number of OD trips. 

Here, we also distinguish the reconstruction problem whose objective is to accurately estimate the OD 

flows for each bus run in an observational period and the estimation problem which is to infer the 

mean (expected) OD flows per bus run in that period. We parameterize the OD matrix by a passenger 

arrival rate matrix. The alighting probability matrix assumed by Li and Cassidy (2007) and Li (2009) 

is not suitable for our problem in that passenger counts are not observable. We put the focus on the 

mean estimation problem in this thesis, as the reconstruction can be considered the next step to 

parameter estimation, which is also pointed out by Li (2009). 

 

2.6    Passenger load estimation and prediction 

Li and Hensher (2011) find that one minute of standing travel time is 2.04 times as one minute of 

traveling with a seat, and one minute of waiting on a crowded platform is 1.7-2.5 times as that of 

waiting on a normal platform. In order to deliver comfortable transit service for the uses, crowding 

problem should be seriously addressed. Passenger load estimation and capacity bottleneck analysis 

are important in demand planning and the prediction is crucial in the operation. Provided with the OD 

matrix, the mean number of boarding and alighting passenger can be naturally obtained, the mean 

passenger load can also be estimated by tracking the expected boarding and alighting dynamics from 

the first stop. The mean passenger load evolution over the bus route can indicate the capacity bottle 

neck and crowding level profile. Frequency and schedule adjustment can be applied to address the 

possible crowding in the planning stage, short turn and demand limitation are then operational 



 

 

30 

strategies. Zhu et al. (2017) propose a passenger-to-train assignment model for railway transit using 

AVL and AFC data. Given the boarding and alighting station obtained from AFC data, they propose a 

probabilistic model to assign the passenger to the possible trains based on the train trajectories which 

are inferred from AVL data, and walking time distribution for access time (from the gate to the platform) 

and egress time (from the platform to the gate). They also consider the possibility of boarding failure 

due to crowding. Jenelius (2019) predicts the vehicle-specific (one metro train contains multiple 

vehicle) passenger load and crowding level for metro transit in real time using train load data collected 

by air suspension system on the vehicle. So far, only few literature discuss the prediction on bus 

passenger load in real time. Zhang et al. (2017) combines AVL data and AFC data to predict passenger 

flows for bus transit. Historical OD data in archived AFC data is used to learn passenger alighting 

pattern given a specific boarding stop. The prediction is then realized given real-time bus AVL data 

and boarding data. We consider the inferred mean arrival rate at OD-pair level from bus AVL data in 

this research can also contribute to the literature on prediction. 
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 Bus bunching prediction 

3.1    Introduction 

Bus bunching is a frequently occurring undesired event. Generally it can be defined as the phenomenon 

of two successive bus runs of a single line arriving at a stop within significantly shorter headways than 

the designed one. Bunching involving more than two buses is also regularly observed. Bus bunching 

may be initiated by the arrival of one bus run being delayed at an upstream stop. More passengers are 

likely to accumulate for the delayed bus at that stop and the bus is thus further delayed. Conversely, 

the subsequent run has fewer passengers to pick up and departs earlier than scheduled. Accumulated 

delay to the first vehicle and increasingly earlier arrival of the second one result in obvious inequality 

in dwell times and on-board passenger numbers. As the inequality aggravates over a sequence of stops, 

the scheduled headway is significantly shortened or eventually offset and the leading bus among 

bunched bus is often overcrowded. 

 

Accurate prediction on headway or bunching itself can help to spotlight the coming bunching and 

further assist the operator to eliminate bunching in real time. A useful prediction tool is expected to a) 

have a long enough prediction horizon to allow the operator’s implementation of countermeasures and 

b) provide information on the reliability of the prediction. The latter point is important in order to 

account for different preferences among operators. A bunching-averse operator is willing to frequently 

control the service to avoid any possible bunching, whereas some other operators may hesitate to take 

control action that will negatively impact some passengers, they thus only correct the predicted 

bunching of high confidence level. Therefore, this thesis suggests a probabilistic binary prediction 

method. 

 

This chapter aims to extend the existing literature in two aspects. Firstly, it builds a LOGR (Logistic 

Regression) model to predict the likelihood of bunching to occur using bus GPS data, and tests the 

prediction performance under a wide range of prediction horizons varying from 1-stop-ahead to 15-

stop-ahead, with an emphasis on multi-stop-ahead prediction and understanding the regularity 

deterioration pattern. Secondly, this study tries to enhance the robustness and flexibility for existing 

prediction tools. To achieve this ROC (Receiver Operator Characteristic) curves are utilized. This 

method is widely used in evaluating the performance of binary classification models and in this study 

it is interpreted as the optimal front of the proposed LOGR. This chapter also explains how to conduct 
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the trade-off between “sensitivity” and “specificity” from an operator’s perspective. 

 

The Chapter is organized as follows. After this introduction, the predictive methodology using logistic 

regression is elaborated in Section 3.2. We point out that logistic regression might be biased when 

used for “rare events data” as is the case in our example and provide a correction method. Then two 

headway-predicting algorithms: LR (Linear Regression) and SVM (Support Vector Machine) are taken 

as the two benchmark approaches in this study and are also briefly introduced in this section. In Section 

3.3, the characteristics of the collected data are described, including data collection period, average 

stop-to-stop travel time, average scheduled headway, fluctuation patterns for headway, etc. Based on 

this, appropriate prediction horizons and bunching thresholds are determined. The case study is 

described in Sections 3.4-6. In Section 3.4, prediction performance of the two headway-predicting 

algorithms is discussed. The prediction performance of the proposed LOGR is evaluated and compared 

with headway-based methods in Section 3.5. The trade-off functionality of LOGR is discussed in 

Section 3.6. Conclusions and further work can be found in Section 3.7. 

 

3.2    Bus bunching prediction 

3.2.1    The identification of bus bunching event 

As a bunching event involves two buses we refer to these as front bus and back bus respectively. Let 

a binary variable 𝑏𝑚
𝑛  denote whether bus run m is caught in bunching as the back bus during its 

dwelling at stop n. 𝑎𝑚
𝑛  and 𝑑𝑚

𝑛  denote the arrival and departure time of bus run m at stop n 

respectively. At stop n, for each bus run 𝑚 (m≥2) we can obtain ∆𝑚−1,𝑚
𝑛  which is the time interval 

between the arrival time of bus m and the departure time of bus m-1 in Eq. (3.1). Bus run m is 

considered bunched with bus run m-1 at the stop when ∆𝑚−1,𝑚
𝑛  is below a threshold ∆0 . The 

threshold can be determined by the operator. Yu et al. (2016) and Moreira-Matias et al. (2016) used 

1/4 of the scheduled headway. ∆𝑚−1,𝑚
𝑛  is defined as the departure-to-arrival headway in this study. 

Different from arrival-to-arrival or departure-to-departure headway, ∆𝑚−1,𝑚
𝑛  is negative when two 

buses overlap at the stop. As overtaking is not allowed, for each stop n, bus m-1 always arrives and 

departs earlier than bus m, and accordingly time interval ∆𝑚−1,𝑚
𝑛  can always be obtained before the 

departure of bus m. 

 

∆𝑚−1,𝑚
𝑛 = 𝑎𝑚

𝑛 − 𝑑𝑚−1
𝑛  (3.1) 
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For each bus m (m≥2), the binary bunching status 𝑏𝑚
𝑛  can be derived by Eq. (3.2) 

 

𝑏𝑚
𝑛 = {

1, ∆𝑚−1,𝑚
𝑛 ≤ ∆0

0, ∆𝑚−1,𝑚
𝑛 > ∆0

 (3.2) 

 

3.2.2    Variable selection 

Following afore reviewed literature the continuous ∆𝑚−1,𝑚
𝑛  can be used as the dependent variable for 

headway-prediction approaches. For bunching prediction then an additional step is required judging 

whether the predicted headway is below a prior defined bunching threshold or not. Instead, in this 

study, 𝑏𝑚
𝑛  is used as dependent variable using logistic regression to directly predict the binary 

bunching status and bunching probabilities.  

 

Gradually accumulated or suddenly significant inequality in dwell time and travel time might lead two 

successive buses to be bunched. The back bus in a bunching event tends to have a shorter forward-

looking headway, negative deviation from timetable (ahead of schedule), less on-board passengers and 

shorter dwell time than those of front buses in a bunching event or of non-bunched buses (Degeler et 

al., 2018). Yu et al. (2016) used boarding and alighting numbers of two successive buses, link travel 

time and headway at an upstream stop as the input to their headway-based prediction approach. As 

only bus GPS data is used in this study, information regarding boarding, alighting as well as on-board 

passengers are not available. Instead dwell time is included in the variable set in addition to headway. 

Deviation from the timetable is excluded here, as bus dispatching is not based on the timetable in some 

cities and the data for this variable might not be available. To conclude, dwell time of two successive 

buses and their headway at an upstream stop n-k are used as the main leading indicators of a coming 

bunching event in the k-step-ahead prediction. The detailed notation is as follows: 

 

𝑡𝑚
𝑛−𝑘 dwell time of bus run m at stop n-k 

𝑡𝑚−1
𝑛−𝑘  dwell time of bus run m-1 at stop n-k 

∆𝑚−1,𝑚
𝑛−𝑘  time interval between the arrival time of bus m and the departure time 

of bus m-1 at stop n-k 

k prediction horizon in terms of number of stops, k = 1,2,3,…N-1 and N 

denote the last stop of the bus route 
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We always have n>k, so that this method cannot conduct the k-stop-ahead prediction until the bus run 

m passes the initial k bus stops, e.g. The prediction starts from stop 6 in the 5-stop-ahead prediction, 

using the data at stop 1. Also note that m≥2 and the first bus has zero probability to be bunched as the 

back bus. 

 

3.2.3    Logistic regression 

LOGR (Logistic Regression) modeling is widely used in classification problems. In binary 

classification it not only helps to categorize observations into positive or negative classes, but also 

interprets the causality by producing the significance of each independent variable. Moreover, it 

computes the probability of each observation to be in the positive or negative class. The binary 

bunching status from the perspective of the back bus 𝑏𝑚
𝑛  (m≥2) is taken as the dependent variable. 

𝑡𝑚
𝑛−𝑘 , 𝑡𝑚−1

𝑛−𝑘 , and ∆𝑚−1,𝑚
𝑛−𝑘  are the independent variables. Let 𝑿𝑚

𝑛 = [𝑡𝑚
𝑛−𝑘, 𝑡𝑚−1

𝑛−𝑘 , ∆𝑚−1,𝑚
𝑛−𝑘 ], then 

probability of bus run m being bunched at stop n as a back bus can be derived as  

 

𝑃𝑟(𝑏𝑚
𝑛 = 1|𝑋𝑚

𝑛 ) =
1

1 + 𝑒−𝜷𝑿𝑚
𝑛    (3.3) 

 

with parameters𝜷 = [𝛽0, 𝛽1, 𝛽2, 𝛽3 ] obtained by fitting the model with real data. Then 𝑃𝑟(𝑏𝑚
𝑛 =

1|𝑿𝑚
𝑛 ) for each bus run m at any stop n for the same or a different data sample can be computed. 𝑏𝑚

𝑛  

is predicted to be positive (one-event) if 𝑃𝑟(𝑏𝑚
𝑛 = 1|𝑿𝑚

𝑛 )  exceeds a probability threshold 𝑃𝑟𝑥 

which is also known as the cut-off point, otherwise, negative (zero-event). 

 

𝑏𝑚
𝑛 = {

1, 𝑃𝑟(𝑏𝑚
𝑛 = 1|𝑿𝑚

𝑛 ) > 𝑃𝑟𝑥 

0, 𝑃𝑟(𝑏𝑚
𝑛 = 1|𝑿𝑚

𝑛 ) ≤ 𝑃𝑟𝑥
  (3.4) 

 

3.2.4    Rare events bias 

Irregular arrivals are common in bus transit operation, however few of them turn into severe bunching. 

The bunching probability which is the ratio of bunching occurrence to the total number of dwelling in 

Yu et al. (2016) varies from 3% to 17%, from 0.15% to 7.17% in Moreira-Matias et al. (2016), and 

from 3% to 9% in our 5-day testing data. Bunching is hence a “rare” event in the dataset. 

 

“Rare events data” refer to large datasets in which it is significantly less likely that the binary 
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dependent variables take one than zero. King and Zeng (2001) considered events such as wars, natural 

disasters or epidemiological infections within long term time series data. They found logistic 

regression underestimates the probability of rare events because they tend to be biased towards the 

majority class, which is the less important class in most cases. This can be explained as follows:  

 

The dependent variable 𝑌𝑖 follows a Bernoulli probability distribution that can take the values of one 

and zero with probabilities 𝜋𝑖 and 1 − 𝜋𝑖 respectively. The probability function can be written as 

 

𝑃𝑟(𝑌𝑖|𝜋𝑖) = 𝜋𝑖
𝑌𝑖(1 − 𝜋𝑖)

1−𝑌𝑖 (3.5) 

 

It is easy to derive the expectation and variance of 𝑌𝑖 as 

 

𝐸(𝑌𝑖) = 𝜋𝑖 (3.6) 

 

𝑉(𝑌𝑖) = 𝜋𝑖(1 − 𝜋𝑖) (3.7) 

 

If the regression model has some explanatory power, the variance in the dependent variable has to be 

large enough. The variance becomes larger as 𝜋𝑖 increases and reaches its maximum if 𝜋𝑖 = 0.5, 

which indicates that it is favorable to involve an equal number of ones and zeros in the dataset. Cosslett 

(1981) and Imbens (1992) also showed that equally sampling the two classes is optimal. 

 

King and Zeng (2001) further discuss that selective data collection strategies instead of sampling all 

available events could save data collection costs and correct the bias. Maalouf and Trafalis (2011) 

implemented kernel logistic regression to rare events data, making use of a fast and robust adaptation 

of kernel logistic regression and taking the weight of rare events into account. In our method, selective 

sampling and corresponding prior correction are used to reduce bias induced by rare events. 

 

Since bus GPS records are plentiful and easy to filter, efficient sampling thus can be achieved by 

creating a balanced dataset in which all bunching events are included and part of the non-bunching 

events are excluded. A balanced selection to include ones (bunching) and an equal number of zeros 

(non-bunching) is applied. 
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Following King and Zeng (2001), prior correction is to correct the estimates according to the fraction 

of ones in the population, denoted by τ, and the observed fraction of ones in the sample, denoted by 

�̅�, since the probability of events to be predicted as ones is overestimated in the sample. The correction 

is applied to the intercept 𝛽0 as 

 

𝛽0̂ = 𝛽0 − ln [(
1 − 𝜏

𝜏
) (

�̅�

1 − �̅�
)] (3.8) 

 

 

3.2.5    Linear regression and SVM as benchmark solutions 

We now turn to two headway prediction methods that we consider as benchmarks compared to the 

afore introduced direct bunching prediction method.  Firstly, we consider LR (Linear Regression) 

which is a basic tool in addressing prediction problems. To make LR comparable with LOGR, the 

same set of independent variables 𝑿𝑚
𝑛 = [𝑡𝑚

𝑛−𝑘 , 𝑡𝑚−1
𝑛−𝑘 , ∆𝑚−1,𝑚

𝑛−𝑘 ]  is applied. With 𝜷′ =

[𝛽0
′ , 𝛽1

′ , 𝛽2
′ , 𝛽3

′] the relationship between the headway at stop n and the set of the independent variables 

containing information k-stop-ahead is modeled as  

 

∆𝑚−1,𝑚
𝑛 = 𝜷′𝑿𝑚

𝑛  (3.9) 

 

Secondly, SVM (Support Vector Machine) can map a non-linear relationship for model input and 

output, and is tested by a number of studies in predicting bus headway or arrival time (Yu et al., 2011; 

Yu et al., 2016). The same independent variables and dependent variable are applied to the SVM 

regression, and a RBF (Radial Basis Function) kernel is selected because it is found both efficient for 

bus arrival time prediction (Yu et al, 2011) and for bus headway prediction (Yu et al, 2016). 

 

3.3    Data processing 

Buses are the main mode of public transport in Kyoto, Japan with more than 100 lines being served 

by several operators. Bus GPS data of two primary bus operators has been obtained for a period of six 

months in 2016. The data is collected every 8 seconds and provides the geographic coordinates of bus 

location in real-time as well as associated bus line and vehicle number. Due to the lack of stop-based 

information, it is essential to identify arrival and departure times for each bus run at each stop. Using 

bus stop coordinates the distances of a bus from previous and next stops can be computed for every 
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GPS record. Considering that bunching and traffic congestion might make it difficult for the bus driver 

to stop the bus at the exact bus stop coordinates as well as inaccuracy of GPS records, the bus is 

regarded arriving at the stop once it approaches the bus stop within 30m. In the same way the departure 

time is obtained when the GPS records indicate that the bus has moved 30m from the bus stop. 

 

The data collection period includes the months of April and November. During these months, Kyoto 

City experiences vast numbers of domestic and foreign visitors who come to enjoy the cherry blossoms 

(April) and red leaves (November) in various sites around the city. The bus operators thus encounter 

a huge challenge during these seasons to deliver a reliable service.  

 

A circular bus line, Kyoto City Bus No. 205, which connects the city center, railway station and several 

famous tourist attractions (Figure 3.1(middle)) is selected for the case study. There are 53 stops on this 

bus line in total. To exclude the effect of dispatching at the terminal and factors for which we do not 

have data (e.g. driver issues, departure time adjustments), the 2nd stop of the line is taken as the initial 

stop and the 52nd stop as the last one so that each bus run passes 51 bus stops. Data of five weekdays 

in April 2016 are used as the training dataset and those of another five weekdays in the same month 

are used for testing the model. 

 

The scheduled headway varies from hour to hour, and the mean scheduled headway at the initial stop 

is 6.97min from 6 am to 8 pm. The shortest scheduled headway is 3min at 7 am. Based on this, 1min 

is used for the bunching threshold as larger threshold can include headway variance that does not lead 

to bunching.  

 

Adequate time is required to project a successful correction, in particular, if the control strategy is 

based on manual communication between the dispatcher and the bus drivers. In this study, the 

proposed approach is tested under a long prediction horizon of 10 stops or more which gives the 

operator more than 15min to react since the mean stop-to-stop travel time is 1.77min. 

 

Figure 3.2 illustrates the bus runs departing from the initial stop between 8 am and 10 am. Bunching 

occurs frequently along the bus line. Bus runs that are involved in bunching as the back bus of two or 

more buses at least once are denoted in red, and the front buses of a bunching sequence are denoted in 

blue. Buses in green are not involved in any bunching. The headway fluctuation patterns of seven red 
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trajectories are demonstrated in Figure 3.3. Because of the bunching effect, the forward-looking 

headway of back buses fluctuate within a small range, but always below one minute, once bunching 

has been occurring giving further support to our threshold choice of one minute. 

 

 

Figure 3.1 Data collected (left), data of Kyoto City Bus No. 205 (middle) and its configuration on real 

map (right) 

 

 

Figure 3.2 Trajectories of Kyoto City Bus No. 205 in one day of April 2016 
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Figure 3.3 Headway fluctuation along the line for bunched buses 

 

3.4    Headway prediction results 

In the now following case study, the headway prediction results derived by LR and SVM are discussed 

at first including a comparison of these results. In Section 3.5 then the focus is on bunching prediction 

use these two methods as well as the newly proposed LOGR model. In the third part of our case study 

we compare the measures using ROC curves. 

 

3.4.1    Linear regression results 

Table 3.1 shows the estimation results of the fitted LR model. For all the prediction horizons, the 

headway between the target bus and its front bus ∆𝑚−1,𝑚
𝑛−𝑘  and the dwell time of the target bus 𝑡𝑚

𝑛−𝑘 

are always significant at 0.1% level and have positive signs. For short-term prediction the coefficient 

of ∆𝑚−1,𝑚
𝑛−𝑘  is close to 1 and it begins to deviate from 1 as the prediction horizon increases. Meanwhile 

the coefficient of 𝑡𝑚
𝑛−𝑘 increases gradually as the prediction horizon extends. 𝑡𝑚−1

𝑛−𝑘  is insignificant 

in some cases, but it is still considered an important variable indicating at-stop activities and passenger 

loads. Long 𝑡𝑚−1
𝑛−𝑘  may shorten the headway, but it sometimes results from in-vehicle crowding as 

well as high boarding demand which may cause boarding failures that lead the following bus to dwell 

longer and increase the headway, thus the sign of 𝑡𝑚−1
𝑛−𝑘  is inconclusive but mostly negative. 
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Table 3.1 Coefficients of the independent variables in the LR model 

Prediction 

horizon 

Intercept ∆𝑚−1,𝑚
𝑛−𝑘  𝑡𝑚

𝑛−𝑘 𝑡𝑚−1
𝑛−𝑘  Adjusted R2 

1-stop-ahead -0.3604*** 1.0009*** 0.7084*** 0.1247*** 0.9681 

2 -0.3689*** 1.0026*** 0.7735*** 0.0381* 0.9431 

3 -0.4890*** 1.0037*** 0.9786*** 0.0845*** 0.9173 

4 -0.4664*** 1.0051*** 0.9611*** 0.0203 0.8922 

5 -0.5081*** 1.0065*** 1.0315*** 0.0115 0.8673 

6 -0.4676*** 1.0075*** 0.9974*** -0.0751* 0.8424 

7 -0.5320*** 1.0092*** 1.0664*** -0.0247 0.8183 

8 -0.5070*** 1.0108*** 1.0177*** -0.0738* 0.7942 

9 -0.5458*** 1.0111*** 1.1231*** -0.0931* 0.7710 

10 -0.5613*** 1.0123*** 1.1489*** -0.1072** 0.7474 

11 -0.5937*** 1.0136*** 1.1834*** -0.0932* 0.7245 

12 -0.6405*** 1.0160*** 1.2057*** -0.0459 0.7012 

13 -0.6283*** 1.0186*** 1.1944*** -0.0935 0.6790 

14 -0.6675*** 1.0212*** 1.2323*** -0.0886 0.6564 

15 -0.6325*** 1.0235*** 1.2236*** -0.1681*** 0.6349 

*** <= 0.001, ** <= 0.01, * <= 0.05 

 

3.4.2    Support vector machine 

The RBF function has two tuning parameters (C, γ) to enhance the predicting power of the SVM model. 

C is the cost parameter to penalize the misclassifying of a sample. C thus controls the complexity of 

the classifier; a high C may greatly bend the “prediction hyperplane” to avoid any misclassifying 

(Cherkassky and Ma, 2004). γ is the inverse of the radius of influence by the samples selected as the 

support vectors of the model. γ determines the influence of a single sample, a high γ thus may 

reduce the radius and limit the generalization performance of the model. According to the findings on 

bus arrival time prediction in Yu et al (2011), 𝐶 ϵ [2-5, 25], γ ϵ [0.1, 0.3] are recommended for the two 

parameters. In our method, (22, 1) is set for the two parameters after a grid search in which γ = 1 

performs better in our dataset. 
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3.4.3    Performance evaluation index 

MAPE (Mean Absolute Percentage Errors) and RMSE (Root Mean Square Errors) are commonly used 

to evaluate the prediction performance regarding exact value arrival time or headway prediction. Let 

M and N denote the total number of bus runs and stops for a bus line, ∆𝑚−1,𝑚
𝑛−𝑘  and ∆̂𝑚−1,𝑚

𝑛−𝑘  denote 

the actual value and predicted value for headway, MAPE and RMSE are obtained respectively in Eq. 

(3.10) and Eq. (3.11). In order to prevent the denominator being close to zero, we follow the method 

of Yu et al. (2016) to calculate MAPE and use the mean of actual headways ∆̅ instead of ∆𝑚−1,𝑚
𝑛−𝑘  

 

𝑀𝐴𝑃𝐸 =
1

(𝑀 − 1)(𝑁 − 𝑘)
∑ ∑ |

∆𝑚−1,𝑚
𝑛−𝑘 − ∆̂𝑚−1,𝑚

𝑛−𝑘

∆̅
|

𝑀

𝑚=2

𝑁

𝑛=𝑘+1

× 100% (3.10) 

 

𝑅𝑀𝑆𝐸 = √
1

(𝑀 − 1)(𝑁 − 𝑘)
∑ ∑(∆𝑚−1,𝑚

𝑛−𝑘 − ∆̂𝑚−1,𝑚
𝑛−𝑘 )2

𝑀

𝑚=2

𝑁

𝑛=𝑘+1

 (3.11) 

 

 

3.4.4    Performance comparison 

Headway prediction results at Stop 23 “Kinkaku Temple”, one of the most frequented sightseeing 

spots in Kyoto, is used to illustrate the performance of the aforementioned two methods. The results 

of 1-stop-ahead and 10-stop-ahead predictions are illustrated in Figure 3.4 and evaluated in Figure 3.5.  

 

Reliable prediction results (MAPE = 7.42% and RMSE = 0.71min by LR, MAPE = 7.45% and RMSE 

= 0.71min by SVM) are produced for 1-stop-ahead prediction. For 10-stop-ahead prediction, the 

results obviously deteriorate (MAPE = 21.64% and RMSE = 1.93min by LR, MAPE = 21.51% and 

RMSE = 1.92min by SVM). We suggest they can still provide insights into expected fluctuation 

patterns downstream, but the exact value is not reliable. Furthermore, neither in 1- nor 10-stop-ahead 

prediction can these two methods perform favorably under the circumstance that the actual headway 

becomes extremely short and bunching is going to happen, as is highlighted by the blue box in Figure 

3.4. Furthermore, Figure 5 illustrate that in terms of MAPE and RMSE, both methods produce close 

prediction accuracy and deteriorate similarly. Instead of significant increases in prediction errors, 

evaluation metrics deteriorate gradually as the prediction horizon extends. 
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(a) 1-stop-ahead headway prediction 

 

(b) 10-stop-ahead headway prediction 

Figure 3.4 Performance comparison in terms of exact headway value 
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(a) Deterioration in MAPE as the prediction horizon extends 

 

(b) Deterioration in RMSE as the prediction horizon extends 

Figure 3.5 Performance comparison in terms of RMSE and MAPE under various prediction horizons 

 

3.5    Bunching prediction 

3.5.1    Logistic regression results 

We now focus on bunching prediction, firstly with logistic regression. Estimation results with and 

without rare events bias correction are shown in Table 3.2. Adjusted McFadden’s R2 obtained by Eq. 

(3.12) is selected to measure the overall goodness of fit for the logistic regression model.  
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𝑅𝑀𝐶𝐹
2 = 1 −

𝑙𝑛𝐿𝑓𝑢𝑙𝑙  −  𝐾

𝑙𝑛𝐿𝑛𝑢𝑙𝑙
 (3.12) 

 

where 𝐿𝑓𝑢𝑙𝑙 is the likelihood derived by the fitted model, and 𝐿𝑛𝑢𝑙𝑙 is the likelihood of a null model 

with intercept as the only predictor. K is the number of independent variables in the proposed model. 

Due to the randomness generated by drawing non-bunching observations from the 5-day dataset to 

correct the rare event bias, we run the model for 100 times and report the mean values for the 

coefficients and adjusted McFadden’s R2. The significance is not based on any specific run but on all 

the 100 runs, and for each variable the p-value is obtained by one sample test on the 100 estimated 

coefficients. Bunching probability is negatively correlated with the value of headway, thus the 

coefficients of the variables in the fitted LOGR have a reversed sign compared to those in the LR 

model. The correction is proven effective as the adjusted 𝑅𝑀𝐶𝐹
2  is increased by at least 0.05 for each 

prediction horizon. 
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Table 3.2 Coefficients of the independent variables in the LOGR model 

Prediction 

horizon 

Intercept ∆𝑚−1,𝑚
𝑛−𝑘  𝑡𝑚

𝑛−𝑘 𝑡𝑚−1
𝑛−𝑘  Adjusted 

𝑅𝑀𝐶𝐹
2  

Without correction 

1-stop-ahead 3.0842*** -2.2341*** -1.4015*** -0.3552*** 0.7508 

2 2.3653*** -1.7302*** -1.0123*** -0.1913* 0.6899 

3 2.0826*** -1.4265*** -1.1577*** -0.1057 0.6357 

4 1.8370*** -1.2634*** -1.0737*** 0.0149 0.6016 

5 1.6296*** -1.1234*** -0.9013*** -0.0036 0.5651 

6 1.5044*** -1.0363*** -0.9266*** 0.1282 0.5385 

7 1.4301*** -0.9596*** -0.8913*** 0.1007 0.5097 

8 1.2780*** -0.8957*** -0.7406*** 0.1680* 0.4838 

9 1.2385*** -0.8352*** -0.8607*** 0.1960** 0.4558 

10 1.1162*** -0.7811*** -0.8076*** 0.2664*** 0.4289 

11 1.1189*** -0.7361*** -0.7486*** 0.0807 0.4028 

12 1.0504*** -0.7003*** -0.7425*** 0.1446* 0.3819 

13 0.9763*** -0.6679*** -0.6612*** 0.1593* 0.3615 

14 0.9184*** -0.6403*** -0.5862*** 0.1666** 0.3431 

15 0.8498*** -0.6137*** -0.5155*** 0.1807** 0.3246 

With correction (mean values of 100 runs reported with significance also based on all runs) 

1-stop-ahead 2.3647*** -2.0343*** -1.1165*** 0.0619*** 0.8214 

2 1.8730*** -1.5919*** -0.8407*** 0.0385* 0.7732 

3 1.7571*** -1.3429*** -1.1465*** 0.0985*** 0.7267 

4 1.6035*** -1.2226*** -0.9988*** 0.1627*** 0.6971 

5 1.4231*** -1.0874*** -0.9060*** 0.1598*** 0.6568 

6 1.2997*** -1.0042*** -0.8988*** 0.2585*** 0.6248 

7 1.2399*** -0.9326*** -0.7756*** 0.1574*** 0.5938 

8 1.1046*** -0.8738*** -0.7128*** 0.2740*** 0.5641 

9 1.1111*** -0.8146*** -0.8855*** 0.2514*** 0.5311 

10 1.0183*** -0.7663*** -0.8584*** 0.3289*** 0.5023 

11 0.9848*** -0.7188*** -0.7544*** 0.1642*** 0.4709 

12 0.9108*** -0.6817*** -0.7792*** 0.2616*** 0.4461 
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Prediction 

horizon 

Intercept ∆𝑚−1,𝑚
𝑛−𝑘  𝑡𝑚

𝑛−𝑘 𝑡𝑚−1
𝑛−𝑘  Adjusted 

𝑅𝑀𝐶𝐹
2  

13 0.8268*** -0.6467*** -0.7202*** 0.2776*** 0.4195 

14 0.8020*** -0.6183*** -0.6655*** 0.2246*** 0.3970 

15 0.6966*** -0.5887*** -0.5887*** 0.2788*** 0.3739 

*** <= 0.001, ** <= 0.01, * <= 0.05 

 

3.5.2    Performance evaluation index 

We define an actual bunching as “observed positive” and a predicted bunching as “predicted positive”. 

Similarly, for non-bunching we define “observed negative” and “predicted negative”. All the 

prediction results can be cast into four categories as is shown in Table 3.3, e.g. it is a true positive if 

an observed bunching is correctly labeled one in the prediction outcomes. Four indices can be obtained 

from Eq. (3.13) to Eq. (3.16). A binary classifier with high true positive rate and high true negative 

rate is desired. The former is commonly referred to as “sensitivity” and the latter as “specificity”. 

Sensitivity, specificity and accuracy, which is an index computed with Eq. (17) to indicate overall 

prediction performance, are applied to evaluate the binary classification performance of the three 

algorithms.  

 

Table 3.3 Four categories for binary classification results 

 Observed positive (OP) Observed negative (ON) 

Predicted positive (PP) True positive (TP) False positive (FP) 

Predicted negative (PN) False negative (FN) True negative (TN) 

 

True positive rate (TPR, sensitivity, SES) = 
∑TP 

∑OP
 (3.13) 

 

False positive rate (FPR) = 
∑FP 

∑ON
 (3.14) 

 

True negative rate (TNR, specificity, SPC) = 
∑TN 

∑ON
      (3.15) 

 

False negative rate (FNR) = 
∑FN 

∑OP
 (3.16) 

 

Accuracy (ACC) = 
∑TP +∑TN 

∑OP+∑ON
 (3.17) 
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For headway-based methods, only one combination of sensitivity and specificity is derived, as 

headway prediction produces an exact value for each headway, resulting in deterministic true positive 

and negative outcomes. Instead, by using logistic regression different combinations are obtained 

depending on the cut-off point applied to the predicted probability. The cut-off point is the threshold 

to determine the predicted positive. The event is judged as positive if its predicted probability exceeds 

the cut-off point. A high cut-off point tends to only identify events presenting convincingly high 

probability as positives, and consequently, it thus might misclassify observed positives as negative. 

Vice versa, a low cut-off point will lead to more false positives. Therefore the cut-off point choice 

should depend on the operator’s attitude towards bunching. Two scenarios are assumed here to 

represent operators with different weights to false negative errors (missing actual bunching). Moreira-

Matias et al (2016) employed a large weight of 10:1 for false negative compared to false positive for 

aggressive control purposes. We consider more moderate weights of 1:1 and 3:1. 

 

Scenario 1 (LOGR-N): the operator is bunching-neutral, and gives equal weight to false 

positive and false negative. 

Scenario 2 (LOGR-A): the operator is bunching-averse, and gives a 3:1 weight to false 

negative over false positive predictions. 

 

The cost function in Eq. (3.18) computes the total weighted errors given a cut-off point. For LOGR-

N, 𝑤𝐹𝑃 = 𝑤𝐹𝑁 = 1, and for LOGR-A, 𝑤𝐹𝑃 = 1, 𝑤𝐹𝑁 = 3. The cut-off point generating the lowest 

cost is taken as the optimal one. Based on the scenario-specific predicted positives and negatives, the 

combination of sensitivity and specificity is determined. 

 

𝑐 = 𝑤𝐹𝑃∑FP+𝑤𝐹𝑁∑FN (3.18) 

 

 

3.5.3    Performance comparison 

Considering that the results derived by LR and SVM are similar, the comparison here is among SVM 

and two distinguished scenarios based on LOGR. As is presented in Figure 3.6(a), most bunching 

events can be detected 1-stop in advance by all three methods, and LOGR-A produces several false 
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positives because it applies a more aggressive strategy to potential bunching events. However, LOGR-

A significantly outperforms in 10-stop-ahead prediction, as is illustrated in Figure 3.6(b). LOGR-A 

captures a number of observed positives that are misclassified by SVM and LOGR-N although it 

generates a few more false positives. 

 

A further comparison among two headway-based approaches and two scenarios of logistic regression 

is demonstrated in Figure 3.7. Sensitivity, specificity and accuracy for the four methods under various 

prediction horizons are presented. LOGR-A shows remarkable robustness in terms of sensitivity. On 

the contrary to the obvious deterioration of the other three methods, the sensitivity of LOGR-A keeps 

above 65% under all the prediction horizons. Besides, it only slightly underperforms the other three 

methods in terms of specificity, indicating an acceptable trade-off cost. Non-bunching events 

overwhelm bunching events in the daily operation, and a slight underperformance in specificity might 

introduce a large number of false positive. The exact numbers of true positives, false positives, true 

negatives, false negatives derived in the 5-day testing data are listed in Table 3.4. LOGR-N always 

generates the least total errors (highest accuracy). LOGR-A always correctly detects most bunching 

events (highest sensitivity) at the cost of most total errors (lowest accuracy). The notable advantage of 

LOGR over the other two methods is its trade-off functionality. It can achieve highest overall accuracy 

and can outperform the other methods in terms of sensitivity, although it cannot realize both objectives 

simultaneously. 
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(a) 1-stop-ahead bunching prediction 

 

(b) 10-stop-ahead bunching prediction 

Figure 3.6 Performance comparison in terms of binary bunching identification 
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(a) Deterioration in SES as the prediction horizon extends 

 

(b) Deterioration in SPC as the prediction horizon extends 

 

(c) Deterioration in ACC as the prediction horizon extends 

Figure 3.7 Performance comparison in terms of SES, SPC and ACC under various prediction horizons 
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Table 3.4 Performance comparison for 10-stop-ahead bunching prediction 

 Size OP 
PP PN SES 

(%) 

SPC 

(%) 

ACC 

(%) TP FP TN FN 

 Day 1 

LR 4223 344 161 77 3802 183 46.80 98.01 93.84 

SVM 4223 344 171 89 3790 173 49.71 97.71 93.80 

LOGR-N 4223 344 208 118 3761 136 60.47 96.96 93.99 

LOGR-A 4223 344 262 200 3679 82 76.16 94.84 93.32 

          

 Day 2 

LR 4182 384 158 118 3680 226 41.15 96.89 91.77 

SVM 4182 384 166 138 3660 218 43.23 96.37 91.49 

LOGR-N 4182 384 143 94 3704 241 37.24 97.53 91.99 

LOGR-A 4182 384 266 345 3453 118 69.27 90.92 88.93 

          

 Day 3 

LR 4264 355 175 62 3847 180 49.3 98.41 94.32 

SVM 4264 355 187 73 3836 168 52.68 98.13 94.35 

LOGR-N 4264 355 201 82 3827 154 56.62 97.9 94.47 

LOGR-A 4264 355 263 202 3707 92 74.08 94.83 93.11 

          

 Day 4 

LR 4182 146 51 42 3994 95 34.93 98.96 96.72 

SVM 4182 146 57 51 3985 89 39.04 98.74 96.65 

LOGR-N 4182 146 50 37 3999 96 34.25 99.08 96.82 

LOGR-A 4182 146 100 112 3924 46 68.49 97.22 96.22 

          

 Day 5 

LR 4182 254 123 67 3861 131 48.43 98.29 95.27 

SVM 4182 254 121 79 3849 133 47.64 97.99 94.93 

LOGR-N 4182 254 176 115 3813 78 69.29 97.07 95.38 

LOGR-A 4182 254 204 164 3764 50 80.31 95.82 94.88 
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3.6    Discussion on the trade-off between sensitivity and specificity 

ROC curves created by plotting (1-SPC, SES) for given cut-off points are commonly used to evaluate 

the classification performance. AUC (Area Under the Curve) being close to one indicates good 

classification power. ROC curves under various prediction horizons are presented in Fig. 3.8. 

Furthermore, the four combinations of sensitivity and specificity derived by the four methods 

discussed in the previous section are indicated on each curve. 

 

For each horizon, the corresponding curve can be considered the optimal front derived by LOGR. If 

an algorithm outperforms LOGR, the point it represents should appear above the curve with a higher 

SES and lower 1-SPC. It can be observed that the two headway-based methods (LR and SVM) 

generally fall below and sometimes on the LOGR curve, although the downward deviation from the 

curve is not significant. 

 

It is easy to conduct the trade-off between sensitivity and specificity on the LOGR curve. The LOGR 

curve contains all combinations of prediction performance given continuous cut-off points where each 

cut-off point can be considered as optimal. A bunching-averse operator who is aggressive to eliminate 

bunching might desire to detect 99% of the positives regardless of the cost to increase false positive 

rate. This trade-off functionality significantly enhances the flexibility and robustness of existing 

bunching prediction approaches, especially for putting the predictive methodology into real practice. 

The curves provide a robust benchmark and insights for future algorithms that address bunching 

prediction problem. Deterministic methods can only produce one combination of prediction 

performance which greatly limits its contribution to the real application unless its sensitivity and 

specificity simultaneously achieve a highly reliable level. Other probabilistic methods generating a 

curve having higher AUC than LOGR or deterministic methods producing points of substantial 

upward deviation from the curve under various prediction horizons should be further promising 

extensions. 
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Figure 3.8 ROC curves under various prediction horizons (1-stop, 5-stop, 10-stop and 15-stop ahead) 

 

Table 3.5 Supplementary information for ROC curves shown in Figure 3.8 

Prediction horizon 
AUC (area under the 

curve) 

Cut-off point of 

LOGR-N (%) 

Cut-off point of 

LOGR-A (%) 

1-stop-ahead 0.9922 90.31 73.5 

5 0.9763 87.19 77.53 

10 0.9546 87.56 79.74 

15 0.9279 81.6 71.50 
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3.7    Summary 

In this chapter, the potential of logistic regression to predict bus bunching is discussed. We consider 

the “rare event” nature of our problem which leads logistic regression to lose prediction power due to 

being biased to the majority in the dataset where positive events are by far outnumbered by negative 

events. Thus a selective sampling method and intercept correction is applied. We then compare this 

method with existing approaches that predict headways and then utilize the headway prediction for 

bunching prediction. Clearly headway prediction can be used for a larger range of purposes and deeper 

understanding of the service regularity developments as well as control strategies. However, bunching 

prediction itself is important as it can be considered a distinctive state. This research and other 

literature illustrate that headways fluctuate, but that, once bunching is reached, this state mostly 

continues along the line with far less headway fluctuation. We illustrate that when it comes to 

predicting bunching itself the newly proposed method has the potential to outperform headway-based 

methods such as LR and SVM in several aspects. 

 

Firstly, LOGR provides superior prediction results under a long prediction horizon. It outperforms LR 

and SVM by 28% in sensitivity and maintains the same level of specificity in 10-stop-ahead prediction. 

It also shows improved resistance against deterioration in prediction performance as the prediction 

horizon extends. 

 

Secondly, robustness and flexibility are significantly enhanced. LOGR provides robust prediction 

results that contain various sets of bunching outcomes under different cut-off points. This enables the 

operator to apply weights that are in accordance with their attitude towards bunching and operation 

budget. Some operators with limited possibility or willingness to apply corrective measures can use 

SVM or LOGR with neutral cut-off point setting. On the contrary, operators who desire to eliminate 

any possible bunching might be unwilling to choose headway-based methods which omit a 

considerable number of bunching in the long-term prediction cases. In this case LOGR-A becomes a 

much-preferred option. To conclude, LOGR provides operators with a wide range of options that can 

be tailored by their attitudes towards unexpected system disturbances. 

 

We find that the headway-predicting approaches deviate slightly downward from the optimal front and 

we discuss that their shortcomings are inadequate robustness and flexibility from the operator’s 
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perspective. We note that it is also feasible to form a curve in terms of sensitivity and specificity for 

probabilistic headway prediction methods with confidence intervals to realize the trade-off on the 

curve discussed in this research. Hans et al (2015) developed a simulation-based prediction tool, Yu et 

al (2017) tested RVM algorithm on headway prediction problem. Both methods could be extended to 

compute the probability of a headway falling below 1min and then to construct the ROC curves. By 

doing so and comparing the different ROC curves more insights might be obtained.  

 

Finally, other extensions that potentially strengthen the predictive power of the models presented in 

this study should be noted. The model itself has space for improvement by including variables such as 

weather, traffic signals and passenger demand that are not incorporated due to missing data. 

Furthermore, the study could be extended to simultaneously predict bunching for several lines, in 

which case common line effects such as the interaction between buses of different lines at a common 

stop need to be considered. 
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 Demand estimation using bus AVL data 

4.1    Introduction 

In this chapter, we explore the feasibility of estimating the passenger origin-destination (OD) flows 

for a bus transit route using Automatic Vehicle Location (AVL) data. Dwell time models are used to 

build connections between bus dwell times and passenger OD flows, and a modified gravity model is 

applied to reduce the number of unknown parameters. Bayesian inference and Markov Chain Monte 

Carlo (MCMC) methods are implemented to estimate the mean and confidence intervals for the 

boarding-alighting flows and passenger loads at each stop. The methodology is validated by Automatic 

Fare Collection (AFC) data. It is found in the case study that the estimation performance derived by 

using bus AVL data matches that using unchained passenger boarding-alighting counts. Furthermore, 

additional input data that roughly characterize the importance of bus stops improve the performance 

of OD estimation. We conclude that our proposed methodology can support bus transit operators 

having no or limited information regarding passenger demand in planning and operation aspects. 

 

Due to rapid advancements in data collection possibilities, nowadays some transit operators are in a 

position to conduct data-driven route configuration planning, scheduling and capacity bottleneck 

estimation, as well as to execute real-time controls. Fluctuations in passenger demand can be 

accommodated, which then substantially improve the service quality and enhance the competitiveness 

of traditional bus services against other emerging transport modes. However, it should not be 

overlooked that a large number of operators have still limited access to data sources such as smart card 

data.  

 

Here we consider the problems from the perspective of such a transit operator who has no direct 

observation on the passenger flows. As a result, it is difficult for the operator to plan services satisfying 

real demand patterns well leading to, for example, unreasonable bus schedules and route and in-vehicle 

overcrowding. It should be noticed that this dilemma results not only from budget inadequacies or 

technical difficulties in terms of introducing Automatic Fare Collection (AFC) and Automatic 

Passenger Count (APC) systems to the city but also from the inefficiencies in data sharing or conflicts 

of interest, e.g. a unified smart card is issued by a different operator or a third company which does 

not allow the data to be shared with the bus operators.  
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In order to help this kind of “data-poor” operator, we propose that dwell times are indirect but 

informative observations regarding passenger flows, which can be collected by Automatic Vehicle 

Location (AVL) system. For each bus only one - fairly low cost - GPS device is required to collect the 

data. As a large set of OD patterns are feasible for each set of dwell times, the problem is highly 

underspecified and we implemented Bayesian inference approaches which are proven efficient to 

obtain confidence intervals given uncertain observations (Maher, 1983; Hazelton, 2001; Hazelton, 

2008; Hazelton, 2010). 

 

This study therefore significantly extends the role that bus AVL data can play in improving the quality 

of bus services. AVL systems are originally designed to monitor the punctuality performance by 

recording the vehicle’s temporal-spatial coordinates. As an extension, bus AVL datasets are further 

widely used to predict bus arrival times and headways (e.g. Yu, 2011; Hans, 2015). This study 

illustrates the potential of bus AVL data in estimating passenger flows. The main contribution of this 

study is hence a novel methodology to estimate two levels of information in terms of passenger 

demand using bus AVL data as the main data source. It estimates passenger boarding/alighting 

numbers and onboard numbers for each bus stop of a bus route. Further, at a more disaggregated level, 

it estimates the stop-based passenger OD flows. 

 

This reminder of this chapter is as follows. Section 4.2 proposes the model framework. Section 4.3 

introduces the basic dwell time models incorporated in this model. Section 4.4 builds a Bayesian 

inference model. The MCMC sampling algorithm is developed in Section 4.5. The case study is 

described in Sections 4.6 and 4.7. We test the proposed estimation methodology and algorithm on two 

main bus routes in Shizuoka City, Japan. In Section 4.6, we introduce the two datasets used in the case 

study: AVL data and AFC data, and the processing methods. In Section 4.7, we evaluate the estimation 

performance by comparing the results with AFC data. We also investigate the effect of additional 

observations to AVL data e.g. passenger count data, and some prior knowledge about the estimation 

performance by distinguishing 6 scenarios. Finally, we discuss the findings of this study and 

limitations in Section 4.8 and 4.9 respectively. 

 

4.2    Model framework 

The notation used in this section is as follows grouped by observations and directness of estimation. 
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Observations (data) 

𝐷𝑖,𝑘 dwell time of bus run k at stop i 

𝑊𝑖,𝑘  passenger activity time of bus run k at stop i 

∆𝑖,𝑘 headway between bus run k and its front bus at the arrival of stop i 

𝑡𝑎 average aligthing time per passenger 

𝑡𝑏 average boarding time per passenger 

c vehicle activity time 

 

Estimated Parameters 

𝑝𝑖
𝑔

 generation power of bus stop i 

𝑝𝑖
𝑎 attraction power of bus stop i 

𝛼  cost function parameter 

𝜎𝑊  standard deviation of passenger activity time 

 

Directly derived parameters 

𝑎𝑖,𝑗 arrival rate per minute of passenger boarding at stop i and alighting at stop j 

 

“2nd level” derived parameters 

𝑄𝑖,𝑗,𝑘 number of passenger boarding bus run k at stop i and alighting at stop j 

𝑂𝑖,𝑘 number of passenger on-board when bus run k arrives at stop i 

𝐵𝑖,𝑘 number of boarding passenger of bus run k at stop i 

𝐴𝑖,𝑘 number of alighting passenger of bus run k at stop i 

𝜇𝑖,𝑘 expected passenger activity time of bus run k at stop i 

 

For comparison purposes in Section 6, we also estimate the OD flows using models with more 

information, i.e. if 𝐀 and/or 𝐁 available. In these cases, 𝐀 and/or 𝐁 are moved to the observations. 

 

For each bus run k = 1, 2, …, K at each bus stop i = 1, 2, …, N, we let 𝐷𝑖,𝑘 denote the bus dwell time, 

and let a constant c simplify the vehicle activity time which is the aggregation of time required for 

door opening, door closing, deceleration and acceleration but excluding “passenger activity time”, 

then the passenger activity time can be written as 
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𝑊𝑖,𝑘 = 𝐷𝑖,𝑘 − 𝑐 (4.1) 

 

Let 𝑡𝑎  and 𝑡𝑏  denote the average alighting and boarding time per passenger, let 𝐵𝑖,𝑘  and 𝐴𝑖,𝑘 

denote the boarding flows and alighting flows at stop i for bus run k respectively. With this we can 

obtain the expected passenger activity time as a function of boarding and alighting flows as well as 

time required per boarding and alighting process as in Eq. (4.2). The specification of this function 

depends on the payment process and vehicle layout as discussed in Section 3.2. 

 

𝜇𝑖,𝑘 = 𝑓(𝑡
𝑏𝐵𝑖,𝑘 , 𝑡

𝑎𝐴𝑖,𝑘) (4.2) 

 

The passenger activity time observed in real world will fluctuate due to passengers’ heterogeneity (e.g. 

age, payment method, being disabled or not), the friction effect among passengers as well as other 

passenger and vehicle related accidental events (Lin and Wilson, 1992; Tirachini, 2013; Sun et al, 

2014). In order to capture the variation in passenger activity time but to avoid complicating the dwell 

time model in Eq. (4.2), we assume the passenger activity time to be characterized by a normal 

distribution as in Eq. (4.3) 

 

𝑊𝑖,𝑘  ~ 𝑁(𝜇𝑖,𝑘 , 𝜎𝑊
2 ) (4.3) 

 

where 𝜎𝑊  is the standard deviation of passenger activity time. The stochastic activity times are 

observable in that they are the products of the dwell times which are directly observed from bus AVL 

data excluding the vehicle activity time which can be inferred according to bus driver’s experience or 

a simple in-vehicle survey. Therefore, the passenger activity times are taken as the random variables 

based on which Bayesian inference is applied. 

 

For each bus run k, let arrival rate 𝑎𝑖,𝑗 (i,j = 1, 2, …, N; i < j) denote the arrival number per minute 

of passengers who board at stop i and alight at stop j. We assume that the actual arrival number follows 

a Poisson distribution so that the expected number of passenger that board at stop i and alight at stop 

j accumulated over the headway ∆𝑖,𝑘 can be obtained as Eq. (4.4). 

 

𝑄𝑖,𝑗,𝑘  ~ Poisson(𝑎𝑖,𝑗∆𝑖,𝑘) (4.4) 
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in which we assume that ∆𝑖,𝑘> 0 always holds and newly arriving passengers during the dwell time 

do not board the bus. The former assumption is realistic if overtaking between the buses at stops is not 

allowed, which is the case in many cities including our case study city, and a small though close-to-

zero time interval exists between the arrival times of two bunched buses. The latter assumption is 

unnecessary if departure-to-departure headway is employed. We use arrival-to-arrival headway as the 

bus arrival times in our AVL data are more accurate than the departure ones 

 

As is mentioned in Section 2, the focus of this chapter is to estimate mean (expected) OD flows for a 

bus route in an observational period instead of reconstructing the OD matrix for each bus run. We thus 

simplify the number of passengers travelling from i to j in Eq. (4.5), by assuming that the fluctuation 

in the OD matrix of individual bus runs in a certain time period (morning peak, evening peak, off-peak 

hours) is all attributed to the endogenous (due to timetable) or exogenous (due to stochastic reasons 

such as random delay) variations in headway. 𝑎𝑖,𝑗 are the unknown parameters and ∆𝑖,𝑘 are obtained 

from bus AVL data. 

 

𝑄𝑖,𝑗,𝑘 = 𝑎𝑖,𝑗∆𝑖,𝑘 (4.5) 

 

The aggregated boarding flows at stop i and alighting flows at stop j can be derived with Eqs. (4.6) 

and (4.7) accordingly. 

 

𝐵𝑖,𝑘 = ∑ 𝑄𝑖,𝑗,𝑘

𝑁

𝑗=𝑖+1

           𝑖 = 1, 2,… , 𝑁 − 1 (4.6) 

 

𝐴𝑖,𝑘 =∑𝑄𝑗,𝑖,𝑘

𝑖−1

𝑗=1

              𝑖 = 2, 3,…𝑁 (4.7) 

 

The number of passengers on-board when bus run k arrives at stop i can be obtained as Eq. (4.8). Note 

that 𝐵𝑁,𝑘, 𝐴1,𝑘, 𝑂1,𝑘 are zeros in that no passenger would board at the last stop or alight at the first 

stop, and there is no passenger when the bus arrives at the first stop. 

 

𝑂𝑖,𝑘 = 𝑂𝑖−1,𝑘 + 𝐵𝑖−1,𝑘 − 𝐴𝑖−1,𝑘             𝑖 = 2, 3,…𝑁 (4.8) 
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A modified gravity model is implemented to decompose the arrival rate matrix and thus reduce the 

number of unknown parameters to estimate. Let 𝑝𝑖
𝑔

 (i = 1, 2, …, N - 1) and 𝑝𝑖
𝑎 (i = 2, 3, …, N) 

denote the generation and attraction power for each bus stop i, so that the arrival rate 𝑎𝑖,𝑗 can be 

written as Eq. (4.9). Noting that we have constraints 𝑝𝑁
𝑔
= 𝑝1

𝑎 = 0 , we exclude them from the 

generation and attraction power vectors. In the denominator, the first term denotes the general distance 

deterrence. The second term is added to acknowledge that passengers seldom travel only one or two 

stops with 𝛼 as a parameter to be calibrated. 

 

𝑎𝑖,𝑗 =
𝑝𝑖
𝑔
𝑝𝑗
𝑎

(𝑗 − 𝑖) +
𝛼
𝑗 − 𝑖

           𝑖 = 1, 2,… , 𝑁 − 1; 𝑗 = 2, 3,… ,𝑁; 𝑖 < 𝑗 (4.9) 

 

Accordingly, the two vectors 𝒑𝒈 and 𝒑𝒂, each of size N – 1, and parameter 𝛼 substitute the arrival 

rate 𝑎𝑖,𝑗 as the new unknown parameters. The number of unknown parameters to estimate is hence 

reduced from 𝑁(𝑁 − 1)/2 to 2(𝑁 − 1) + 1. Together with 𝜎𝑊 , we have 2𝑁 unknown parameters 

to estimate in total. 

 

Dwell time 𝐷𝑖,𝑘  and headway ∆𝑖,𝑘  are directly observed from bus AVL data. Average 

boarding/alighting time per passenger and vehicle activity time can be obtained by an onboard survey 

in a small sample or according to the bus driver’s experience. Arrival rate 𝑎𝑖,𝑗  are the derived 

parameters dependent on the estimated parameters. OD flows 𝑄𝑖,𝑗,𝑘, boarding flows 𝐵𝑖,𝑘, alighting 

flows 𝐴𝑖,𝑘 and passenger loads 𝑂𝑖,𝑘 are thus the “2nd level” derived parameters dependent on the 

estimated arrival rate 𝑎𝑖,𝑗  and observed headway ∆𝑖,𝑘 . The relationships between the unknown 

parameters and the observations are illustrated in Figure 4.1. We would like to point out that the OD 

flows are the main estimation objective though, boarding/alighting flows and passenger loads are also 

estimated by the proposed framework, which can be regarded as the lower-level objective and 

substantially benefit the “data-poor” operators with inferred stop-based passenger dynamics and 

capacity bottlenecks. 
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Figure 4.1 Model framework; Items in grey boxes are the observations and data input; Items in white 

boxes are the unknown parameters and derived parameters 

 

4.3    Basic dwell time models 

We now turn to the specification of the dwell time function in Eq. (4.2). Generally sequential and 

simultaneous boarding and alighting can be distinguished and lead to different formulations of the 

expected passenger activity time as in Eq. (4.10). 

 

𝜇𝑖,𝑘 = {
max(𝑡𝑏𝐵𝑖,𝑘 , 𝑡

𝑎𝐴𝑖,𝑘)      𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝑎𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑡𝑎𝐴𝑖,𝑘 + 𝑡
𝑏𝐵𝑖,𝑘         𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝑎𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔

 (4.10) 

 

The choice of dwell time models is flexible in our proposed estimation framework. We select the 

simultaneous form as it fits the situation in the case study city. We note that in general the sequential 

form is, however, easier to estimate as the dwell time becomes less ambiguous and thus the solution 
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space is smaller. For the transit system where boarding always starts after alighting, the sequential 

form is supposed to be more suitable. Lin and Wilson (1992) applied the sequential form on a single 

door, and the simultaneous form on the multiple doors of a train vehicle. Other more complex dwell 

time models distinguish the average boarding/alighting time for the passenger of different personal 

attributes. Tirachini (2013) considered the effect of different methods of payment and age on the 

average boarding/alighting time. Sun et al. (2014) reviewed and tested a range of dwell time 

specifications by building both linear and nonlinear regression models to explain the average 

boarding/alighting time with consideration of the in-vehicle overcrowding, and found that average 

boarding/alighting time tends to be negatively correlated to the number of total boarding/alighting 

passengers at a stop. They also found that the friction effect significantly delays the boarding activity 

and turns a simultaneous case into a sequential case when 63% of the total capacity is occupied by the 

passengers. These advanced dwell time models are not incorporated in this chapter, as we try to avoid 

introducing more unknown parameters or increasing the structural complexity of the dwell time model 

for this underspecified estimation problem. 

 

4.4    Bayesian inference 

In this section, we apply Bayes’ theorem to infer the posterior probability distribution for the unknown 

parameters. We remind that the observations used are the passenger activity times 𝐖 and that the set 

of unknown parameters is {𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊}. 

 

Let 𝑓(𝐖|𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊) denote the probability of the observed passenger activity times conditional 

on the unknown parameters, and 𝜋(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊) be the prior probability density of the parameters. 

Following Bayes’ theorem, the posterior probability density of the unknown parameters given the 

observations is written as Eq. (11) 

 

𝜋(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊|𝐖) =
𝑓(𝐖|𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊)𝜋(𝒑

𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊)

ℎ(𝐖)
 (4.11) 

 

where ℎ(𝐖) is the marginal likelihood also known as the model evidence. As is defined in Eq. (4.12), 

ℎ(𝐖) is a normalizing constant in which all the unknown parameters are marginalized. It can only be 

presented by a high-dimensional integral with no closed form in this problem. 
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ℎ(𝐖) = ∫∫∫∫𝑓(𝐖|𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊)𝜋(𝒑
𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊)d𝒑

𝒈d𝒑𝒂d𝛼d𝜎𝑊 (4.12) 

 

The posterior density is proportional to the numerator in Eq. (4.11) provided that the denominator is a 

normalizing constant. We then have 

 

𝜋(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊|𝐖) ∝ 𝑓(𝐖|𝒑
𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊)𝜋(𝒑

𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊) (4.13) 

 

As the probability of observing passenger activity times W conditional on the unknown parameters is 

regarded as the likelihood of all the parameters given the observations, we have 

𝑓(𝐖|𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊) = 𝐿(𝒑
𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊|𝐖) . We then can compute the total likelihood for the 

parameters by distinguishing the observed passenger activity time for each bus run k at each stop i as 

 

𝐿(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊|𝐖) =∏∏𝑓(𝑊𝑖,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊)

𝑁

𝑖=1

𝐾

𝑘=1

 (4.14) 

 

As is stated in Eq. (4.3), we have 

 

𝑓(𝑊𝑖,𝑘|𝜇𝑖,𝑘 , 𝜎𝑊) =
1

√2𝜋𝜎𝑊
2
exp(−

(𝑊𝑖,𝑘 − 𝜇𝑖,𝑘)
2

2𝜎𝑊
2 ) (4.15) 

 

The probability of observing a specific passenger activity time 𝑓(𝑊𝑖,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊) can thus be 

rewritten as  

 

𝑓(𝑊𝑖,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊) = 𝑓(𝑊𝑖,𝑘|𝜇𝑖,𝑘 , 𝜎𝑊)𝑓(𝜇𝑖,𝑘|𝒑

𝒈, 𝒑𝒂, 𝛼) (4.16) 

 

We next focus on 𝑓(𝜇𝑖,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼) which is the conditional probability of the expected passenger 

activity time given all the parameters of the gravity model. 𝜇𝑖,𝑘|𝑄𝑖,𝑗∈[𝑖+1,𝑁],𝑘 , 𝑄𝑗∈[1,𝑖−1],𝑖,𝑘  is 

deterministic as 𝑓(𝑄𝑖,𝑗∈[𝑖+1,𝑁],𝑘, 𝑄𝑗∈[1,𝑖−1],𝑖,𝑘) produces a single value for 𝜇𝑖,𝑘 by using Eq. (4.2) and 

Eqs. (4.6) - (4.7). 𝑓(𝜇𝑖,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼) thus can be rewritten as Eq. (4.17). 
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𝑓(𝜇𝑖,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼) = ∏ 𝑓(𝑄𝑖,𝑗,𝑘|𝒑

𝒈, 𝒑𝒂, 𝛼)

𝑁

𝑗=𝑖+1

∏𝑓(𝑄𝑗,𝑖,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼)

𝑖−1

𝑗=1

 (4.17) 

 

To improve the interpretability of Eq. (4.17), we let R(i) denote the set of possible OD pairs leaving 

from or destined to stop i. E.g. R(3) = [(1,3), (2,3), (3,4), (3,5), …, (3,N)]. We then rewrite Eq. (4.17) 

as 

 

𝑓(𝜇𝑖,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼) = ∏ 𝑓(𝑄𝑟,𝑘|𝒑

𝒈, 𝒑𝒂, 𝛼)

𝑟∈R(𝑖)

 (4.18) 

 

According to Eq. (4) and (5), we have two options to interpret 𝑓(𝑄𝑟,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼). Firstly we can take 

𝑄𝑟,𝑘 as random variables that follow the Poisson distribution defined in Eq. (4.4). The conditional 

probability of observing 𝑄𝑟,𝑘 given the gravity parameters is obtained as 

 

𝑓(𝑄𝑟,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼) = 𝑓(𝑄𝑟,𝑘|𝑎𝑟∆∗,𝑘)𝑓(𝑎𝑟∆∗,𝑘|𝒑

𝒈, 𝒑𝒂, 𝛼) 

                                   =
(𝑎𝑟∆∗,𝑘)

𝑄𝑟,𝑘
exp−𝑎𝑟∆∗,𝑘

𝑄𝑟,𝑘!
 

(4.19) 

 

We can cancel 𝑓(𝑎𝑟∆∗,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼) in that 𝑎𝑟 is a definite product of the gravity model and ∆∗,𝑘 

can be considered constant here. ∆∗,𝑘 always equals to the headway of bus run k at the origin stop of 

OD pair r. 

 

Secondly, we can obtain 𝑓(𝑄𝑟,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼) using Eq. (4.5). In this case, 𝑄𝑟,𝑘 are not treated as the 

random variables, we thus can cancel  𝑓(𝑄𝑟,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼) in Eq. (4.19) as well as 𝑓(𝜇𝑖,𝑘|𝒑

𝒈, 𝒑𝒂, 𝛼) 

in Eq. (4.16). 

 

Taken together, the total likelihood of the parameters is obtained as Eq. (4.20) if OD flows 𝑄𝑟,𝑘 are 

considered as random variables and are assumed to follow a Poisson distribution. Alternatively it is 

derived as Eq. (4.21) if 𝑄𝑟,𝑘 are considered as the expected OD flows in an observational period and 

the randomness in passenger’ behavior is simplified. To focus on the mean estimation problem and 

reduce the computational complexity, we incorporate Eq. (4.21) in the Bayesian inference. 
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𝐿(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊|𝐖) =∏∏(𝑓(𝑊𝑖,𝑘|𝜇𝑖,𝑘 , 𝜎𝑊) ∏ 𝑓(𝑄𝑟,𝑘|𝒑
𝒈, 𝒑𝒂, 𝛼)

𝑟∈𝑅(𝑖)

)

𝑁

𝑖=1

𝐾

𝑘=1

 (4.20) 

 

𝐿(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊|𝐖) =∏∏𝑓(𝑊𝑖,𝑘|𝜇𝑖,𝑘 , 𝜎𝑊)

𝑁

𝑖=1

𝐾

𝑘=1

 (4.21) 

 

By assuming that all the unknown parameters are independent and substituting Eq. (4.21) into Eq. 

(4.13), the posterior probability density can be rewritten as 

 

𝜋(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊|𝐖) ∝ (∏∏𝑓(𝑊𝑖,𝑘|𝜇𝑖,𝑘 , 𝜎𝑊)

𝑁

𝑖=1

𝐾

𝑘=1

)𝜋(𝒑𝒈)𝜋(𝒑𝒂)𝜋(𝛼)𝜋(𝜎𝑊) (4.22) 

 

It should be noted here that the elements in the parameter vector 𝑝𝑔  and 𝑝𝑎  are not perfectly 

independent in reality. We also need to specify the prior distribution for each unknown parameter to 

put Bayesian inference into practice. It is suggested in Sun et al. (2015) that a broad distribution such 

as uniform distribution should be used if there is very little prior knowledge available about the 

parameters. We thus assume uniform prior distribution for all the unknown parameters. The posterior 

distribution is expected to be corrected with the help of massive observations on passenger activity 

times in bus AVL data. 

 

We also try to investigate the effect of additional observations on the estimation performance, making 

full use of the favorable flexibility of the Bayesian inference framework. For comparison purposes, 

we introduce passenger boarding and alighting counts into the observations and obtain the 

corresponding posterior density of the parameters. Let 𝜽 = (𝒑𝒈, 𝒑𝒂, 𝛼) simplify the notation. 

 

We firstly suppose that both boarding and alighting counts are available. In light of observed boarding 

and alighting flows, OD flows can be estimated without the information provided by the passenger 

activity time. Assume two normal distributions for 𝐵𝑖,𝑘 and 𝐴𝑖,𝑘 as in Eqs. (4.23) and (4.24). 

 

𝐵𝑖,𝑘  ~ 𝑁(𝜇𝑖,𝑘
𝐵 , 𝜎𝐵

2) (4.23) 

 

𝐴𝑖,𝑘  ~ 𝑁(𝜇𝑖,𝑘
𝐴 , 𝜎𝐴

2) (4.24) 
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Similar to Eq. (4.22), the posterior density for the parameters given the corresponding observations 

can be respectively derived as follows 

 

𝜋(𝜽, 𝜎𝐵 , 𝜎𝐴|𝐁, 𝐀) ∝ (∏∏𝑓(𝐵𝑖,𝑘|𝜇𝑖,𝑘
𝐵 , 𝜎𝐵)𝑓(𝐴𝑖,𝑘|𝜇𝑖,𝑘

𝐴 , 𝜎𝐴)

𝑁

𝑖=1

𝐾

𝑘=1

)𝜋(𝜽)𝜋(𝜎𝐵)𝜋(𝜎𝐴) (4.25) 

 

 

𝜋(𝜽, 𝜎𝐵 , 𝜎𝑊|𝐁,𝐖) ∝ (∏∏𝑓(𝐵𝑖,𝑘|𝜇𝑖,𝑘
𝐵 , 𝜎𝐵)𝑓(𝑊𝑖,𝑘|𝜇𝑖,𝑘 , 𝜎𝑊)

𝑁

𝑖=1

𝐾

𝑘=1

)𝜋(𝜽)𝜋(𝜎𝐵)𝜋(𝜎𝑊) (4.26) 

 

 

𝜋(𝜽, 𝜎𝐴, 𝜎𝑊|𝐀,𝐖) ∝ (∏∏𝑓(𝐴𝑖,𝑘|𝜇𝑖,𝑘
𝐴 , 𝜎𝐴)𝑓(𝑊𝑖,𝑘|𝜇𝑖,𝑘 , 𝜎𝑊)

𝑁

𝑖=1

𝐾

𝑘=1

)𝜋(𝜽)𝜋(𝜎𝐴)𝜋(𝜎𝑊) (4.27) 

 

where  

 

𝑓(𝐵𝑖,𝑘|𝜇𝑖,𝑘
𝐵 , 𝜎𝐵) =

1

√2𝜋𝜎𝐵
2
exp(−

(𝐵𝑖,𝑘 − 𝜇𝑖,𝑘
𝐵 )

2

2𝜎𝐵
2 ) (4.28) 

 

𝑓(𝐴𝑖,𝑘|𝜇𝑖,𝑘
𝐴 , 𝜎𝐴) =

1

√2𝜋𝜎𝐴
2
exp(−

(𝐴𝑖,𝑘 − 𝜇𝑖,𝑘
𝐴 )

2

2𝜎𝐴
2 ) (4.29) 

 

 

4.5    Solution algorithms 

As the normalizing constant is a high-dimensional integral with no-closed form, and conjugate prior 

is not available for the posterior density in Eq. (4.22) due to its complex formulation, it is difficult to 

analytically obtain the posterior distribution (a similar problem for Eqs. (4.25) - (4.27)). MCMC 

(Markov Chain Monte Carlo) methods are widely used to approximate the posterior distribution based 

on sampling candidate from a proposal distribution and updating the target posterior distribution. We 

implement MCMC methods here to draw the posterior distributions for the unknown parameters that 
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fit all the observed passenger activity times of each bus run at each stop. As the Bayesian posterior 

distribution is derived for each parameter (all estimated and derived parameters) by the MCMC 

methods, the posterior mean and confidence interval of OD flows, boarding/alighting flows as well as 

passenger loads are accordingly inferred. The robust estimation results are expected to relieve the 

operators of the uncertainties concerning actual passenger flows. 

 

MCMC methods draw the posterior distribution for a high-dimensional parameter space and 

complicated model by constructing a Markov chain whose stationary distribution is forced to be 

equivalent or proportional to the posterior distribution of concern (Green and Worden, 2015). The 

sampling which is a process attaching values to the high-dimensional parameter vector is conducted 

iteratively. The attached values (current state) are only probabilistically dependent on the previous 

iteration (previous state). Metropolis-Hastings (M-H) algorithm is one of the most established MCMC 

methods (Metropolis et al, 1953; Hastings, 1970). Suppose 𝜹 = (𝑝1
𝑔
, … , 𝑝𝑁−1

𝑔
, 𝑝2
𝑎 , … , 𝑝𝑁

𝑎 , 𝛼, 𝜎𝑊), and 

let 𝜹(𝒎) denote the parameter vector at iteration m, also be the current state of the Markov chain. M-

H algorithm proposes a new candidate state 𝛿𝑖
′ for ith element of the parameter vector, which is 

generated from a proposal distribution 𝑞 (𝛿𝑖
′|𝛿𝑖

(𝑚)
) assumed to be symmetric and centered on 𝛿𝑖

(𝑚)
. 

The next step is to calculate the acceptance probability for 𝛿𝑖
′ given by 

 

𝛽M−H (𝛿𝑖
′, 𝛿𝑖

(𝑚)
) = min {1,

𝜋(𝜹′|𝐖)𝑞 (𝛿𝑖
(𝑚)|𝛿𝑖

′)

𝜋(𝜹(𝒎)|𝐖)𝑞 (𝛿𝑖
′|𝛿𝑖

(𝑚)
)
} (4.30) 

 

where 𝜹′ is identical to 𝜹(𝒎) except for the ith element. 

 

We set 𝛿𝑖
(𝑚) = 𝛿𝑖

′  with probability 𝛽M−H (𝛿𝑖
′, 𝛿𝑖

(𝑚)
) and repeat this process for each element of 

𝜹(𝒎) in sequential order i = 1, 2, …, 2N. Next state 𝜹(𝒎+𝟏) is obtained when the last element 𝛿2𝑁
(𝑚)

 

is updated with probability 𝛽M−H (𝛿2𝑁
′ , 𝛿2𝑁

(𝑚)
). As 𝑞 (𝛿𝑖

′|𝛿𝑖
(𝑚)
) is required to be symmetric and 

centered on 𝛿𝑖
(𝑚)

, both Hazelton (2008) and Sun et al (2015) applied normal distribution and random 

walk for the candidate proposal, which simplifies the calculation in that 𝑞 (𝛿𝑖
(𝑚)|𝛿𝑖

′) = 𝑞 (𝛿𝑖
′|𝛿𝑖

(𝑚)
) 

always holds. In addition, the acceptance probability cancels out the normalizing constant which is in 

the denominator of both 𝜋(𝜹′|𝐖) and 𝜋(𝜹(𝒎)|𝐖) and hence has an analytical solution given 
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𝛽M−H (𝛿𝑖
′, 𝛿𝑖

(𝑚)
) = min {1,

𝑓(𝐖|𝜹′)𝜋(𝜹′)

𝑓(𝐖|𝜹(𝒎))𝜋(𝜹(𝒎))
} = min {1,

𝑓(𝐖|𝜹′)𝜋(𝛿𝑖
′)

𝑓(𝐖|𝜹(𝒎))𝜋 (𝛿𝑖
(𝑚)
)
} (4.31) 

 

M-H algorithm is therefore considered well-suited for Bayesian inference. However, the 

aforementioned random walk proposal moves only in ith dimension at a time by fixing all the other 

elements of the parameter vector. It is not necessarily efficient in exploring a high-dimensional 

parameter space. Alternatively, the random walk proposal can move in all the dimensions at once, by 

sampling 𝜹′ conditional on 𝜹(𝒎) and then conducting the accept-or-reject at last. This might vanish 

the acceptance probability when the dimension of the parameter space is high (Betancourt, 2017). 

Consequently, the proposal is always rejected and the Markov chain rarely moves. 

 

Intuitively speaking, the random walk strategy might fail in high-dimension spaces where the number 

of directions to explore exponentially increases (Betancourt, 2017). Hamiltonian Monte Carlo (HMC) 

is a more efficient MCMC method than M-H algorithm in terms of sampling high-dimensional 

parameter spaces (Green and Worden, 2015; Betancourt, 2017), as it can maintain high acceptance 

rate even if it changes all the elements of the parameter vector simultaneously, and make large jumps 

into new unexplored regions. 

 

Here the physical analogy is introduced for easier understanding. The state of a dynamical system can 

always be represented by a point (momentum, position) in phase space. Suppose each element of the 

parameter vector 𝜹 denote the position of a particle in one specific dimension, and introduce an 

auxiliary momentum 𝒑 of the same size as 𝜹, we have a dynamical system (𝒑, 𝜹) whose joint 

probability density can be obtained as 

 

𝜋(𝒑, 𝜹) = 𝜋(𝒑|𝜹)𝜋(𝜹|𝐖) (4.32) 

 

We write the density in terms of an invariant Hamiltonian function 𝐻(𝒑, 𝜹), (Betancourt and Girolami, 

2013; Betancourt, 2017). 

 

𝜋(𝒑, 𝜹) = exp(−𝐻(𝒑, 𝜹)) (4.33) 

 

The Hamiltonian of the system (𝒑, 𝜹) can be written as 
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𝐻(𝒑, 𝜹) = − ln 𝜋(𝒑, 𝜹) 

               = − ln𝜋(𝒑|𝜹)− ln 𝜋(𝜹|𝐖) 

               = 𝑇(𝒑, 𝜹) + 𝑉(𝜹) 

(4.34) 

 

where 𝑇(𝒑, 𝜹) = − ln𝜋(𝒑|𝜹) is the kinetic energy and 𝑉(𝜹) = − ln𝜋(𝜹|𝐖) is the potential energy, 

and 𝐻(𝒑, 𝜹) remains constant over the passage of time according to the law of conservation of energy. 

The potential energy is only dependent on 𝜋(𝜹|𝐖) which is also the target density of our Bayesian 

inference. By observing the system’s evolving states over time, a trajectory passing through the high-

dimensional space is derived. The trajectory contains a series of points constrained by 𝐻(𝒑, 𝜹), which 

is thus equivalent to deriving a Markov chain whose stationary distribution is 𝜋(𝜹|𝐖)  for the 

parameter vector 𝜹. Time evolution of the system is defined by Hamilton’s equations as 

 

d𝜹

d𝑡
= +

𝜕𝐻

𝜕𝒑
=
𝜕𝑇

𝜕𝒑
 

d𝒑

d𝑡
= −

𝜕𝐻

𝜕𝜹
= −

𝜕𝑇

𝜕𝜹
−
𝜕𝑉

𝜕𝜹
 

(4.35) 

 

𝜕𝑉 𝜕𝜹⁄  is the gradient of the logarithm of the target density, indicating that HMC only works when 

gradient exists. Leapfrog integrator is usually employed to numerically approximate the new state 

(𝒑′, 𝜹′) from the current state (𝒑(𝒎), 𝜹(𝒎)). See Betancourt (2017) for more details. As we have 

𝐻(𝒑′, 𝜹′) = 𝐻(𝒑(𝒎), 𝜹(𝒎)), the new state always comes from the target density, which speeds up the 

convergence of the Markov chain and significantly improves the algorithm’s efficiency. In practice, 

errors might be introduced by the leapfrog integrator, we cannot always accept the proposal. In the 

same way as in the M-H algorithm, the acceptance step is incorporated and the acceptance probability 

is written as Eq. (4.36), noting that 𝛽HMC always equals to 1 in theory. A detailed discussion on 

correcting integrator errors can be found in Betancourt (2017). 

 

𝛽HMC = min {1,
exp(−𝐻(𝒑′, 𝜹′))

exp(−𝐻(𝒑(𝒎), 𝜹(𝒎)))
} (4.36) 

 

To keep the gradient, we rewrite the simultaneous form of the dwell time function by a smooth 



 

 

71 

maximum function as in Eq. (4.37). 

 

𝜇𝑖,𝑘 = ln(exp(𝑡
𝑏𝐵𝑖,𝑘) + exp(𝑡

𝑎𝐴𝑖,𝑘)) (4.37) 

 

We provide the algorithms using M-H as well as HMC as follows. 

 

Input 

Observations: 𝐃, 𝐖, ∆, K, N, 𝑡𝑏, 𝑡𝑎, c 

Other input: number of chains, number of iterations (burn-in and sample size) 

Output 

    Estimated parameters: 𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊 

Derived parameters: 𝒂, 𝐐, 𝐁, 𝐀, 𝐎, 𝛍 

Initialization 

Initialize random values for the parameter vector 𝜹(𝟎) for each chain 

Set iteration counter 𝑚 ← 0 
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Algorithm 1 M-H sampling 

1For each chain (can be done in parallel) 

2   Repeat 

3       For each element 𝛿𝑖
(𝑚)

 (i = 1, …, 2N) in the parameter vector 𝜹(𝒎) 

4           Sample 𝛿𝑖
′ conditional on 𝛿𝑖

(𝑚)
, set 𝜹′ ← (𝛿1

(𝑚), … , 𝛿𝑖−1
(𝑚), 𝛿𝑖

′, 𝛿𝑖+1
(𝑚), … , 𝛿2𝑁

(𝑚)
) 

5           Compute 𝑓(𝐖|𝜹(𝒎)), 𝑓(𝐖|𝜹′) as Eq. (21) and 𝛽M−H (𝛿𝑖
′, 𝛿𝑖

(𝑚)
) as Eq. (4.31) 

6           Set 𝛿𝑖
(𝑚)

← 𝛿𝑖
′ with probability 𝛽M−H (𝛿𝑖

′, 𝛿𝑖
(𝑚)
), otherwise 𝛿𝑖

(𝑚)
= 𝛿𝑖

(𝑚)
 

7       Set 𝜹(𝒎+𝟏) ← 𝜹(𝒎) and 𝑚 ← 𝑚 + 1 

8   Until 𝑚 = the number of iterations 

 

 

Algorithm 2 HMC sampling 

1For each chain (can be done in parallel) 

2   Repeat 

3       Compute 𝜹′ given 𝜹(𝒎) using Eq. (4.35) and leapfrog integrator 

4       Compute 𝛽HMC as Eq. (4.36) 

5       Set 𝜹(𝒎+𝟏) ← 𝜹′ with probability 𝛽HMC, otherwise 𝜹(𝒎+𝟏) = 𝜹(𝒎) 

6       Set 𝑚 ← 𝑚 + 1 

7   Until 𝑚 = the number of iterations 

 

 

In each iteration m, a set of derived parameters can be computed using 𝜹(𝒎)  by the following 

algorithm, which is also required when computing 𝑓(𝐖|𝜹(𝒎)) 

 

Algorithm 3 Obtaining derived parameters 

1For each bus stop i = 1, …, N and each bus stop j = 1, …, N 

2   Compute 𝑎𝑖,𝑗 as Eq. (4.9) based on 𝜹(𝒎) 

3For each bus run k = 1, …, K and each bus stop i = 1, …, N 

4   For each bus stop j = 1, …, N 

5      Compute 𝑄𝑖,𝑗,𝑘 as Eq. (4.5) 

6   Compute 𝐵𝑖,𝑘 as Eq. (4.6), 𝐴𝑖,𝑘 as Eq. (4.7), 𝑂𝑖,𝑘 as Eq. (4.8) and 𝜇𝑖,𝑘 as Eq. (4.37) 
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In view of the high-dimensional parameter space in our problem, we select the HMC algorithm and 

use Stan which is a rapid sampler incorporating HMC algorithm and drawing multiple Markov chains 

in parallel to complete the parameter estimation. Further comparison between HMC and M-H is not 

discussed here and considered beyond the scope of this study. 

 

Stan requires the users to fit the model input and output into 4 blocks: data, transformed data, parameter, 

transformed parameters. The items we classify for each block are as follows. 

 

Data 𝐃, 𝐖, ∆, K, N, 𝑡𝑏, 𝑡𝑎, c 

Transformed data N/A 

Parameter 𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊 

Transformed parameter 𝒂, 𝐐, 𝐁, 𝐀, 𝐎, 𝛍 

 

 

4.6    Data processing 

In the case study, the proposed methodology is tested on two main bus routes in Shizuoka City, Japan. 

Here we explain the data input to the model, then elaborate the case study results in Section 4.7. 

 

4.6.1    Dwell time, headway and vehicle activity time 

The AVL data and AFC data in Shizuoka City, Japan are used in the experiment and the data period is 

1-15, June 2016. 30 bus runs that depart from the initial stop during the morning peak 7:00 - 8:59 are 

selected in the sample dataset. Route A has 40 stops and Route B has 24 stops. There are thus 1200 

observations of dwell times and headways for Route A and 720 observations for Route B. 

 

Dwell time and headway obtained from bus AVL data are the important model inputs. In the bus AVL 

data of Shizuoka City, the bus arrival time is based on the time stamp of door opening and is always 

recorded by the driver to keep complete bus trajectories even if there is no boarding or alighting 

passenger. The headway is obtained by using the bus arrival time. However, the departure time is not 

recorded in the bus AVL data, which generates the first difficulty in obtaining real bus dwell time. The 

departure time is then alternatively inferred by using the AFC data to obtain the time stamp of the last 

transaction at each bus stop, and the time interval between the bus arrival time obtained from AVL 
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data and the last transaction obtained from AFC data is taken as the dwell time. Therefore, the vehicle 

activity time is simplified to zero in the data input to the model. 

 

The second difficulty is that the time stamp of boarding transactions is always rounded by a full minute 

in the AFC data, e.g. the boarding transactions occur from 7:01:00 to 7:01:59 are all rounded as 7:01:00. 

A list of estimated average boarding time in existing literature can be found in Tirachini (2013). The 

average boarding time varies widely from 1.64sec to 8.87sec for the passengers using different 

payments or boarding buses with steps at the entrance. Sun et al (2014) estimated 1.95 - 2.05 for the 

value of card user’s average boarding time after excluding the effect of total boarding number, in-

vehicle crowding and steps at the entrance. We then assume a constant boarding interval of 1.5sec for 

each passenger to derive the total boarding time and the last boarding transaction. It is slightly shorter 

than the findings in the above literature, as we intend to limit the effect of simulated data on the 

synthesized data. And we assume boarding activity and alighting activity always proceed 

simultaneously. This problem appears important in the cases that the simulated total boarding time is 

longer than the total alighting time. Four patterns of transaction dynamics can be observed from the 

AFC data as is shown in Figure 4.2. The departure time, as well as the dwell time in (a) and (c), has 

to be determined by the total boarding time which is longer than the total alighting time but is simulated. 

The inherent randomness in dwell time is thus eliminated in these cases. For Case (d), the randomness 

is also slightly reduced, as the departure time might be determined by the boarding time even if there 

are few boarding passengers, due to in-vehicle overcrowding, wheelchair moving, etc. 422 out of the 

1200 dwell times of Route A and 315 out of 720 dwell times of Route B are determined by the 

simulated total boarding time. 

 

  

(a) Only boarding passengers  (b) Only alighting passengers  
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(c) Both boarding and alighting passengers, the 

simulated total boarding time is longer than the 

total alighting time 

(d) Both passengers exist, the simulated total 

boarding time is shorter than the total alighting 

time 

Figure 4.2 Patterns of boarding and alighting transactions observed from AFC data 

 

4.6.2    Boarding/alighting time per passenger 

In addition to dwell time and headway, boarding/alighting time per passenger is also the data input to 

the model. Boarding time per passenger is assumed as 1.5sec for the reasons explained above, and 

alighting time per passenger is obtained by a regression analysis using the AFC data. As is shown in 

Table 4.1 and Figure 4.3, the average alighting time per passenger is 2.5sec. In addition, Figure 4.3 

illustrates that the average alighting time varies significantly when there are only a few alighting 

passengers, justifying our assumption in Eq. (4.3), and indicating that the standard deviation 𝜎𝑊 is 

not necessarily in proportion to the expected passenger activity time which is positively correlated to 

the passenger numbers. 

 

Table 4.1 Regression analysis results of alighting time per passenger 

 𝑡𝑎 Intercept R2 

Route A 2.5008 1.3392 0.8664 

Route B 2.5162 1.8068 0.8715 

 

  

(a) Route A (b) Route B 
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Figure 4.3 Average alighting time against different number of alighting passengers 

 

 

4.7    Estimation results 

The case study is designed to illustrate 

(1) The estimation performance of using bus AVL data only, regarding the aggregated 

boarding/alighting flows, and the disaggregated OD flows. 

(2) The effect of additional observation on the estimation performance, e.g. combining passenger 

boarding/alighting counts with bus AVL data. 

(3) The effect of different prior knowledge concerning the unknown parameters on the estimation 

performance, e.g. setting different bounds for the uniform distribution applied on the unknown 

parameters. 

 

Serving for the above three objectives, six scenarios are distinguished. 

 

Scenario 1 (AB): unchained boarding-alighting counts are added to the observations to substitute 

for the bus dwell times. 𝜹 = (𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝐴 = 𝜎𝐵). 𝑓(𝐁,𝐀|𝜹) is computed as Eq. (25). 

Scenario 2 (BT): boarding counts and bus dwell times are used as the observations. 𝜹 =

(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊, 𝜎𝐵). 𝑓(𝐁,𝐖|𝜹) is computed as Eq. (26). 

Scenario 3 (AT): alighting counts and bus dwell times are used as the observations. 𝜹 =

(𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊, 𝜎𝐴). 𝑓(𝐀,𝐖|𝜹) is computed as Eq. (27). 

Scenario 4 (AT*): the same observations as AT are used, and more detailed prior information is 

given on the bounds of unknown parameters. 𝜹 = (𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊, 𝜎𝐴). 𝑓(𝐀,𝐖|𝜹) is computed as Eq. 

(27). 

Scenario 5 (T): only bus dwell times are used as the observations. 𝜹 = (𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊). 𝑓(𝐖|𝜹) 

is computed as Eq. (21). 

Scenario 6 (T*): the same observations as T are used, and more detailed prior information is given 

on the bounds of unknown parameters. 𝜹 = (𝒑𝒈, 𝒑𝒂, 𝛼, 𝜎𝑊). 𝑓(𝐖|𝜹) is computed as Eq. (21). 

 

Table 4.2 lists the elapsed time of running the HMC algorithm via Stan for each scenario. The sampling 

for each chain is conducted in parallel. For both routes, the scenarios using dwell times as the main 

observations cost the least time (T* for Route A, T for Route B). Although only one more parameter 
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is introduced, the elapsed time in BT, AT and AT* is 1.2 times as that in T for Route A and 1.5 times 

for Route B. The effect of specifying bounds for the unknown parameters on the elapsed time is 

inconclusive. The time cost in AT* (T*) is not necessarily longer or shorter than that in AT (T). 
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Table 4.2 Elapsed time of each scenario 

 #Run #Stop #Parameter #Chain #Iteration Elapsed time (sec) 

Route A       

AB 30 40 80 3 4000 651.45 

BT 30 40 81 3 4000 627.91 

AT 30 40 81 3 4000 828.54 

AT* 30 40 81 3 4000 754.07 

T 30 40 80 3 4000 606.99 

T* 30 40 80 3 4000 538.72 

       

Route B       

AB 30 24 48 3 4000 207.99 

BT 30 24 49 3 4000 243.38 

AT 30 24 49 3 4000 244.12 

AT* 30 24 49 3 4000 268.49 

T 30 24 48 3 4000 164.10 

T* 30 24 48 3 4000 175.55 

 

The results are based on a MacBook Pro 2017 with 2.5GHz Intel Core i7 processor and 16GB 2133 

MHz LPDDR3 memory, using CmdStan 2.17.1. 

 

4.7.1    Estimated unknown parameters 

Prior knowledge is critical for deriving reliable estimation result in Bayesian inference. Initially, we 

assume uniform distribution and apply rough bounds U[0,10] on each element of 𝒑𝒈 and 𝒑𝒂 in 

Scenario AB, BT, AT and T. For stop i at which no passenger boards or alights in the observational 

period (30 bus runs), we set U[0,0] for the corresponding 𝑝𝑖
𝑔

 or 𝑝𝑖
𝑎. 

 

As is illustrated in Fig. 4.4, Scenario AB and BT derive similar posterior means for 𝒑𝒈  which 

however are significantly different from those produced by AT and T. The distinction among these 

four scenarios with respect to 𝒑𝒂 is much less obvious. We find that more accurate posterior mean 

and confidence interval are derived by AB and BT, by comparing the derived passenger 

boarding/alighting flows, passenger loads and OD flows of all the four scenarios. The estimated 
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boarding flows and OD flows by AT and T are in particular deviating from the ground truth, see Fig. 

4.6 for details. Therefore, we conclude that it is difficult to conduct reliable inference by merely 

employing dwell time observations and vague prior information on the unknown parameters. Solid 

results are unsurprisingly obtained by Scenario AB, as boarding and alighting counts contain abundant 

information regarding the generation and attraction power of the bus stops. Furthermore, the 

outperformance of boarding counts over alighting counts in terms of playing the role of observations 

in this inference problem is an interesting discovery. We thus suggest that the transit operator with a 

limited budget can install the sensors that collect boarding count data in priority. 

 

In order to test the effect of prior information, we leverage the posterior estimates derived by Scenario 

AB to enrich the prior knowledge we have on the unknown parameters. In Scenario AT* and T*, we 

specify the bounds for stop generation power roughly according to, albeit not precisely as the posterior 

confidence interval inferred by Scenario AB and leave stop attraction power unconstrained. Specific 

bounds are imposed on the stops with explicit characteristics. U[9,10] is specified for the railway 

station (Stop 27) in the middle of Route A, while U[0,4] for a series of stops (Stop 13 - 18) across the 

industrial area. Also some stops are constrained simply following the results of AB, e.g. U[0,1] for 

many stops (Stop 1 - 25) without particular landmarks on Route A, U[9,10] for Stop 19 which is named 

by harbor bridge and does not intuitively relate to high trip generation power. Table 4.3 summarizes 

the various prior information provided for 𝒑𝒈 and 𝒑𝒂 in different scenarios. Prior (Prior*) specifies 

the lower and upper bounds for 𝒑𝒈 and 𝒑𝒂 in AB, BT, AT and T (AT* and T*). By imposing stricter 

constraints on 𝒑𝒈 for a few stops, the posterior means of 𝒑𝒈 in AT* and T* naturally move toward 

those in AB and BT, as is shown in Fig. 4.4. The relatively insignificant gap between AB/BT and 

AT*/T* regarding 𝒑𝒂 becomes even closer for both routes. 
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Table 4.3 Different prior information on 𝒑𝒈 and 𝒑𝒂 

  Prior (AB, BT, AT, T) Prior* (AT*, T*) Stop characteristics 

Route A Bus stop    

𝑝𝑖
𝑔
, 𝑖 = 1-25 U[0,10] U[0,1] Stops without 

particular landmarks 

26 U[0,10] U[1,2] City hall 

27 U[0,10] U[9,10] Railway station 

28-34 U[0,10] U[0,1] Stops without 

particular landmarks 

35-39 U[0,0] U[0,0] End of the route 

𝑝𝑖
𝑎 , 𝑖 = 2-13 U[0,0] U[0,0] Start of the route 

14-40 U[0,10] U[0,10]  

     

Route B Bus stop    

𝑝𝑖
𝑔
, 𝑖 = 1-12 U[0,10] U[0,10]  

13-18 U[0,10] U[0,4] Mostly industrial 

area 

19 U[0,10] U[9,10] Harbor bridge 

20-22 U[0,10] U[0,10]  

23 U[0,0] U[0,0] End of the route 

𝑝𝑖
𝑎 , 𝑖 = 2-11 U[0,0] U[0,0] Start of the route 

12-24 U[0,10] U[0,10]  
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(a) Route A 

 

 

(b) Route B 

Figure 4.4 Posterior means of 𝒑𝒈 and 𝒑𝒂 

 

Hereinafter we narrow the focus of the comparison to AB, BT, AT* and T* only. As is shown in Table 

4.4, we assume identical and ambiguous prior distribution for 𝛼, 𝜎𝑊, 𝜎𝐵 and 𝜎𝐴, and derive similar 

posterior means for 𝜎𝑊, 𝜎𝐵 and 𝜎𝐴 in these four cases. The posterior means of 𝛼 vary in each case 

due to the different bounds applied and the resulting 𝒑𝒈 and 𝒑𝒂. To investigate the model fit of the 

modified gravity model, the real and inferred distributions of passenger in-vehicle time in terms of 

travelled bus stops are illustrated in Figure 4.5. The modified gravity model successfully captures the 

travel pattern although the estimated pattern is smoother than the real pattern and overestimation or 

underestimation is inevitably generated. We also note that the incorporated gravity model is not able 

to replicate the significant sudden changes. It is observed on Route A that the sharp rise in passenger 

numbers from traveling five stops to six stops is followed by a steep drop from six to seven stops. 

Some dominant OD pairs exist on the transit route, e.g. Stop 27 (transit hub) to Stop 33 (industrial 

area) on Route A, and the corresponding travelers might be indifferent on the distance cost. This 

limitation of the gravity model is supposed to account for some estimation errors of passenger flows. 
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Table 4.4 Prior information and posterior means of 𝜶, 𝝈𝑾, 𝝈𝑩 and 𝝈𝑨 

 
Prior 

Posterior mean 

AB BT AT* T* 

𝛼 U[0,10000] 418.1847 628.7502 879.7225 866.8917 

𝜎𝑊 U[0,60] N/A 4.0876 4.1266 4.0974 

𝜎𝐵 U[0,10] 1.2187 1.2612 N/A N/A 

𝜎𝐴 U[0,10] 1.2187 N/A 1.1785 N/A 

 

  

(a) Route A (b) Route B 

Figure 4.5 In-vehicle time distribution 
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(a) Route A 

 

(b) Route B 

Figure 4.6 Estimation results of boarding flows and OD flows by Scenario AT and T 

 

4.7.2    Estimated passenger boarding and alighting flows, as well as passenger loads 

Figures 4.7 – 4.9 illustrate the posterior mean and 95% confidence interval (CI) of the estimated 

boarding flows, alighting flows and passenger loads. The ground truth is the real numbers of boarding 

(alighting, on-board) passengers at each stop observed from 30 bus runs leaving the initial stop during 

7 am – 8 am. We demonstrate the mean value and the variation of the 30 bus runs. The estimation 

objectives are thus also the mean and the variation. The estimated CI is narrower than the real one, as 

R2 = 0.3742 

 

R2 = 0.4165 

 0.4165 

 

R2 = 0.6269 R2 = 0.6380 
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we assume that the variation in passenger flows only results from the variation in headways in order 

to reduce the computational complexity. This assumption is not realistic in that the inherent 

randomness in passenger behavior might overwhelm the variation in headway, and become the main 

cause of the fluctuation in passenger flows. Nevertheless, these figures convey a same favorable 

message that the mean passenger flows (loads) along the bus route are accurately estimated, and the 

variations in an observational period are reliably inferred in Scenario AB and BT, as well as in Scenario 

AT* and T* if rich prior information is provided. The robustness of methodology is verified by Route 

A and Route B which have fairly different route configurations. Route A has a transit hub in the middle, 

and the final stop of Route B is a railway station. RMSE and MAPE are listed in Table 4.5. They are 

based on the mean values as we do not consider reproducing the flows (loads) for each bus run. We 

highlight the worst scenario regarding each evaluation index for each evaluation index, and we find 

that the worst ones are not necessarily produced by Scenario T*, although it is fed with least direct 

observations on passenger flows. It outperforms AT* in terms of boarding flows and matches the 

performance of BT* with respect to alighting flows. Regarding passenger loads, it underperforms all 

the other cases for Route A though, the downward deviation is acceptable. We also notice that it 

generates the lowest error rates for Route B’s passenger loads, but it might result from errors of 

boarding and alighting flows occasionally cancelling out each other. 

 

Table 4.5 RMSE/MAPE of estimated passenger boarding/alighting flows and passenger loads 

 Boarding flows Alighting flows Passenger loads 

RMSE MAPE RMSE MAPE RMSE MAPE 

Route A  

AB 0.1964 7.60% 0.1421 7.36% 1.0964 4.36% 

BT 0.1903 8.97% 0.3995 19.05% 1.3421 5.57% 

AT* 0.7466 26.65% 0.1663 7.72% 1.6106 6.10% 

T* 0.6230 25.46% 0.4075 20.48% 2.5300 10.45% 

    

Route B  

AB 0.3306 19.87% 0.3188 15.09% 1.5624 11.25% 

BT 0.2703 16.71% 0.5007 21.92% 1.6020 11.02% 

AT* 0.4109 28.10% 0.3316 15.38% 1.3830 9.99% 

T* 0.3902 26.00% 0.4956 22.41% 1.0115 6.73% 
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(a) Route A 

 

(b) Route B 

Figure 4.7 Estimated passenger boarding flows 
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(a) Route A 

 

(b) Route B 

Figure 4.8 Estimated passenger alighting flows 
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(a) Route A 

 

(b) Route B 

Figure 4.9 Estimated passenger loads 

 

 

4.7.3    Estimated passenger OD flows 

We then discuss the estimation performance of OD flows which is the estimation objective of most 

concern. Regression analysis is conduct for each scenario to evaluate the estimation performance, 

using ground truth as the dependent variable and estimated mean as the independent variable. The OD 

pairs having zero flow are excluded from the analysis. Fig. 10 indicates the model fit. The regression 
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analysis estimates and error rates can be found in Table 4.6. There is no obvious gap in the performance 

between T* and the other three cases, while we acknowledge the slight underperformance of T* 

compared with AB and BT. Figure 4.10 shows that large flows are accurately estimated in all the 

scenarios. We parameterize the OD estimation problem by the arrival rates per minute. This 

assumption is more suitable in capturing regular trips that are observed on most of the bus runs than 

random ones which are rarely observed on few bus runs. The general estimation accuracy in the form 

of R2 ranges from 76% to 82% for Route A, from 70% to 75% for Route B. Although T* produces the 

worst performance for both routes, the 5% - 6% downward deviation from the performance of AB is 

considered acceptable given such limited observations as merely bus dwell times and inferred prior 

information. The calculation of MAPE is based on the average flow over all the OD pairs to avoid 

introducing a close-to-zero number in the denominator. Nevertheless, we still derive inflated MAPEs 

due to the sparseness of the upper triangle OD matrix. 

 

Figure 4.11 investigates into the estimation errors of T* by presenting the errors in a matrix. In addition, 

it highlights the stop with the largest errors and illustrates the gap between estimated and real 

boarding/alighting flows at this stop. It also demonstrates the noteworthy strength of the proposed 

method that the confidence interval is obtained for each OD flow departing from or destined to a 

specific stop. The derived mean and 95% CI generally captures the expected OD flows and part of the 

actual variation which is implied by 75% CI due to overwhelming zero observations of OD flows. We 

note that the CI estimated by this method is the probable variation of the mean value. An additional 

step to draw the unknown parameters from the posterior distribution combined with sampling the OD 

flows from Poisson distribution to match the specific dwell time/passenger activity time is not 

conducted so that the random zero or large flows are frequently out of the estimated range. 
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Table 4.6 Model fit and RMSE/MAPE of estimated passenger OD flows 

 Beta Intercept R2 RMSE MAPE 

Route A      

AB 1.1297 -0.0077 0.8208 0.1028 62.16% 

BT 1.1545 -0.0146 0.8100 0.1067 68.77% 

AT* 1.2858 -0.0198 0.7613 0.1240 75.65% 

T* 1.2529 -0.0263 0.7621 0.1224 81.51% 

      

Route B      

AB 1.1379 0.0014 0.7539 0.1151 58.52% 

BT 1.1494 -0.0007 0.7721 0.1114 59.35% 

AT* 1.1634 -0.0012 0.7231 0.1224 61.86% 

T* 1.1450 -0.0023 0.7051 0.1253 64.66% 
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(a) Route A 

 

(b) Route B 

Figure 4.10 Estimated passenger OD flows 
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(a) Route A 

 

 

(b) Route B 

Figure 4.11 Estimation errors of passenger OD flows by T*; Left: OD matrix errors highlighting the 

stop with largest errors, Right: Passenger flows destined to/leaving from the highlighted stop 

 

4.8    Findings 

This chapter proposes a novel methodology to estimate boarding/alighting flows, passenger loads and 

OD flows for a transit route, using bus AVL data as the main data source. We extract bus dwell times 

and headways from the bus AVL dataset. We focus on the expected OD flow rates which are further 

explained by a modified gravity model using the generation and attraction power of the stops as the 

unknown parameters. Bayesian inference is applied to estimate the unknown parameters conditional 

on all the observed bus dwell times. 

 

The methodology is tested on two bus routes in Shizuoka City, Japan, and the estimation performance 

is validated by AFC data. We distinguish six scenarios to explore the potential of dwell times in 

estimating passenger OD flows and additional information that can enhance the estimation 

performance. It is found difficult to correctly estimate the OD flows if only dwell times are observed. 

Accurate posterior means and reliable posterior confidence intervals are derived for passenger 

boarding/alighting flows, passenger loads and OD flows, with the help of detailed prior information 

on the unknown parameters which are inferred by using passenger boarding and alighting count data. 
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We also find that boarding counts are more helpful supplement data than alighting counts. In light of 

the reliable estimation results obtained by the proposed methodology, the operators having no direct 

observation on passenger flows are now capable of delivering high-quality services that can favorably 

accommodate the fluctuated actual user demands. 

 

4.9    Limitations and extensions 

Several extensions that can potentially strengthen the contribution of this research should be noted. 

Firstly, the method to collect the prior information on stop importance remains implicit. In the case 

study, we demonstrate that more precise prior information in terms of the bounds on the uniform 

distribution assumed for the unknown parameters can greatly improve the estimation performance 

when only dwell times are employed as the observation. However, we acknowledge that we lend the 

hand of passenger count data and it is difficult to directly observe the lower and upper bounds of the 

stop importance in the real world. The data sources that are conventionally used to calibrate a gravity 

model, such as population data, are not easy to collect at a bus stop base. We thus provide some 

candidate data here that have the potential to explain the generation and attraction power of the stop, 

and can be collected at a low cost. Number and property of the POIs (Points of Interest) within a 

certain distance from the bus stop are considered powerful in explaining the importance of stops, and 

they can be freely obtained from Open Street Map or other map databases. In addition, the topology 

of the bus transit network and the connectivity of the bus stop are strong supplements. With these data, 

it is also expected to calibrate a gravity model considering the weights of different types of POIs 

contributing to the generation and attraction power, as well as network-based cost function.  

 

Secondly, advanced dwell time models that can account for complex scenarios are expected to further 

enhance the transferability of the proposed methodology. Bus bunching and in-vehicle crowding might 

significantly prolong the bus dwell times. Without a dwell time model specifically addressing these 

problems, the passenger flows are likely to be overestimated. However, the parameters are concerned 

not to converge if too many parameters are introduced or the model structure is highly complicated in 

such an underspecified problem. The balance between dwell time structure and computational 

complexity is a worthy discussion. 

 

Last but not least, other interesting extensions include reconstruction of the OD matrix for each bus 
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run and prediction on the passenger loads in real time, given the estimated mean OD flow rates and 

bus AVL data. A two-stage Bayesian inference approach based on the proposed methodology is a 

feasible solution. 
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 Complex dwell time models 

5.1    Introduction 

In Chapter 4, an estimation methodology is provided to infer the OD matrix from bus AVL data. One 

important limitation is that the dwell time model employed is a basic one, without considerations on 

in-vehicle crowding, the effect of different methods of payment, and the effect of bus-to-bus 

interaction such as bus bunching on the bus dwell time. In-vehicle crowding and bus bunching may 

greatly extend the bus dwell time, and more importantly passenger boarding and alighting activities 

sometimes do not proceed in the extended dwell time. Here we consider the bus has to wait in a bus 

queue in the dwelling process, and only one bus is allowed to load passengers in the bus berth at the 

same time. Consequently, the buses except for the first bus in the queue have to unload the alighting 

passengers first, wait until the leading bus departs, and then move to the berth to load passenger. There 

is a dead time depending on the length of the queue and the dwell times of the previous buses. In this 

case, the total bus dwell time for the back bus sequentially consists of vehicle activity time (arriving), 

passenger alighting time, waiting time in the queue, vehicle activity time (moving to the berth), 

passenger boarding time and finally vehicle activity time (leaving). Significant overestimation can be 

produced if passenger activities are considered to proceed during the intermediate vehicle waiting and 

activity time. Multiple stopping and moving forward is possibly required for a bus at the same stop if 

more than two buses are queueing. In addition, in-vehicle crowding may delay the boarding process. 

Boarding passengers may wait first until some space is released by alighting passengers. We also 

consider the different boarding/alighting time per person of various methods of payment for the dwell 

time model in this chapter. 

 

In order to collect the data required to model the effect of (1) bus-to-bus interactions; (2) in-vehicle 

crowding; (3) methods of payment on the bus dwell time, we conduct an onboard survey in Kyoto 

City. The fitted dwell time models are incorporated into the OD estimation framework proposed in 

Chapter 4. The case study in this chapter then is based on a bus route frequently faced with bunching 

(both bunched with the buses of the same line and those from other lines) and crowding. 

 

5.2    Bus dwelling process 

TCRP Report 19 (1996) defines two types of bus stops: curbside stops and bus bays. A curbside bus 

stop usually only requires a sign to designate a stop, it is thus convenient to install and relocate. It also 
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imposes more exposure of road traffic to the bus vehicle, possibly preventing lane changes to avoid 

delay behind stopped buses (Meng and Qu, 2013). Bus bay is a deliberately constructed area 

comprising vehicle entry, passenger boarding/alighting and vehicle exit segments, separating the bus 

stop from road traffic to some degree. As a cost, the bus has to wait at the exit area until there is enough 

space to insert back to the road traffic. 

 

Meng and Qu (2013) estimate the distribution of time required to merge into the road traffic for bus 

bays. Bian et al. (2015) on the other hand focus on the bus queueing time at a curbside bus stop. They 

assume a bus stop with two berths that can load/unload the passengers simultaneously and apply no-

overtaking rule to ease the model complexity. Dai et al. (2019) model the trip travel time for a bus line 

with an explicit consideration on the complete process of bus pre-loading/unloading to post-

loading/unloading. They decompose the bus dwelling process into entering the bus stop (pre-

loading/unloading stage), loading/unloading passenger and merging into the road traffic (post- 

loading/unloading stage). They also consider the extra waiting time due to queueing for entering the 

passenger boarding/alighting area in a no-overtaking situation (first-in-first-out queue). Taken together, 

bus dwell time therefore is a production of the waiting time in the bus queue, passenger activity time 

and time required to merge into the road traffic. Dai et al. (2019) provide a good illustration of the 

whole process, as is shown in Figure 5.1. Omitting the indexes of bus run and bus stop, let 𝑇𝑝𝑟𝑒 

denote a specific bus queueing time, 𝑊 denote passenger activity time and 𝑇𝑝𝑜𝑠𝑡 be the merging 

time into the traffic. With this we can roughly write the dwell time matrix as  

 

𝐷 = 𝑇𝑝𝑟𝑒 +𝑊 + 𝑇𝑝𝑜𝑠𝑡 (5.1) 

 

𝑇𝑝𝑟𝑒 is emphasized by the interactions between buses. This waiting time mainly depends on the length 

of the bus queue, the number of berths available and the passenger activity time of the previous buses. 

𝑊 is determined by passenger boarding and alighting activity. 𝑇𝑝𝑜𝑠𝑡 refers to the traffic condition. 

A queue of bus vehicles is frequently observed at the stop shared by multiple bus lines, as is shown in 

Figure 5.1. The queue may consist of the buses purely from the same bus line, which is well known as 

the bus bunching problem. Sun and Schmöcker (2018) model 𝑊 for the bus stop having two berths 

and allowing overtaking, which means that the bus that finishes loading/unloading first can instantly 

leave the bus berth. They consider the dynamics of the bus queue on a single line. In Figure 5.2, bus 

m is the bus of concern, 𝑎𝑚 denotes the queue status at the arrival of bus m, and 𝑑𝑚 denotes the 
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queue status at the departure of bus m. Sun and Schmöcker (2018) assume that passengers change 

boarding strategy according to the bus queue at the berth and overtaking policy. When the two berths 

are fully occupied such as the cases initiated by “2b” in Figure 5.2, the passengers may all turn to the 

first bus if overtaking is not allowed, and spontaneously split into two equal queues if overtaking is 

allowed so that the two buses leave the stop at the same time if the alighting process is negligible or 

finished before entering the berth. This interaction between passenger queue and bus vehicle queue is 

difficult to model and validate with real data. Schmöcker et al. (2016) consider the interaction between 

passenger queue and bus queue at a stop served by two lines. And they consider the bus queue at the 

passenger boarding/alighting area with two bus berths, so that there are only four patterns of bus queue: 

two buses from Line 1, two buses from Line 2, the bus of Line 1 after the bus of Line 2, the bus of 

Line 2 after the bus of Line 1. The patterns are exhaustively considered if the focus is narrowed within 

the passenger boarding/alighting area, as the resulting queue status will always fall into one of the four 

patterns when the first bus in the queue leaves and the third bus enters no matter which bus line they 

belong to. They further consider the choice set of the passengers given a simple bus network and 

analyze the effect of choice set and boarding strategy on 𝑊, although this method is not tested by 

complicated real bus network and shared stops. In contrast, Dai et al. (2019) model the bus queue 

within and outside the boarding/alighting area for real bus stops which are sometimes shared by four 

or five bus lines, but they does not consider the queue dynamics and passenger choice behavior. 

 

𝑊 is widely studied and a brief review has been provided in Chapter 4. Linear or nonlinear regression 

is commonly applied to map the relationship between total passenger activity time and passenger 

boarding/alighting flows. Let p denote the index of method of payment, the total passenger activity 

time for a specific bus run at a given stop (omitting the bus index and stop index for simplicity) can 

be roughly written as in Eq. 5.2. 

 

𝑊 =

{
 
 

 
 
max(∑𝑡𝑝

𝑎𝐴𝑝
𝑝

,∑𝑡𝑝
𝑏𝐵𝑝

𝑝

)        𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑐𝑎𝑠𝑒

∑𝑡𝑝
𝑎𝐴𝑝

𝑝

+∑𝑡𝑝
𝑏𝐵𝑝

𝑝

             𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑎𝑠𝑒

 (5.2) 

 

In this chapter, we aim to investigate the interactions between buses in 𝑇𝑝𝑟𝑒, the effect of in-vehicle 

crowding and different methods of payment on 𝑊. The time components and additional information 
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needed to understand the interactions and effects are discussed in Section 5.3. In Section 5.4, we 

discuss the onboard survey that is conducted to collect the data required to calibrate the dwell time 

models. In Section 5.5, the calibrated models and implications are discussed. In Section 5.6, the 

calibrated dwell time model is incorporated into the methodology provided in Chapter 4, in order to 

test the estimation performance on a busy and complex bus route. A summary for this chapter is in 

Section 5.7 

 

 

Figure 5.1 Bus dwelling process – Dai et al. (2019) 

 

Case Event Illustration 

1 

𝑎𝑚 

 

𝑑𝑚 

 

1→2f 

𝑎𝑚 
 

𝑑𝑚 
 

2b→1 

𝑎𝑚 

 

𝑑𝑚 
 



 

 

98 

Case Event Illustration 
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Figure 5.2 Event sequences from the viewpoint of bus m - Sun and Schmöcker (2018) 

 

5.3    Information needed to understand the bus dwell time 

On the interactions between buses 

According to the definition of the bus dwell time, the basic time components are arrival time and 
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departure time. For additional time components, continuous spatiotemporal coordinates (high 

recording frequency, less than 5 sec) are rarely available albeit ideal, the time stamps of stopping, 

accelerating to move, door opening and closing are very helpful for inferring the queue dynamics of 

the bus. 

 

On the effect of in-vehicle crowding 

Onboard number provides crucial clue on the effect of crowding. Onboard number at each stop of a 

bus route can be obtained if the streams of boarding and alighting data at each stop are available. We 

therefore need to collect the number of total boarding and alighting passenger for each bus stop, in 

addition to the time components. APC data is a reliable data source, and AFC data is also reliable if 

the percentage of smart card users is dominant. In addition, the crowding may result from the suitcases 

carried by the passengers on the bus route connecting city center and transportation hubs such as 

railway station and airport. This information can be observed at the stop or in the vehicle by survey or 

camera. 

 

On the effect of methods of payments 

A straightforward way is to record the number of the passengers using each method of payment. 

Onboard survey or in-vehicle camera is considered as the solution if a variety of methods are observed. 

 

On the effect of other factors 

The age of the passenger, the step at the entrance, and incidents such as wheelchair lifting and payment 

trouble may also affect the bus dwell time, which requires the data on the vehicle design details and 

passenger attributes. These effects are simplified in this research. 

 

5.4    Onboard survey in Kyoto City 

5.4.1    Overview of the survey 

In order to collect the information discussed above, we conducted an onboard survey on three bus 

routes of different fare structures and passenger demand patterns in Kyoto City on Jan 26, 30 and 31, 

2019. There are two fare structures observed Kyoto City. For many bus routes running in the 

downtown area, a flat fare structure is applied, whereas a distance-based structure for the bus routes 

in rural area or connecting the downtown and suburb. The bus fare is collected at the passenger’s 

alighting. For the bus route of flat fare, no action is required at the boarding. For the bus route of 
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distance-based fare, a cash user has to take a number card based on which the actual fare is determined 

at the alighting, or to tap-in with a smart card. The effect of methods of payment is mainly observed 

during the alighting process. We select one bus route for each fare structure. In-vehicle crowding is 

frequently observed on the routes connecting famous tourist attractions, city center and the main 

railway station, we thus choose a bus route characterized by tourists as the third route to investigate. 

Table 5.1 summarizes the details. 

 

Two investigators are assigned to each surveyed bus run, seated at the boarding and alighting door 

respectively. We assign investigators for successive three bus runs and ask them to stay in the vehicle 

for three round trips. Therefore we collect the data of nine bus runs for each direction each bus route. 

Table 5.2 and 5.3 list the data collected at the boarding and alighting door. In Kyoto City, passengers 

board at the back door and alight at the front door. For the back (boarding) door, data collection mainly 

focuses on the time components, as fare is collected at the alighting and it is almost impossible to 

observe the bus queue. For the front door, the data collection task is more challenging, passenger 

numbers distinguished by payment method as well as bus bunching status are required to record. 

 

Table 5.1 Bus route investigated in the onboard survey 

Bus route Kyoto City Bus No. 3 Kyoto City Bus No. 12 Kyoto City Bus No. 29 

Survey date Jan 30 (Wednesday) Jan 26 (Saturday) Jan 31 (Thursday) 

Fare structure Flat fare Flat fare Distance-based fare 

Demand pattern Mostly residents Mostly tourists Mostly residents 

Route 

configuration 
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Table 5.2 Data collected at the boarding door 

 Item Description 

1 Arrival time hh:mm:ss 

2 Boarding door open hh:mm:ss 

3 Boarding number (total)  

4 Boarding number (smart card)  

5 Boarding number (number card )  

6 Passenger with suitcase  

7 Boarding door close hh:mm:ss 

8 Departure time hh:mm:ss 

9 Road congestion 1: If the traffic congestion is 

observed from the previous 

stop to the stop of concern 

0: otherwise 

10 In vehicle crowding 1: seat available; 2: no seat 

3: corridor occupied 

 

Table 5.3 Data collected at the alighting door 

 Item Description 

1 Arrival time hh:mm:ss 

2 Alighting door open hh:mm:ss 

3 Alighting number (total)  

4 Alighting number (smart card)  

5 Alighting number (cash without in-vehicle 

exchange ) 

 

6 Alighting number (cash with in-vehicle 

exchange ) 

 

7 Alighting number (one-day ticket)  

8 Alighting number (one-day ticket activation)  

9 Alighting number (one-day ticket purchase )  

10 Passenger with suitcase  

11 Alighting door close hh:mm:ss 
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12 Departure time hh:mm:ss 

13 Bunching between the buses of same line (single-

line bunching) 

1: bunching 

0: otherwise 

14 Bunching between the buses of different line 

(common-line bunching) 

1: bunching 

0: otherwise 

15 Road congestion 1: If the traffic congestion is 

observed from the previous 

stop to the stop of concern 

0: otherwise 

 

5.4.2    Descriptive analysis 

We identify five distinctive sequences regarding passenger boarding and alighting flows, as are shown 

in Figure 5.3. Different from the time stamps left by smart card transactions, the real dynamics in the 

number of onboard, boarding and alighting passengers cannot be accurately captured from the survey 

data, the starting state and ending state of each number are thus simply connected to roughly 

demonstrate the changes. We focus on 𝑇𝑝𝑟𝑒 +𝑊 which starts from the time point of a bus entering 

the bus area and the end of bus queue if it exists, and ends at the time point of the bus heading away 

from the bus stop. The time required to merge into the traffic is not collected. The bus stop in Kyoto 

City only has one berth, thus the second bus and further back ones in the bus queue can only unload 

the passengers while the first bus can load and unload the passengers. Figure 5.3 (a) and (b) show the 

boarding- and alighting-only patterns. In a normal dwelling, boarding and alighting proceed 

simultaneously as is shown in Figure 5.3(c), passenger activity time is hence determined by the longer 

one of boarding time and alighting time, referring to the simultaneous case in Eq. 5.2. Figure 5.3(d) 

illustrates a crowding case in which the alighting process begins ahead of boarding in order to release 

the space for the newly boarding passengers. The initial number of onboard passengers is 52, 

occupying 90% of the bus capacity. The bus capacity in Kyoto City is roughly 60, with on average 30 

seats and a wide corridor in the front and a narrow corridor in the rear for standing passengers. We 

assume a constant boarding and alighting time per person to obtain the number of onboard passengers 

at the beginning of the boarding process, which is 40 in Figure 5.3(d). At last, a sequential case due to 

bunching is illustrated in Figure 5.3(e). The initial passenger load (23/60) is obviously below the 

crowding level though, a lagging of the boarding process can be observed. As the data regarding 

bunching (Item 13 and 14) at the alighting door refers to 1, it can be inferred that the bus unload the 
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passengers at the bus queue and load passengers after the leading bus leaves the berth. The queueing 

time lasts for 14 sec, including the waiting time and the time for moving to the berth. These observed 

different sequences greatly help us to understand the complexity in the bus dwell process though, 

several critical pieces of information are not collected by the survey. Firstly, the investigator at the 

alighting door is seated behind the driver. Therefore it remains difficult to recognize the length of the 

bus queue and the route of the front bus due to the limited view horizon and the passing-through 

alighting flows. The records on single-line or common-line bunching are not reliable. The lack of data 

regarding the queue length at the arrival of the bus of concern makes it difficult to explain the 

variability in queueing time. Furthermore we find that Eq. (5.1) does not hold in Case (e), in that 

passengers alight during the queueing time, which increases the efficiency of bus dwelling under 

bunching circumstances. 

 

 

 

(a) Boarding only 

 

(b) Alighting only 
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(c) Simultaneous case 

 

(d) Sequential case due to crowding 

 

(e) Sequential case due to bunching 

Figure 5.3 Different sequences of passenger boarding and alighting flows observed from onboard 

survey 
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5.5    Modeling the interaction between buses and the effect of in-vehicle crowding 

We present the results based on the observations on Kyoto City Bus No. 12. The two directions of this 

route have different numbers of stops, 30 and 33 respectively. We therefore have 567 observations in 

total given nine bus runs. Three durations can be distinguished from the survey data, dwell time which 

is from bus arrival to departure, total boarding time which is from boarding door opening to closing, 

total alighting time which is from alighting door opening to closing. Firstly, we conduct the regression 

analysis by taking total alighting time and total boarding time as independent variables to investigate 

the relationship among bus dwell time, passenger activity time and vehicle activity time. Let 𝑊𝐴 and 

𝑊𝐵 denote boarding and alighting time (scalar omitting the index of bus run and stop), ε be the 

vehicle activity time (dead time hereinafter), we have  

 

𝐷 = max(𝛽𝐴𝑊𝐴, 𝛽𝐵𝑊𝐵) + ε (5.3) 

 

where 𝛽𝐴 and 𝛽𝐵 should significantly equal to 1. 

 

We use Matlab to estimate the coefficients for this nonlinear regression, and Levenberg-Marquardt 

algorithm is employed. Levenberg-Marquardt algorithm solves nonlinear curve fitting by least squares, 

and it combines Gauss–Newton algorithm and Gradient descent. We set [1,1,1] as the initial value for 

the [𝛽𝐴, 𝛽𝐵, ε]. 95% CI of the coefficients can be obtained by using the function “nlparci” in the 

statistical toolbox. This function returns the 95% CI for the nonlinear least squares parameter estimates 

with the residual and Jacobian matrix as the input. The standard deviation can be calculated with the 

95% CI, then the standard error can be derived. Table 5.4 shows the regression results. 

 

Table 5.4 Regression analysis on the bus dwell time, a basic model 

 Estimate SE t-value p-value 

Dead time ε (sec) 7.9233 0.0280 283.2497 <0.001 

𝛽𝐴 1.0417 0.0014 733.0461 <0.001 

𝛽𝐵 1.0269 0.0019 552.7529 <0.001 

R2 = 0.6807     

Sample size = 567     
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5.5.1    Modeling the effect of in-vehicle crowding 

Although the general model fit is acceptable for this basic dwell time model, the dwell time models 

for cases (d) and (e) in Figure 5.3 should be distinguished. In 101 out of all 567 observations, neither 

boarding nor alighting passenger is observed. And we notice that many skipping cases also have dead 

time. The split for cases (a) to (e) in the other 466 samples is 159/129/125/28/25. Samples of case (d) 

are characterized by the crowding effect. We combine 125 normal simultaneous and 28 crowding 

simultaneous cases (153 cases in total) in the same model here. A dummy variable 𝛼𝐵 is introduced 

to denote whether there are boarding passengers in the bus dwelling. 𝑁𝑂𝑁 is the number of onboard 

passengers at the arrival of the bus and 𝛽𝐶𝑇 is the crowding threshold. We assume that the boarding 

process will be delayed if the number of onboard passengers exceeds the threshold, and the crowding 

effect 𝛽𝐶𝑇 is in proportion of the exceeding amount. We set [1,1,10,1,1] as the initial values for [𝛽𝐴, 

𝛽𝐵, 𝛽𝐶𝑇, 𝛽𝐶𝐸, ε]. 

 

𝐷 = max(𝛽𝐴𝑊𝐴, 𝛽𝐵𝑊𝐵 + 𝛼𝐵max(𝑁𝑂𝑁 − 𝛽𝐶𝑇 , 0) 𝛽𝐶𝐸) + ε (5.4) 

 

The nonlinear regression problem is solved in the way as for Eq. (5.3).By taking the observations that 

the boarding process begins after the start of, but not the end of alighting process as the samples, we 

find that the boarding will be delayed if there are more than 29 passengers in the vehicle. And the 

lagging of boarding to alighting is positively correlated to the excessive number of passenger to the 

crowding threshold. Sun et al. (2015) define a critical occupancy to model the crowding effect, which 

is the ratio of onboard passenger to the bus capacity, and they observe the crowding effect when more 

than 60% of the capacity is occupied. Assuming that the capacity of the bus in Kyoto City is 60, the 

critical occupancy is then 50% in our case. It is not intuitively crowding. The boarding lagging tends 

to be generated under a relatively low critical occupancy in Kyoto, due to the fact that the standing 

passengers are likely to concentrate near the boarding door. The standing space in the rear part of the 

bus is narrow and requires the passengers to take a step. 

 

Table 5.5 Regression analysis on the crowding effect in bus dwell time 

 Estimate SE t-value p-value 

Dead time ε (sec) 5.9276 0.0730 81.1670 <0.001 

𝛽𝐴 1.0011 0.0023 443.7587 <0.001 
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𝛽𝐵 1.0633 0.0040 267.7098 <0.001 

Crowding effect 𝛽𝐶𝐸 (sec/pax) 0.1957 0.0077 25.4552 <0.001 

Crowding threshold 𝛽𝐶𝑇 (pax) 29.1242 0.6751 43.1394 <0.001 

R2 = 0.9096     

Sample size = 153     

 

5.5.2    Modeling the interaction between buses 

We combine 25 sequential cases, 159 boarding only cases and 129 alighting only cases (313 cases in 

total) in the same model here. 𝛼𝐵𝑢𝑛 is a dummy variable to distinguish the bunching events. ε𝐵𝑢𝑛 is 

the bunching effect, namely the dead time due to bunching. Considering that the boarding is likely to 

be delayed after the bunching effect, we have  

 

𝐷 = 𝛽𝐴𝑊𝐴 + 𝛼𝐵𝑢𝑛ε𝐵𝑢𝑛 + 𝛽𝐵𝑊𝐵 + 𝛼𝐵max(𝑁𝑂𝑁 − 𝛽𝐶𝑇 , 0) 𝛽𝐶𝐸 + ε (5.5) 

 

Table 5.6 reports the regression results which suggests that the bunching effect is 8.73 sec and the 

crowding threshold is close to the results in the simultaneous case. And in all the models, 𝛽𝐴 and 𝛽𝐵 

are significant and close to unit value. In the next subsections, the regression analysis is conducted on 

𝑊𝐴 and 𝑊𝐵. 

 

Table 5.6 Regression analysis on the effect of bunching and crowding in bus dwell time 

 Estimate SE t-value p-value 

Dead time ε (sec) 5.9080 0.7816 93.9966 <0.001 

𝛽𝐴 1.0371 0.3264 344.3877 <0.001 

𝛽𝐵 1.0460 0.7716 332.1260 <0.001 

Bunching effect ε𝐵𝑢𝑛 (sec) 8.7276 1.2723 90.3097 <0.001 

Crowding effect 𝛽𝐶𝐸 (sec/pax) 0.1190 0.5230 11.3669 <0.001 

Crowding threshold 𝛽𝐶𝑇 (pax) 29.9025 0.3000 24.4523 <0.001 

R2 = 0.6909     

Sample size = 313     
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5.5.3    Regression analysis on the alighting time 

Here we use the data collected at the alighting door of Kyoto City Bus No.12 to investigate the effect 

of payment methods, as one-day ticket users who are mainly tourists are frequently observed on this 

route. The dataset includes the 307 cases when at least one passenger alight. As is shown in Table 5.7, 

there are various methods of payment observed on this route. It take 2.12 sec for a smart card user to 

tap-out when alighting, which is consistent with the findings in other studies (1.58 - 2.37 sec/pax by 

Tirachini, 2013; 1.69 sec/pax by Sun et al., 2015). The buses in Japan are usually equipped with a 

cash-to-coin exchange machine, and the passengers may exchange before alighting or more commonly 

in the queue of alighting. The boarding time for a cash user is 4.10 sec/pax and 3.14 sec/pax more if 

exchange is needed. As is mentioned, this bus route is popular for the tourists, as it connects the city 

center and several of the most famous tourist attractions in Kyoto such as Kinkaku Temple (Golden 

Pavilion) and Gion. For the tourists, on-day ticket is a convenient and saving-money way. It requires 

to activate the ticket at the first time of using the ticket following the driver’s instruction, which cost 

4.24 sec/pax. Since the second time, the alighting time is reduced to 2.28 sec/pax which is close to the 

smart card user because the user only has to show the time-stamped ticket to the driver. Many places 

in the city are selling the one-day ticket, though, the passengers can buy it directly from the driver and 

meanwhile activate it when alighting the bus, the whole process costs 12.16 sec/pax which is close to 

the summation of time for exchange and activation. Other methods refer to the passengers using 

commuter/student pass, or the payment is not identified by the investigators. We observe 1208 

passengers, the percentage of each payment is listed Table 5.7. The weighted alighting time per person 

is 2.14 sec. Although the overall model fit is positive, the time per person for other methods which is 

also the largest proportion appears underestimated. This might result from those passengers alight the 

bus when other passengers are making the payment, since they keep the segment pass and do not need 

to pay, also many of them might be wrongly classified due to manual mistakes. We conduct another 

simple regression to obtain the average alighting time per person as in Table 5.8. 

 

Table 5.7 Regression analysis on alighting time 𝑾𝑨 

 Estimate SE t-value p-value Percentage  

Dead time 휀𝐴 (sec) 8.8019 0.7816 11.2613 <0.001  

Smart card (sec/pax) 2.1174 0.3264 6.4862 <0.001 29.14% 

Cash 4.0984 0.7716 5.3117 <0.001 8.48% 

Cash with onboard 7.2366 1.2723 5.6878 <0.001 2.55% 
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exchange 

One-day ticket (activate) 4.2418 0.5230 8.1109 <0.001 9.05% 

One-day ticket (show) 2.2837 0.3000 7.6127 <0.001 19.75% 

One-day ticket (purchase) 12.1638 2.4477 4.9695 <0.001 0.58% 

Other methods 0.2810 0.4186 0.6713 0.5026 30.45% 

Adjusted R2 = 0.7128      

Sample size = 307      

 

Table 5.8 Regression analysis on alighting time 𝑾𝑨 (without distinguishing methods of payment) 

 Estimate SE t-value p-value 

Dead time 휀𝐴 (sec) 5.9978 0.8545 7.0189 <0.001 

Alighting (sec/pax) 2.8648 0.1403 20.4169 <0.001 

Adjusted R2 = 0.5761     

Sample size = 307     

 

5.5.4    Regression analysis on boarding time 

Here we use the data collected at the boarding door of Kyoto City Bus No.12. Model fitting is fairly 

unfavorable. The dataset includes the 337 cases when at least one passenger boards. It can be observed 

in reality that the boarding door sometimes remains open after the bus finished loading the passengers 

at the stop and is closed together with the alighting door, which explains why the intercept is longer 

than that in the alighting time model. As no action is required at the boarding of the bus, the time 

interval between two successive boarding passengers varies significantly from 0 (two passengers 

board at the same time as the boarding door is wide enough) to more than 10 seconds due to carrying 

large suitcases. The dependency on the alighting time and the variation in individual boarding account 

for the low goodness of fit of the boarding time model. 

 

Table 5.9 Regression analysis on boarding time 𝑾𝑩 

 Estimate SE t-value p-value 

Dead time 휀𝐵 (sec) 9.5948 1.0083 9.5155 <0.001 

Boarding (sec/pax) 1.3316 0.2026 6.5715 <0.001 

Adjusted R2 = 0.1142     

Sample size = 337     
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5.6    Application of the complex dwell time model to OD estimation framework 

5.6.1    Data detail level required and techniques for data processing 

We successfully capture the bunching and crowding effect via an onboard survey in the previous 

section, and in this section we introduce the steps to incorporate the complex dwell time models into 

the OD estimation framework proposed in Chapter 4. 

 

For the bus line always faced with bunching and crowding, it is essential to identify the ineffective 

part in the dwell time in which there is no passenger flow. Given two buses bunching at the stop, from 

the perspective of the back bus, the forward headway is short while the dwell time is long as it has to 

wait for the front bus. Not considering the bunching effect may significantly overestimate the 

passenger arrival rates given the short headway and long dwell time. Besides, a simultaneous form of 

the dwell time model is applied to a normal case though, a sequential form should be applied to a 

bunching case after excluding the dead time due to bunching. Furthermore, the passengers may always 

board the leading bus in the single-line bunching case if overtaking is not allowed and there is space 

remaining in the first bus. In order to identify the bunching between the buses from different lines, the 

AVL data of a single bus route appears not enough. For the bus stop where multiple lines are 

intercepted, the joint headway should be used for the bunching judgement.  

 

It is difficult to precisely exclude the dead time due to bunching. If there is a bus queue, we suppose 

that the bus initial arrival time is the time point of the bus entering the bus queue, and that the 

passengers can alight after the dead time required for door opening. The bus closes the door when it 

finishes unloading passengers, and cannot move to the berth to load passengers until its leading bus 

leaves the bus berth. The bus has to move two times if it queues after two buses. The time used for 

waiting and moving depends on the queue length. The bus departs after the passenger boarding time 

at the berth and door closing time. The entire dwell time from the initial arrival to the final departure 

should be separated by several time points, in order to obtain the actual time for passenger boarding 

and alighting: 

 

(1) Initial arrival time, or alighting door opening 

(2) End of the alighting process, or alighting door closing 

(3) Arrival time at the bus berth, or boarding door opening 
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(4) Final departure time, or boarding door closing 

 

Time interval between points (1) and (2) is regarded as the alighting time, and that between (3) and (4) 

is the boarding time. The accuracy of the split strongly depends on the detail level of the dataset. Refer 

to Table 2.1, detail level C records the arrival and departure time of the bus at each stop, which are 

points (1) and (4). Points (2) and (3) have to be inferred. It is straightforward to obtain the end of the 

alighting time and the start of boarding if AFC data is available, and it is also feasible to infer these 

time points if the AVL data is of high detail level, such as level E (every 5 seconds or more frequent), 

or recoding every door opening and closing or containing speed information. For the AVL data of low 

detail level, such as every 10 or more seconds, it is difficult to determine all four time points, however 

we may narrow the time window of the time points if the data of other buses involved in the same 

queue are collectively considered. 

 

5.6.2    A case study in Kyoto City 

Refer to Chapter 4, passenger activity time and headway obtained from bus AVL data are the main 

model inputs. Besides, boarding and alighting time per passenger are also assumed for the model. In 

the case study in Chapter 4, 1.5 sec/pax is assumed for boarding and 2.5 sec/pax for alighting. In this 

section we prepare data regarding passenger activity and headway with the rich time points provided 

by the survey data. And we apply the fitted complex model in the last section. Kyoto City is a good 

candidate to investigate the effect of dwell time complexity on passenger flow estimation, considering 

that frequent bus bunching between the buses either from the same line or different lines occurs. With 

the help of bunching information collected by the survey, we can apply simultaneous form or 

sequential form to the bus dwell time properly. Another reason of using the survey data is that the 

ground truth of passenger flows are available. Although plentiful bus AVL data is available in Kyoto 

City though, we do not have the access to APC and AFC data. We also note the shortcoming of the 

survey dataset that it records the trips of nine bus runs for each bus route however from 8am to 16pm 

which involves several heterogeneous time-of-day intervals. The expected passenger flows might be 

biased by these sampled trips. As is discussed in Chapter 4, the bus trips in a homogeneous 

observational period are supposed to be used to estimate the mean arrival rate for that time period, 

considering the time-dependency of passenger flows. Finally, we simplify the crowding effect to 

reduce the computational complexity. For comparison purpose, two dwell models are applied in the 

demand estimation of this chapter. The advanced one is as in Eq. (5.6), which uses weighted alighting 
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time per person and considers bus bunching. The simple one is the above part of Eq. (5.6), and it uses 

the alighting time per person not weighted by methods of payment. 

 

𝐷 = 𝑇𝑃𝑟𝑒 +𝑊 = {
max(𝑡𝑏𝐵 + 휀𝐵 , 𝑡

𝑎𝐴 + 휀𝐴) + 휀1     𝑏𝑢𝑛𝑐ℎ𝑖𝑛𝑔 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟

𝑡𝑎𝐴 + 휀𝐴 + 휀𝐵𝑢𝑛 + 𝑡
𝑏𝐵 + 휀𝐵 + 휀2              𝑏𝑢𝑛𝑐ℎ𝑖𝑛𝑔 𝑜𝑐𝑐𝑢𝑟𝑠

 (5.6) 

 

Refer to Table 5.6, 5.8 and 5.9, we have the coefficients as shown in Table 5.10 for simple dwell time 

model and advanced dwell time model. 

 

Table 5.10 The simple and advanced dwell time models applied in demand estimation 

 Simple dwell time model Advanced dwell time model 

𝑡𝑏 = 1.33 sec/pax 1.33 sec/pax 

𝑡𝑎 = 2.86 sec/pax 2.14 sec/pax 

휀1 = 8 sec 8 sec 

휀2 = N/A 6 sec 

휀𝐴 = 6 sec 9 sec 

휀𝐵 = 10 sec 10 sec 

휀𝐵𝑢𝑛 = N/A 9 sec 

 

Four scenarios are distinguished in this case study: AB, BT, T and TB. The settings for AB, BT and T 

are identical to those in Chapter 4. The simple dwell time model is used in BT. The difference between 

T and TB is that TB incorporates the advanced dwell time model and T uses the simple one. We remove 

AT due to the confirmed underperformance of AT to BT. Here we only report the estimation 

performance on passenger boarding, alighting and onboard numbers, due to the lack of ground truth 

on OD flows. 

 

The data of one direction of Route 12 (30 bus stops) is used. In the 9-bus-run dataset, single-line 

bunching does not occur and common line bunching occur 25 times in 270 bus dwelling events. Figure 

5.4 to 5.6 show the estimation performance on boarding, alighting onboard number of passengers in 

four scenarios. Due to the diversity of time-of-day intervals and the lack of sample trips, significant 

variation can be observed in the ground truth. Although the mean passenger flows in both ground truth 

and estimation result should not be interpreted as the true mean flows of the day, we still can draw 
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several important conclusions. The emphasis is put on the effect of dwell time models in this case 

study, which refers to the comparison between T and TB. As is illustrated in Table 5.12, TB 

outperforms T slightly in terms of boarding flows, and significantly in terms of passenger loads. TB 

even underperforms T regarding alighting flows. This indicates that the special treatment on bunching 

improves the estimation on passenger boarding flows and passenger loads, however that on payment 

methods may not improve the estimation on passenger alighting flows. Advanced dwell time model 

can greatly increase the accuracy of passenger load and crowding level estimation though, the 

improvement for boarding flows is limited. This may results from that bunching is not severe and not 

a systematic problem to the selected bus route. A bunching rate of 25/270 is probably not high enough 

to fundamentally affect the estimation. The data of a bus route which is more characterized by bus 

bunching is needed to verify this conclusion. However, the impact of bunching on passenger flow 

reconstruction should be significant. Passenger flows reconstruction is to match the passenger flows 

for each bus run. This is an interesting further step of this research. 

 

Scenario AB produces reliable estimation for the bus route in Shizuoka City, as is shown in Table 5.12. 

The results for the bus route in Kyoto City are unfavorable. Again we note that the time-dependency 

is not considered. Taking stop 3 Kinkaku-ji mae as an example, the boarding flows vary from [1,0,1] 

for the first 3 runs in the morning to [30,13,13] for the last three runs in the survey in the afternoon, 

as many tourists finish their visits to this famous temple and take a back trip to city center in the 

afternoon. Therefore, the estimation performance can be greatly improved if more data is available. 

 

Table 5.11 The prior knowledge on the stops of Kyoto City Bus No. 12 

  Prior (AB, BT) Prior* (T, TB) Stop characteristics 

𝑝𝑖
𝑔
, 𝑖 = 1 U[0,10] U[2,3] Ritsumeikan 

University 

3 U[0,10] U[6,7] Kinkaku-ji mae 

4 U[0,10] U[5,6] Kinkaku-ji michi 

20 U[0,10] U[8,9] Nijo Castle 

21-30 U[0,10] U[0,10]  

𝑝𝑖
𝑎 , 𝑖 = 1-30 U[0,10] U[0,10]  
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Table 5.12 RMSE and MAPE of the estimation results for each scenario 

Model 
Boarding flows Alighting flows Passenger loads 

RMSE MAPE RMSE MAPE RMSE MAPE 

AB (Shizuoka Route A) 0.1964 7.60% 0.1421 7.36% 1.0964 4.36% 

AB (Kyoto No. 12) 0.8114 24.32% 0.5814 13.88% 2.7883 8.10% 

BT 0.7924 21.57% 0.8898 27.28% 2.9943 8.42% 

T 1.0296 34.14% 0.9564 30.47% 5.9337 17.45% 

TB 0.9626 30.90% 1.1725 33.70% 3.9830 9.55% 

 

 

Figure 5.4 Estimated passenger boarding flows 
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Figure 5.5 Estimated passenger alighting flows 

 

 

Figure 5.6 Estimated passenger loads 

 

5.7    Summary 

In this chapter, a series of dwell time models are provided to investigate the effect of crowding and 

bunching on the bus dwell time. We conduct a survey in Kyoto City to collect the data and verify the 

models. Five distinctive patterns are observed from the survey data, in particular the crowding 

simultaneous case and bunching sequential case. Furthermore, the fitted dwell time models are used 

as input to the estimation framework on passenger flows which is developed in Chapter 4. We find 
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that an advanced dwell time model can improve the estimation on boarding flows and significantly 

improve the estimation on passenger loads. This limited improvement on boarding flows may result 

from the bunching problem on the selected bus route is not severe enough to impose impacts on the 

estimation. 

 

Besides, several practical findings should be noted. Firstly, the shortcomings in the existing ticketing 

policy is pointed out. Alighting time per person by cash exchange and one-day-pass purchase are 7.24 

sec and 12.16 sec respectively. These two types of payment greatly prolong total alighting time and 

delays bus departure time. The exchange machine is located beside the fare collection box at the 

alighting door and the pass purchase is based on the communication between passenger and driver, 

both of which blocks the way of other alighting passengers. New ticketing policies that make it more 

convenient for the passengers to conduct cash exchange and pass purchase before the bus arrives their 

destinations are expected to mitigate the delays. Secondly, the negative effect of bus bunching is 

quantified. The process of bus queueing to the loading/unloading area due to bus bunching and lane 

congestion last for 8.7 sec on average. As bunching tends to keep delaying the bus for successive stops, 

and the delay effect spreads to following buses, the accumulated delay can be fairly significant. We 

hence call attention on the countermeasures against bus bunching, and the bunching prediction tool 

proposed in this thesis can make contributions. 
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 Conclusions 

6.1    Summary of research 

The main objective of this research is to illustrate the capability and potential of bus AVL data terms 

of assisting the decision making in transit planning and operation. The emergence of transit data has 

significantly provided the possibility for them to understand the status quo of the service, the 

insufficient part in particular; also to encounter the service inadequacy in a data-drive way. However, 

AVL data is not the only option for the operators who are trying to establish data-driven planning and 

operation system. The existing literature has already presented the advantages of AVL data in obtaining 

time components in the bus trips, and also the disadvantages of capturing the information regarding 

demand and passenger flows. Multiple data sources such as APC and AFC data on the other hand, 

contain plentiful demand information and the key time components of a bus trips such as arrival and 

departure time. As a result, advanced methodologies on data-driven planning and operation require 

APC or AFC data, or the collaboration of multiple data sources, which imposes the expression that the 

contribution that AVL data can make is limited. This may enlarge the gap in the service quality between 

“data-rich” operators, that is, those who have access to multiple data sources, and “data-poor” 

operators who may only have AVL data. This research therefore considers the problem from the 

perspective of the “data-poor” operators (there are “data-poorer” operators that have no access to data 

though, they are beyond the scope of this research).  

 

Chapter 2 compares the three main-stream transit data: AVL, APC and AFC, comprehensively explain 

the capability of and existing literature regarding these datasets, as well as the possible contribution 

of collaboration among them. The data-driven applications planning, service analysis, prediction and 

control in real-time and so forth. We draw the conclusion that bus AVL data can be used in predicting 

arrival time, departure time, travel time, headway, etc. for bus trips, in measuring the punctuality and 

headway evenness, and also in identifying distinctive time-of-day operating intervals. The main 

inferiority of AVL data over the other two datasets is that it barely convey demand information. 

Precisely speaking, the passenger-related information concealed in bus AVL data is way from being 

fully undermined. We thus consider this as a crucial research direction and also a main objective of 

this research. 

 

Chapter 3 provides a relatively conventional research direction of taking the advantage of AVL data. 
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A logistic regression model is developed to predict bus bunching in multiple-step predictions. The 

effective prediction can be as long as 15 stops. The model input is the time components extracted from 

AVL data such as dwell time and headway at an upstream stop distanced from the stop of concern, and 

the model output is the probability of bunching to occur at the stop of concern. The probabilistic 

prediction results are more robust and reliable than the exact values produced by headway-based 

approaches. 

 

Chapter 4 is the core part of this research. It undermines the potential of AVL data in inferring 

passenger demand. A novel methodology, to our knowledge also the first attempt, is proposed to 

estimate passenger OD flows using AVL data. We model the demand with passenger arrival rate per 

minute at OD-pair level. With the headway and dwell time obtained from AVL data, we can relate the 

passenger flows to the bus dwell time. A Bayesian inference framework is applied for this 

underspecified problem. And a Hamiltonian MCMC algorithm is employed to draw the distribution 

for the unknown parameters. The inferred mean and confidence interval are reliable estimates for 

operators to figure demand-driven bus route design and frequency. 

 

Chapter 5 enhances the approach presented in Chapter 4 in that the complexity in bus dwell time is 

now considered. It considers the entire bus dwell process at a stop, which consists of pre-

loading/unloading stage (bus queueing to enter the bus berth), loading/unloading stage (at the bus 

berth), post-loading/unloading stage (bus leaving the berth to merge into the traffic flow). We find in 

a Kyoto City survey that sometimes the separation of per-loading/unloading stage and 

loading/unloading stage is implicit, and the unloading (passenger alighting) activity may proceed when 

the bus is waiting in the bus queue. By applying a fitted bus dwell time model considering bus 

queueing which is also known as bus bunching to the estimation framework in Chapter 5, the 

estimation performance in boarding flows and passenger loads is improved, and the latter one is 

significant. It is worth of further investigation of whether it significantly matters when it comes to the 

passenger flow reconstruction problem whose goal is to match the exact number for each bus run. 

Chapter 5 also quantifies the effect of various payment methods and bus bunching on service delays. 

 

6.2    Contribution to existing knowledge 

Firstly, the literature on the characteristics of these widely used transit data sources, on the data-driven 

methodologies serving for transit planning and operation based on these datasets, in particular bus 
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AVL data, are systematically reviewed. A full picture of the data sources, of the advantages and 

disadvantages of bus AVL data, of the existing literature is an initial and important contribution of this 

research. 

 

Secondly, the probabilistic prediction tool developed in this research provides the bus operators 

tradeoff options, which enables them to project flexible bus control in real time. It is advantageous in 

predicting bus bunching events comparing the traditional methods that transform the predicted exact 

value of headway to binary result. It provides fresh insight in the knowledge domain of prediction 

methods for bus transit. Also the reliability in long-term prediction (prediction horizon is more than 

10 stops) is noteworthy. 

 

Thirdly, the estimation framework on passenger OD flows using AVL data may substantially broaden 

the minds of bus operators and the contribution to the existing knowledge is both methodological and 

practical. We model the demand with OD-pair passenger arrival rate. The estimated rates can be easily 

transformed to stop-level arrival rates and alighting probabilities, which are the input of many 

advanced bus control models. The model inputs are usually calibrated from APC, AFC or onboard 

survey data. Now, the demand parameters and time component parameters such as mean inter-stop 

travel time, mean headway, etc. can be obtained from a single AVL dataset. We note and illustrate that 

we are not suggesting that a single dataset outperforms the collaboration of multiple datasets. Instead, 

we are pointing out that the situation confronting the “data-poor” operators should be seriously 

considered. 

 

Fourthly, this research models the complex bus dwell process with a consideration of in-vehicle 

crowding, bus bunching and lane congestion. It successfully spotlights the shortcomings of existing 

ticketing policies in Kyoto and quantifies the negative effect of bus bunching on service delays. New 

policies regarding onboard cash exchange and pass purchase, as well as predictive control strategies 

towards bus bunching have great potential in improving the existing service.  

 

6.3    Future research directions 

For the probabilistic prediction tool developed in Chapter 3, some extensions are supposed to 

strengthen the predictive power of the model. The model itself has space for improvement by including 

traffic signals and passenger demand into the set of independent variables. They are not incorporated 
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in this research due to the lack of data. Furthermore, the study could be extended to simultaneously 

predict bunching for several lines, in which case common line effects such as the interaction between 

buses of different lines at a common stop need to be considered. It is challenging to model the bus 

bunching for the stops at which multiple lines are intersected and the route segment served by multiple 

lines. 

 

In Chapter 4, we discuss the difference between mean OD matrix estimation and matrix reconstruction. 

The estimated mean passenger flows and passenger rates are useful in bus route planning in terms of 

route design and timetable setting. The matrix reconstruction is then put the focus on reproducing the 

passenger flows and load profile for each bus run using AVL data and estimated passenger rates, which 

is a two-stage estimation. It is expected to provide the estimates on how worse the real situation is, the 

fluctuation of the passenger flows from the expectation. Instead of the distribution of expected (mean) 

passenger flows, the distribution of actual passenger flows can be obtained. 

 

In Chapter 5, we conclude that the consideration of bunching in an advanced dwell time model does 

not significantly improve the estimation on passenger flows. We suppose this impact to be significant 

in reproducing the passenger flows. The gap in the passenger boarding flows at the bunching stops 

and passenger loads over the bunching segment between two successive bunched buses should be 

obvious, and this inequality is not captured when we estimate the mean value. 

 

Another noteworthy methodological extension of this estimation framework is to make the estimation 

fully independent of APC data. In Chapter 4, we assume stop generation power and attraction power 

to model the passenger OD-pair arrival rates and reduce the number of unknown parameters. We infer 

the prior knowledge for these unknown parameters in terms of the lower and upper bounds for the stop 

importance from APC data. This passenger count data can be alternative obtained from a small sample 

survey though, the method to refine stop importance is worth exploring. The data sources that are 

conventionally used to calibrate such information, such as population data, are not easy to collect at a 

bus stop base. We thus provide some candidate data here that have the potential to explain the 

generation and attraction power of the stop, and can be collected at a low cost. Number and property 

of the POIs (Points of Interest) within a certain distance from the bus stop are considered powerful in 

explaining the importance of stops, and they can be freely obtained from Open Street Map or other 

map databases. In addition, the topology of the bus transit network and the connectivity of the bus stop 
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are strong supplements to obtain importance weights. Considering the massive types of POIs, the 

complex topology of transit networks and a need to infer demand influence radius of stops, deep 

learning approaches such as graph convolutional network can take the place of gravity model we 

incorporate in this framework to determine the weight of POIs and the distance cost function. Koca 

(2020) estimated the OD matrix of taxi trip data for New York using “OpenStreetMap” data in 

combination with deep learning approaches. The combination of AVL data and map data, and a hybrid 

approach of deep leaning and Bayesian inference may enhance the transferability of the estimation 

framework for “data-poorer” operators. 

 

Last but not least, the demand is modeled with OD-pair arrival rates which can be used to simulate the 

passenger demand in the bus propagation/evolution models. In bus control models, the controlling 

performance is usually evaluated by the future states of the bus system, and the future states can be 

derived by the bus propagation model. Stop arrival rates and alighting probabilities are often assumed 

for these models and calibrated from APC data in the case study though, the assumption of OD-pair 

arrival rates is closer to the real passenger behavior. Few studies assume OD-pair rates as it can be 

only calibrated from AFC data or OD survey. Now we make it feasible to obtain OD-pair rates from 

bus AVL data, significantly reduce the calibration difficulty. We expect more studies can consider 

passenger demand at OD level based on the framework we propose and develop more effective 

strategies to improve bus service. 
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