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Abstract

Program verification is one of the important subjects of software science, and there is a vast
amount of work dealing with the subject. Static type systems are one of the most successful
static verification methods, but they can deal with rather simple specifications in practice.
Meanwhile, some languages which do not have a static type system have a software contract
system, which monitors the behavior of a program at run-time and checks if an embedded
specification, namely contract, is not violated. Contracts are usually described as Boolean
expressions, and so, more expressive than types.

Software contracts have been extended for several directions. One important extension
is functional contracts that can describe a relation between input and output of a function.
Another is a smooth integration with a static type system, as known as hybrid type checking,
which combines compile- and run-time checking.

Our goal is to develop a theory for software contracts on typed functional programming
languages—formalizing a mathematical model of a typed functional programming language
equipped with software contract system; stating desirable properties that the language
should have; and proving the properties. In this thesis, we try to combine two well-known
programming features with software contract systems.

The first one is a contract in conjunctive form. A conjunctive contract is a contract
consisting of smaller contracts by connecting with “and” conjunction. Such a contract
naturally arises when we naively think program specifications. Furthermore, it is quite useful
when we add more contracts to an existing contract. A challenge comes from functional
contracts. As for contracts about first-order values—integers, booleans, etc.; it is obvious
how we handle conjunctive contracts—we can just see the contracts as Boolean conjunction.
However, it is not trivial for functional contracts, which are not simple Boolean predicates
anymore.

The other is nondeterminism. Nondeterminism is widely used in logic programming
languages, like Prolog; where evaluation order of code has freedom, and even more, a result
of evaluation could vary. An interesting point is that contracts could involve nondeterminism
if we allow arbitrary code to describe a contract. This design choice blurs the meaning of a
contract because an evaluation of a predicate could succeed or fail randomly.

To archive the goal we develop twomanifest contract systems and supplemental discussion.
Manifest contract systems are one group of formal calculi for typed software contract systems.
In a manifest contract system, contracts are integrated into types by using refinement types
of the form {𝑥∶𝜏 ∣ 𝑀}, where the predicate𝑀 restricts values belonging to the refinement
types; and so for instance, {𝑥∶int ∣ 𝑥 > 0} denotes positive integers. A manifest contract
system still checks contracts at run-time by means of casts of the form (𝑀 ∶ 𝜎 ⇒ 𝜏), which
checks if the value obtained by𝑀 of type 𝜎 can have type 𝜏 at run-time. One advantage of
a manifest contract system to traditional software contracts system is whether a value has
been checked against some contracts is guaranteed as a formal property of the system, that
is, if a value has the refinement type {𝑥∶𝜏 ∣ 𝑀}, the value satisfies the predicate𝑀.

The first manifest contract system that we have proposed is one equipped with intersection
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types. An intersection type 𝜎 ∧ 𝜏 gives both types 𝜎 and 𝜏 to code. So, a conjunctive
contract can be expressed by just connecting types that express each contract constituting the
conjunctive contract by ∧. We have formalized the system as PCFvΔH. Concretely we have
shown if a value has an intersection type of refinement types, namely {𝑥∶𝜏1 ∣ 𝑀1}∧{𝑥∶𝜏2 ∣ 𝑀2},
the value satisfies both predicates𝑀1 and𝑀2.

The second manifest contract system that we have proposed is one equipped with non-
deterministic choices. A nondeterministic choice is a pair of code, written (𝑀 ∥ 𝑁) in this
thesis, which is randomly evaluated into𝑀 or 𝑁 in every execution. We formalize the system
as 𝜆𝐻∥Φ . As we have mentioned, it is non-trivial what the fact that a value has a refinement
type means. To give a strict meaning, we have proposed coordinated choices, which are
equipped with names, in 𝜆𝐻∥Φ instead of usual nondeterministic choices, which we have just
seen. Using coordinated choices, we have shown if a value has a refinement type, the value
deterministically satisfies the predicate of the refinement type even if the predicate involves
nondeterministic code.

After developing the two systems, we give an additional discussion to give a proper name
for each coordinated choice automatically. We are motivated by two reasons. One is a
naive motivation, that is, giving a proper name is a bit complicated and bother work for
a programmer. Another is related to PCFvΔH. In fact, PCFvΔH uses nondeterminism to
check some contracts, but because of the difficulty solved by 𝜆𝐻∥Φ , PCFvΔH has no dependent
function types—more expressive types equipped in most manifest contract systems. The
discussion could help to recover dependent function types for PCFvΔH. Formally, we have
given a compilation algorithm from a simply typed lambda calculus equipped with usual
nondeterministic choices into one equipped with coordinated choices; and shown source
code and its compiled code behave in the same way.

As a result of our development, we have had a theoretical base for a typed software contract
system with conjunctive contracts, at least under the absence of dependent function types.
As for dependent function types, we have obtained interesting results and insight. We hope
that our result leads us to a fully-integrated system.
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1 Introduction

In this thesis, we deal with a software verification method, which helps to develop correct
software. No one would doubt that it is pleasant that software works correctly. “Correctly”
means software works as users think informally, but it is not hard to think how we formally
define the correctness. Passing through this thesis, we assume that correct software means
one which follows specifications. Furthermore, we assume that specifications themselves
are correct. Consequently, a software verification method means a method that checks if
software follows its specifications.

Although software consists of many parts, we mainly focus on correctness of each program
code. For example, consider a division program whose specification is as follows.

This program takes two natural numbers: one is called dividend and another is
called divisor. A divisor must not be zero. As a result, this program returns a
natural number called quotient. The number obtained by subtracting the product
of the divisor and the quotient from the dividend is less than the divisor.

There are several things to take care: a program that uses this division program never passes
zero as a divisor; this program calculates a number satisfies the condition in the last sentence;
etc. In the old days, these kinds of things are left to programmers to write a correct program.

Nevertheless, automated verification methods emerged in the earlier history of software
development since human beings make mistakes. Traditionally, the methods are roughly
categorized into run-time verification and compile-time verification.

Run-time verification would be a better noticeable form to check correctness. For instance,
C language [27] has an assert statement which checks a property in each program point
at run-time. So, a division program with run-time verification could be implemented as
follows in C language.

1 int div(int a, int b) {
2 int i;
3 int a_;
4 a_ = a;
5 assert (a >= 0);
6 assert (b > 0);
7 while (a_ > b) {
8 i++;
9 a_ -= b;

10 }
11 assert (0 <= a - b * i < b);
12 return i;
13 }

Of course, assert is very primitive—it just terminates a software execution at the point in
which assert is placed if described properties do not hold, and hopefully it would put the
location of the failed assertion on a display, a log file, or somewhere else.
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1 Introduction

Compile-time verification, in contrast, tends to be used unawares since it is highly in-
tegrated into a compiler and used automatically and forcibly. The most famous method
of this category would be type systems, which are widely adopted in many programming
languages and help developers everyday. For instance, the example code above already could
receive a benefit of a type checker. A compiler reports an error at compile-time, which means
before running a program, if a program that uses div function passes: only one argument;
characters (not integers); and/or so on. What a type checker can detect would be very trivial
things especially classical ones (like C language’s one), but the long and wide use proves the
usefulness.

In the following, we introduce more recent (and still developed) work for each verifica-
tion method—software contracts for run-time verification and refinement type systems for
compile-time verification; and even more, those are getting integrated. The reason we choose
these topics as a representative for each is intentional because those are related more closely
to this thesis; there is a lot of work taking a different approach though—e.g., model check-
ing [30], abstract interpretation [12], test-based verification [8], certification by mathematical
proofs [33], etc.

1.1 Background

1.1.1 Software Contracts

Software contracts are originally coined by Meyer [37, 38] in his methodology “Design by
Contract”—specifications of software should be accompanied with source code because
whether software is correct or not is only determined by the specifications. Specifications
specify the duties for developers, what functions should be implemented, and the rights for
users, what functions can be used and/or assumed. This is analogous to ordinary contracts
and why we call software specifications software contracts.

Eiffel [37] should be the first programming language equipped with a full-fledged software
contract system. It was used when Design by Contract methodology was introduced. In
Eiffel, contracts mainly specify pre-conditions and post-conditions of methods. The following
is an example of Eiffel code for a division function.

1 div (a, b: INTEGER) : INTEGER is
2 require
3 a >= 0
4 b > 0
5 do
6 ...
7 ensure
8 0 <= a - b * Result < b
9 end

Contracts for the division function is better organized than ones in the example code in C
language. Pre-conditions, placed between require and do, specify the conditions held
before the function call, and so a caller must keep the contracts. Post-condition(s), placed
between ensure and end, specify the conditions held after the function call, and so a
function provider must keep the contracts. Implementation code is placed between do and
ensure, where no assertions anymore. This organization leads to more readable code and
better error messages when a contract is violated.
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1.1 Background

Accompanied contracts are actually utilized for software verification, not just as documents.
In origin (Eiffel), it is a bit obscure how contracts are checked; run-time checking would be
the first candidate, though. However, in the later system in which a software contract system
is supported (e.g., Java, C#, Racket [18]), it becomes clear that contracts are the one written
in a runnable code and checked at run-time. So, for instance, a contract system checks if
given integers for div function satisfy the pre-conditions by evaluating the pre-conditions
as Boolean expressions; and if a returned value (which is stored in Result) satisfies the
post-conditions by a similar manner. In this sense, we also consider a dynamic type system,
used in Perl, Ruby, Javascript, etc., is a software contract system.

How contracts are expressed is one major issue about software contract systems. In
Eiffel, it seems enough that contracts are just an enumeration of Boolean expressions since
Eiffel only has first-order values. One interesting breakthrough in this perspective is higher-
order contracts [17], which is implemented in Racket. In functional programming languages
(including Racket), functions are also first-class values. So, it is a natural demand to be able to
write contracts for functional values. In Racket, we can write a division function as follows.

1 (provide (contract-out
2 [div (->i ([a (>=/c 0)]
3 [b (>/c 0)])
4 [result (a b)
5 (lambda (res)
6 (and (<= 0 (- a (* b res)))
7 (< (- a (* b res)) b)))])]))
8 (define (div a b) ...)

This program provides div function, which is defined in the last line, with the accompanying
contracts. The contracts are given in line 2–6 as one unified contract. (->i P Q) expresses
a contract for functions, where P denotes contracts for arguments and Q denotes contracts
for a result. “Provide” means that div function is carried around everywhere as a value. So,
the contract is checked when the function is imported/exported. At a glance, it is impossible
to check a functional contract even at run-time in general because we need to observe
that all inputs and outputs follow the given contract. For example, to check if a given
function between numbers always returns a positive number, we need to give all numbers
and check if every returned value is positive. This impossibility is solved by using monitoring
instead of actually checking. That means contract checking for a functional value makes a
new function instead of examining the functional value. The new function is obtained by
wrapping the functional value with checking code for input and output. As a drawback,
contract violation cannot be detected until the new function is applied for a good, which
means the corresponding returned value is against the result part of the functional contracts,
argument.

Someone might wonder if Racket style code loses some information, comparing Eiffel style
code; namely what is a pre-conditions and what is a post-conditions? Actually, it does not;
it can be found by examining where a contract occurs—in short, contracts for arguments
are pre-conditions and contracts for a result are post-conditions. In general, it is difficult to
determine who is blamed (users or providers?) when a contract is violated; and so it is also a
subject of study for software contract systems as known as a blame assignment problem [3,
14, 26].
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1 Introduction

1.1.2 Refinement Type Systems

Most type systems widely used can only check a syntactic property of program code—like
inconsistency of the number of parameters between call-side and caller-side, invalid method
call which does not exist, etc. To make more properties be able to check, type systems are
still studied actively for many directions.
Refinement type systems [51, 58, 31, 57, 66, 61] are one group extending a simple type

system. The main device characterizing refinement type systems is refinement types, which
are types equipped with a predicate describing a property of values belonging to the type.
Refinement types are usually denoted as {𝑥∶𝜏 ∣ 𝑀}—like a set comprehension form, where 𝜏
is called underlying type and𝑀 is a predicate describing a property by using a bound variable
𝑥. For instance, {𝑥∶int ∣ 𝑥 > 0} represents a type of positive numbers. A refinement type
system is usually a dependently typed system [35], where types can depend on run-time values.
Dependent function types, we denote (𝑥∶𝜎) → 𝜏 in this thesis, are another characteristic
types of a dependently typed system. A dependent function type is a type of functions whose
parameter type is 𝜎 and result type is 𝜏; but the distinguishing point is what the result type,
which typically involves a refinement type, can argue a given argument by using a bound
variable 𝑥. Using types that we have just introduced, the contracts of a division function can
be expressed as the following type.

(𝑎∶{𝑥∶int ∣ 𝑥 ≥ 0}) → (𝑏∶{𝑦∶int ∣ 𝑦 > 0}) → {𝑧∶int ∣ 0 ≤ 𝑎 − 𝑏 × 𝑧 < 𝑏}

Thefirst two refinement types express the contracts for the parameters of a division function—
the former is a type of natural numbers and the latter is a one of positive numbers. The result
type depends on given arguments. If a function of this type is applied for 4 and 2, the result
type becomes {𝑧∶int ∣ 0 ≤ 4 − 2 × 𝑧 < 2}, which express the singleton set only containing
2. Hence, the type expresses the contracts quite precisely.

The following is example code1 for div function in F∗ language [56], which is a ML dialect
equipped with a refinement type system.

1 val div: a:int{a>=0} -> b:int{b>0} -> z:int{0<=a-b*z && a-b*z<b}
2 let div a b = ...

The first two lines describe the contract and the last line defines the function. So it follows
the same style as Racket code. However, there is an important difference, that is, the contract
is checked at compile-time as type checking and no cost happens at run-time. Unfortunately,
this code will be rejected by F∗ compiler even when the definition is correct because it could
not decided automatically the body of div function has the result type. Putting the sad
result aside, consider the type checking for the caller code as follows.

1 let r = div 0 0

A type checker synthesizes the type of div, which is given by a programmer as a type
annotation as we have seen because only a programmer knows specifications. So it is an
easy task. Next, the type checker synthesize a type of 0, which will be the singleton type
{𝑥∶int ∣ 𝑥 = 0}. This is also an easy task since 0 is a constant, and it is just a syntactic
operation for any integers 𝑛 to synthesize the corresponding singleton type {𝑥∶int ∣ 𝑥 = 𝑛}.
Difficulty comes in the next step. A simple type system next checks if a parameter type and

1Syntax of types are a bit different from one in this thesis, but the meaning could be reasonable.
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an argument type is the same. However, in this case, those are different ({𝑥∶int ∣ 𝑥 ≥ 0}
and {𝑥∶int ∣ 𝑥 = 0} for the first parameter). So, should the type checker reject the program?
Of course, no (as far as the first argument). To accept this difference, a refinement type
system has a typing rule called subsumption rule—an expression can have a more large type.
In this case, the type checker checks if ∀𝑥 ∶ int, 𝑥 = 0 ⇒ 𝑥 ≤ 0 holds, which shows the
subset relation between the two types. A recent theorem prover [41] can prove the formula.2
Thanks to the result, 0 can have the type {𝑥∶int ∣ 𝑥 ≥ 0}; and the first application is
accepted as a simple type system accepts. Contrary, the second application is rejected (and
thus the program is rejected) because {𝑥∶int ∣ 𝑥 = 0} is not a subset of {𝑥∶int ∣ 𝑥 > 0},
which could be also shown automatically by proving a corresponding formula.

There is another main difficulty for which many studies contribute. That is it sometimes
happens that a type checker synthesize contracts which not explicitly appear in a program
to check written contracts. It is analogous to what we are forced to consider weaker and/or
stronger statements than one written in a mathematical problem to show that.

At the beginning of studies, the form of predicates are carefully chosen so that a type
system becomes usable. Fortunately, active work for theorem provers make it possible that
more general predicates could be used [51, 58, 31, 57, 66, 61]; and types are getting closer to
general software contracts.

1.1.3 Hybrid Type Checking

Getting a use of sophisticated static verifier more realistic, which could prove various prop-
erties but is incomplete—some have false-positives and some still impose restrictions on
predicates, verification methods which combines compile- and run-time checking has been
appeared to compensate for the incompleteness.

Hybrid type checking [19, 28] is one of the combined methods for a refinement type system,
and therefore, it can be seen as one milestone combining software contracts and static type
systems. In the system, following the software contracts way, we can use arbitrary predicate,
which is written in the programming language itself, for refinement types. The following is
an ideal example source code passed to the hybrid type checking.

1 let div (a : {x:int|x ≥ 0}) (b : {y:int|y > 0})
2 : {z:int|0 ≤ a - b * z < b} =
3 ...

As we have mentioned, current automated solver can hardly decide the body can have the
result type, and so the code rejected. At the same time, it is also true that an automated
solver can hardly decide the body cannot have the result type. So this is a different situation
from what the caller code in the previous subsection is rejected (which actually violates a
contract). In this situation, hybrid type checking inserts a cast and accept the code as follows
since the code would be correct.

1 let div (a : {x:int|x ≥ 0}) (b : {y:int|y > 0})
2 : {z:int|0 ≤ a - b * z < b} =
3 (... : int ⇒ {z:int|0 ≤ a - b * z < b})

2Actually many refinement type system just rely on an existing theorem prover after synthesizing a required
formula.
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A cast (𝑀 ∶ 𝜎 ⇒ 𝜏) checks whether the evaluated value of𝑀 of type 𝜎 can have the type
𝜏 at run-time. (So the code above represents the worst case—the body has just int type.) If
the check fails—in this case, the implementation of div function is incorrect and returns
a wrong number, the cast throws an uncatchable exception called blame, which stands for
contract violation. So, the system does not guarantee the absence of contract violations
statically (unless no casts are inserted during compilation), but it guarantees that the result
of successful execution satisfies the predicate of a refinement type in the program’s type.

Manifest Contracts

Recently, a target language of the translation of hybrid type checking is split out as amanifest
contract system [53, 52, 54, 1, 20, 45] because of technical reasons. The type system of a
manifest contract system is similar to one used in hybrid type checking, but the type system
never examine the meaning of predicates; which means the type system has no subsumption
rule, and therefore, casts are mandatory everywhere required. That means the caller code for
div function must be as follows, and the following code accepted by the type system of a
manifest contracts system while the second application violates a contract, which will be
detected at run-time.

1 div (0 : {x:int|x = 0} ⇒ {x:int|x >= 0})
2 (0 : {x:int|x = 0} ⇒ {x:int|x > 0})

Nevertheless, static contract checking is still established in a manifest contract system as a
post optimization, which is done after type checking, called up-cast elimination—a cast into a
super type can be removed without changing a program behavior.

1.2 This Thesis

Our goal is to develop a theory for software contracts on typed functional programming
languages with keeping in mind hybrid type checking. Concretely, we enrich manifest
contracts for: conjunctive contracts and nondeterministic contracts.

Conjunctive contracts It is natural to think that we consider a contract stated in a
conjunctive form. For example, one would want to give a contract for a variant of a division
function as follows.

…. This program also can take negative numbers as a divisor. In that case,
the number obtained by subtracting dividend from the product of divisor and
quotient is grater than divisor and less than or equal to zero.

In fact, this contract can also be expressed by using dependent function types as follows.

(𝑎∶{𝑥∶int ∣ 𝑥 ≥ 0}) → (𝑏∶{𝑦∶int ∣ 𝑦 ≠ 0})
→ {𝑧∶int ∣ if 𝑏 > 0 then 0 ≤ 𝑎 − 𝑏 × 𝑧 < 𝑏 else 𝑏 < 𝑏 × 𝑧 − 𝑎 ≤ 0}

However, this method has a shortcoming. That is there is a gap between the contracts in
natural language and the representation in types, which becomes a burden for programmers
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and will produce an error when we write contracts.3 More seriously, this method cannot be
applied for some contracts of higher-order functions. Consider the following higher-order
program.

1 let g f x = - (f (- x))

The function g respects the following two contracts.

({𝑥∶int ∣ 𝑥 > 0} → {𝑥∶int ∣ 𝑥 > 0}) → {𝑥∶int ∣ 𝑥 < 0} → {𝑥∶int ∣ 𝑥 < 0}
({𝑥∶int ∣ 𝑥 < 0} → {𝑥∶int ∣ 𝑥 < 0}) → {𝑥∶int ∣ 𝑥 > 0} → {𝑥∶int ∣ 𝑥 > 0}

Now we cannot express the conjunctive contract of those as a dependent function type.
Carefully examining the meaning of the contracts, some experts still wonder if the con-

junctive contracts can be expressed as follows.

(𝑓∶(𝑎∶{𝑥∶int ∣ 𝑥 ≠ 0}) → {𝑦∶int ∣ if 𝑎 > 0 then 𝑦 > 0 else 𝑦 < 0})
→ (𝑥∶{𝑥∶int ∣ 𝑥 ≠ 0})
→ {𝑧∶int ∣ if 𝑥 < 0 && 𝑓 (−𝑥) < 0 then 𝑧 < 0

else if 𝑥 > 0 && 𝑓 (−𝑥) > 0 then 𝑧 > 0
else False}

This type does not express the conjunctive contract precisely. Actually, the contract for
the first parameter means that a caller must give a function which can deal with non-zero
integers, while giving a function which can deal with only positive or negative integers
suffices in the conjunctive contract.4

Recently, intersection contracts had been proposed [26, 64] in a software contracts area
to express complicated contracts like one introduced above. They provide a new binary
contract combinator ∩ to express the conjunction of two contracts and how to monitor such
contracts. Similarly, intersection types, which can give two types to one code, are used at
some refinement type systems [57, 66] to handle the situation in which complicated contracts
like one introduced above are required during verification. So it is a natural and important
demand to integrate intersection contracts into a manifest contract system.

Nondeterministic contracts Nondeterminism is a powerful tool for programming. It is
especially useful when we know what we are going to implement but not how we do. For
example, consider implementing a function that takes a list of natural numbers and returns a
pair of natural numbers that are taken from the list and whose sum is a prime number.

1 let prime_sum_pair l =
2 let a1 = choose l and a2 = choose l in
3 require (isprime (a1 + a2));
4 (a1, a2)

Here, choose returns an element of a given list nondeterministically, require𝑀 aborts
an execution unless the condition𝑀 holds, and isprime is a Boolean function that returns
whether its argument is prime or not. So, the defined function nondeterministically returns

3We have assumed that contracts themselves are correct though.
4A user can choose one of contracts constituting a conjunctive contract.
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a pair of the expected property. The remarkable point is that we are almost free from
considering how to choose proper elements from the given list and just write down the
specifications into the code.

An interesting point of nondeterminism under a manifest contracts system is how we
construct a dependently typed system. That is because nondeterminism is a kind of side-effect,
which cannot be naively integrated into a dependently typed system. A usual solution [52, 9]
for an integration is imposing some restriction on program code so that types only depend
on pure code that is always evaluated into the same value under any environment. However,
we challenge an unrestricted integration in this thesis so that we do not kill an advantage of
software contracts—programmers can use any code for writing contracts.

1.2.1 Contributions

To achieve the goal, we study two manifest contract systems and give a supplemental
discussion which gives an investigation for filling a gap between the two systems and the
goal.

Manifest Contracts with Intersection Types Intersection types, denoted as 𝜎 ∧ 𝜏 in this
thesis, are one kind of polymorphic types, which can give various types to one code. More
specifically, code of 𝜎 ∧ 𝜏 can be used as of both 𝜎 and 𝜏; and code must have both 𝜎 and 𝜏 so
that the code has 𝜎 ∧ 𝜏. So, using intersection types, we can express a conjunctive contract
by just connecting each contract with ∧, no matter how complicated it is, for instance, as
follows.

({𝑥∶int ∣ 𝑥 > 0} → {𝑥∶int ∣ 𝑥 > 0}) → {𝑥∶int ∣ 𝑥 < 0} → {𝑥∶int ∣ 𝑥 < 0}
∧({𝑥∶int ∣ 𝑥 < 0} → {𝑥∶int ∣ 𝑥 < 0}) → {𝑥∶int ∣ 𝑥 > 0} → {𝑥∶int ∣ 𝑥 > 0}

We present a manifest contract system PCFvΔH, which equipped with intersection types.
Intersection types naturally arise when a contract is expressed by a conjunction of smaller
contracts. As we mentioned, run-time contract checking for conjunctive higher-order con-
tracts in an untyped language has been studied [26, 64] but our typed setting poses an
additional challenge because an expression of an intersection type 𝜏1 ∧ 𝜏2 may have to
perform different run-time checking whether it is used as 𝜏1 or 𝜏2.

Nondeterministic Manifest Contracts We study a manifest contract system with non-
deterministic choice. The extension is not trivial, especially in the presence of dependent
function types, because a naive extension would lead to inconsistent type equivalence, which
makes contract information in refinement types meaningless.

To solve the problem, we propose a new kind of nondeterministic choice called coordinated
choice, in which each occurrence of a choice operator is given a name and choices of the
same name coordinately take the same branch. We introduce the notion of orthant that helps
both intuitive understanding and the development of formal semantics of the new choice.

We formalize a manifest contract system 𝜆𝐻∥Φ using the coordinated choice and show its
basic properties of progress, type preservation, and contract satisfaction, the last of which
states correctness of contracts in refinement types.
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Compilation of Coordinated Choice As we will see, PCFvΔH lacks dependent function
types because of the problem caused by its nondeterministic semantics. The problem is
solved by 𝜆𝐻∥Φ . However, 𝜆𝐻∥Φ uses coordinated choice for nondeterminism, which requires
careful treatment. To fill the gap, we give the compilation method from a language equipped
with usual nondeterministic choices into one equipped with coordinated choices.

The main contribution of this discussion is the compilation method and its correctness,
which means the run-time behavior of code before and after compilation corresponds.

1.3 Organization

The rest of the thesis organized as follows: In Chapter 2, we review a typical manifest contract
system. In Chapter 3, we integrate intersection types into manifest contracts to give an
ability to write conjunctive contracts. In Chapter 4, we build a manifest contract system on
a nondeterministic calculus. In the last technical chapter, Chapter 5, we demonstrate how
a usual nondeterministic choice is simulated by a coordinated choice, which introduced in
Chapter 4. Lastly, in Chapter 6, we introduce related work; and we conclude this thesis and
put future work in Chapter 7.

Chapter 3, Chapter 4, and Chapter 5 constitute the original work of this thesis, the first
two have been submitted as papers and presented at APLAS 2019 [44] and PPDP 2018 [45],
respectively.

Most of meta-properties (the whole part of Chapter 3 and Chapter 4; and a large part of
Chapter 5) are mechanized by Coq—a proof assistant system. So, we only show important
lemmas and proof sketches obtained by the proof code in this thesis. Proof scripts could be
obtained by the following URL, respectively.

• https://gitlab.com/westpaddy/coq-proof-deltah

• https://gitlab.com/westpaddy/coq-proof-nmc

• https://gitlab.com/westpaddy/coq-proof-cochoice
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2 Manifest Contract System

Manifest contract systems [21, 62, 53, 52, 54, 1, 20, 22, 19, 28, 45], which are typed functional
calculi, are one discipline handling software contracts [38]. The distinguishing feature of
manifest contract systems is that they integrate contracts into a type system and guarantee
some sort of satisfiability against contracts in a program as type soundness. Specifically,
a contract is embedded into a type by means of refinement types of the form {𝑥∶𝜏 ∣ 𝑀},
which represents the subset of the underlying type 𝜏 such that the values in the subset
satisfy the predicate 𝑀, which can be an arbitrary Boolean expression in the programming
language. Using the refinement types, for example, we can express the contract of a division
function, which would say “… the divisor shall not be zero …”, by the type int→ {𝑥∶int ∣
𝑥 ≠ 0} → int. In addition to the refinement types, manifest contract systems are often
equipped with dependent function types in order to express more detailed contracts. A
dependent function type, written (𝑥∶𝜎) → 𝜏 in this thesis, is a type of a function which
takes one argument of the type 𝜎 and returns a value of the type 𝜏; the distinguished
point from ordinary function types is that 𝜏 can refer to the given argument represented
by 𝑥. Hence, for example, the type of a division function can be made more specific like
(𝑥∶int) → (𝑦∶{𝑥′∶int ∣ 𝑥′ ≠ 0}) → {𝑧∶int ∣ 𝑥 = 𝑧× 𝑦}. (Here, for simplicity, we ignore
the case where division involves a remainder, though it can be taken account into by writing
a more sophisticated predicate.)

As we have discussed, all contracts are dynamically checked by explicit casts of the form
(𝑀 ∶ 𝜎 ⇒ 𝜏); where 𝑀 is a subject, 𝜎 is a source type (namely the type of 𝑀), and 𝜏 is a
target type.1 The type system of a manifest contract system only checks syntactic consistency.
The following code shows various casts required.

1 let x : {x:int|x>0} = ... in
2 let y : {x:int|0<x} = ... in
3 let f (x:{x:int|x>0}) = ... in
4 f (1 : {x:int|x=1} => {x:int|x>0});
5 f (0 : {x:int|x=0} => {x:int|x>0});
6 f (y : {x:int|0<x} => {x:int|x>0});
7 f x

Every cast in line 4 to 6 is required in a manifest contract system since the source types and
target types are syntactically different, while recent static verifier could find the first and
third casts never fail and the second fails. Only the application in line 7 does not require
a cast since the type of x and the type of the parameter of f are syntactically the same. A
cast checks whether the value of𝑀 can have the type 𝜏. If the check fails, the cast throws an
uncatchable exception called blame, which stands for contract violation. So, the system does
not guarantee the absence of contract violations statically, but it guarantees that the result
of successful execution satisfies the predicate of a refinement type in the program’s type.

1Many manifest contract systems put a unique label on each cast to distinguish which cast fails, but we omit
them for simplicity.
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𝜎, 𝜏 ⩴ bool | nat | (𝑥∶𝜎) → 𝜏 | {𝑥∶𝜏 ∣ 𝑀}
𝐿,𝑀,𝑁 ⩴ 𝑥 | True | False | O | succ(𝑀) | pred(𝑀) | iszero(𝑀) |

if 𝐿 then 𝑀 else 𝑁 | 𝑀𝑁 | 𝜆𝑥∶𝜏.𝑀 | 𝜇𝑓∶𝜏.𝑀 | (𝑀 ∶ 𝜎 ⇒ 𝜏) |
⟪𝑀 ? {𝑥∶𝜏 ∣ 𝑁}⟫ | ⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫ | blame

𝑛 ⩴ O | succ(𝑛)
𝑈, 𝑉 ⩴ True | False | 𝑛 | 𝜆𝑥∶𝜏.𝑀

ℰ ⩴ succ(▫) | pred(▫) | iszero(▫) | if ▫then𝑀else𝑁 | ▫𝑀 |
𝑉 ▫ | ( ▫ ∶ 𝜎 ⇒ 𝜏) | ⟪ ▫ ? {𝑥∶𝜏 ∣ 𝑀}⟫ | ⟪ ▫ ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}⟫

Γ ⩴ ∅ | Γ, 𝑥∶𝜏

Figure 2.1: Syntax of PCFH

This property follows from subject reduction and a property called value inversion [54]—if
a value 𝑉 has a type {𝑥∶𝜏 ∣ 𝑀}, then the expression obtained by substituting 𝑉 for 𝑥 in 𝑀 is
always evaluated into True.

In this chapter, we demonstrate a typical manifest contract system as PCFH by simplifying
and reforming an existing manifest contract system 𝜆𝐻dt [54]. Passing through this chapter,
we will see how run-time checking is done in a manifest contract system and what kind of
properties are considered for a manifest contract system.

2.1 Language

PCFH is a simple manifest contract system for PCF [47], a simply typed lambda calculus with
Boolean, natural numbers, and a fix-point operator. Types are extended with refinement
types and dependent function types, and expressions are extended with casts and run-time
expressions used for run-time checking—those are considered as minimal extensions to
implement a manifest contract system.

2.1.1 Syntax

The syntax of PCFH is shown in Figure 2.1. Meta-variables 𝑥, 𝑦, 𝑧, 𝑓, 𝑔 range over term vari-
ables, 𝜎, 𝜏 range over types, 𝐿,𝑀,𝑁 range over expressions, 𝑛 ranges over numeral values,𝑈,𝑉
range over values, ℰ ranges over evaluation contexts, and Γ ranges over typing environments.
We also use meta-variables primed and/or indexed by number, e.g., 𝑥′, 𝜏1, etc.

Types consist of ground types bool and nat, types for Boolean and natural numbers,
respectively; dependent function types (𝑥∶𝜎) → 𝜏, in which 𝑥 is bound in 𝜏; and refinement
types {𝑥∶𝜏 ∣ 𝑀}, in which 𝑥 is bound in𝑀.

Expressions consist of usual PCF expressions, namely truth values True and False,
the numeral constant O, the successor function succ(𝑀) which returns the next nu-
meral of 𝑀, the predecessor function pred(𝑀) which returns the previous numeral of
𝑀, Boolean predicate iszero(𝑀) which checks if the value of𝑀 is zero or not, if expres-
sion if 𝐿 then 𝑀 else 𝑁, function applications𝑀𝑁, functions 𝜆𝑥∶𝜏.𝑀, and fix-point
operator 𝜇𝑓∶𝜏.𝑀; casts (𝑀 ∶ 𝜎 ⇒ 𝜏), which cast the subject𝑀 of the source type 𝜎 into the
target type 𝜏; waiting checks ⟪𝑀 ? {𝑥∶𝜏 ∣ 𝑁}⟫, which wait the run-time check of the subject
𝑀 against the predicate 𝑁 until𝑀 becomes a value; active checks ⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫,
which express an intermediate state of a predicate evaluation (𝑀 holds an intermediate
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state of an actual evaluation of the predicate 𝑁 for the subject 𝑉); and blame blame, which
denotes a contract violation. The last three are called run-time expressions—those occur
during run-time and not source code. Note that we omit labels which indicate which cast
has failed, leaving blame assignment [62].

Values are as usual: Boolean values True,False; numerals 𝑛; and functions 𝜆𝑥∶𝜏.𝑀.
Note that natural numbers usually denoted by the numerals in a PCF system as follows.

𝑛 ≝ succ(…succ(⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑛

O ) …)

An evaluation context is an expression with a single hole and used to indicate which
sub-expression is evaluated. We write ℰ[𝑀] for the expression obtained by replacing the
hole in ℰ. Note that, unlike standard formulations, the definition is not recursive; a list
of our evaluation contexts (which are also called evaluation frames in the literature [46])
corresponds to a standard evaluation context.

Typing environments (or just environments) are defined as lists of type bindings 𝑥∶𝜏
because types in an environment can depend on former type bindings of those.

Definition 2.1.1 (Terms). We call the union of types and expressions terms.

Convention 2.1.2. We identify 𝛼-equivalent terms, which only differ in their bound vari-
ables.

Definition 2.1.3 (Free variables). A variable that is not bound is called free variable. The set
of free variables in 𝜏 and𝑀, denoted by fv(𝜏) and fv(𝑀), respectively, is defined in Figure 2.2.

Definition 2.1.4 (Closed terms). A term that has no free variables is called closed.

Definition 2.1.5 (Substitutions). We define capture-avoiding substitution of 𝐿 for 𝑧 in 𝜏 and
𝑀, written 𝜏[𝑧 ≔ 𝐿] and𝑀[𝑧 ≔ 𝐿], respectively, as Figure 2.3; assuming 𝑥 ∉ fv(𝐿), 𝑥 ≠ 𝑧,
and 𝑦 ≠ 𝑧. Thanks to Convention 2.1.2, the assumption can be satisfied for any terms.

Convention 2.1.6. We usually omit the empty environment if there is no ambiguity. We
abuse commas for concatenation of environments, i.e., Γ1, Γ2. We denote a singleton environ-
ment by just a type binding, i.e., 𝑥∶𝜏.

Definition 2.1.7 (Domain of typing environment). The domain of Γ, denoted by dom(Γ), is
defined as follows.

dom(∅) = ∅
dom(Γ, 𝑥∶𝜏) = dom(Γ) ∪ {𝑥}

Definition 2.1.8 (Substitution for typing environment). Capture-avoiding substitutions lift
for a typing environment as follows.

∅[𝑧 ≔ 𝐿] = ∅
(Γ, 𝑥∶𝜏)[𝑧 ≔ 𝐿] = Γ[𝑧 ≔ 𝐿], 𝑥∶𝜏[𝑧 ≔ 𝐿]
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2 Manifest Contract System

fv(bool) = ∅
fv(nat) = ∅

fv((𝑥∶𝜎) → 𝜏) = fv(𝜎) ∪ (fv(𝜏) ⧵ {𝑥})
fv({𝑥∶𝜏 ∣ 𝑀}) = fv(𝜏) ∪ (fv(𝑀) ⧵ {𝑥})

fv(𝑥) = {𝑥}
fv(True) = ∅

fv(False) = ∅
fv(O) = ∅

fv(succ(𝑀)) = fv(𝑀)
fv(pred(𝑀)) = fv(𝑀)

fv(iszero(𝑀)) = fv(𝑀)
fv(if 𝐿 then 𝑀 else 𝑁) = fv(𝐿) ∪ fv(𝑀) ∪ fv(𝑁)

fv(𝑀𝑁) = fv(𝑀) ∪ fv(𝑁)
fv(𝜆𝑥∶𝜏.𝑀) = fv(𝜏) ∪ (fv(𝑀) ⧵ {𝑥})
fv(𝜇𝑓∶𝜏.𝑀) = fv(𝜏) ∪ (fv(𝑀) ⧵ {𝑓})

fv((𝑀 ∶ 𝜎 ⇒ 𝜏)) = fv(𝑀) ∪ fv(𝜎) ∪ fv(𝜏)
fv(⟪𝑀 ? {𝑥∶𝜏 ∣ 𝑁}⟫) = fv(𝑀) ∪ fv({𝑥∶𝜏 ∣ 𝑁})

fv(⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫) = fv(𝑀) ∪ fv(𝑉) ∪ fv({𝑥∶𝜏 ∣ 𝑁})
fv(blame) = ∅

Figure 2.2: Free variables of PCFH terms
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bool[𝑧 ≔ 𝐿] = bool
nat[𝑧 ≔ 𝐿] = nat

((𝑥∶𝜎) → 𝜏)[𝑧 ≔ 𝐿] = (𝑥∶𝜎[𝑧 ≔ 𝐿]) → 𝜏[𝑧 ≔ 𝐿]
{𝑥∶𝜏 ∣ 𝑀}[𝑧 ≔ 𝐿] = {𝑥∶𝜏[𝑧 ≔ 𝐿] ∣ 𝑀[𝑧 ≔ 𝐿]}

𝑦[𝑧 ≔ 𝐿] = 𝑦
𝑧[𝑧 ≔ 𝐿] = 𝐿

True[𝑧 ≔ 𝐿] = True
False[𝑧 ≔ 𝐿] = False

O[𝑧 ≔ 𝐿] = O
succ(𝑀)[𝑧 ≔ 𝐿] = succ(𝑀[𝑧 ≔ 𝐿])
pred(𝑀)[𝑧 ≔ 𝐿] = pred(𝑀[𝑧 ≔ 𝐿])

iszero(𝑀)[𝑧 ≔ 𝐿] = iszero(𝑀[𝑧 ≔ 𝐿])
(if 𝑀 then 𝑁1 else 𝑁2)[𝑧 ≔ 𝐿] = if 𝑀[𝑧 ≔ 𝐿] then 𝑁1[𝑧 ≔ 𝐿] else 𝑁2[𝑧 ≔ 𝐿]

(𝑀𝑁)[𝑧 ≔ 𝐿] = (𝑀[𝑧 ≔ 𝐿]) (𝑁[𝑧 ≔ 𝐿])
(𝜆𝑥∶𝜏.𝑀)[𝑧 ≔ 𝐿] = 𝜆𝑥∶𝜏[𝑧 ≔ 𝐿].𝑀[𝑧 ≔ 𝐿]
(𝜇𝑥∶𝜏.𝑀)[𝑧 ≔ 𝐿] = 𝜇𝑥∶𝜏[𝑧 ≔ 𝐿].𝑀[𝑧 ≔ 𝐿]

(𝑀 ∶ 𝜎 ⇒ 𝜏)[𝑧 ≔ 𝐿] = (𝑀[𝑧 ≔ 𝐿] ∶ 𝜎[𝑧 ≔ 𝐿] ⇒ 𝜏[𝑧 ≔ 𝐿])
⟪𝑀 ? {𝑥∶𝜏 ∣ 𝑁}⟫[𝑧 ≔ 𝐿] = ⟪𝑀[𝑧 ≔ 𝐿] ? {𝑥∶𝜏[𝑧 ≔ 𝐿] ∣ 𝑁[𝑧 ≔ 𝐿]}⟫

⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫[𝑧 ≔ 𝐿] = ⟪𝑀[𝑧 ≔ 𝐿]⟹ 𝑉[𝑧 ≔ 𝐿] ∶ {𝑥∶𝜏[𝑧 ≔ 𝐿] ∣ 𝑁[𝑧 ≔ 𝐿]}⟫
blame[𝑧 ≔ 𝐿] = blame

Figure 2.3: Capture-avoiding substitution for PCFH terms
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pred(succ(𝑛))⟶ 𝑛
(R-Pred)

iszero(O)⟶ True
(R-IsZeroT)

iszero(succ(𝑛))⟶ False
(R-IsZeroF)

if True then 𝑀 else 𝑁 ⟶𝑀
(R-IfT)

if False then 𝑀 else 𝑁 ⟶𝑁
(R-IfF)

(𝜆𝑥∶𝜏.𝑀)𝑉 ⟶𝑀[𝑥 ≔ 𝑉]
(R-Beta)

𝜇𝑓∶𝜎.𝜆𝑥∶𝜏.𝑀 ⟶ (𝜆𝑥∶𝜏.𝑀)[𝑓 ≔ 𝜇𝑓∶𝜎.𝜆𝑥∶𝜏.𝑀]
(R-Fix)

(𝑉 ∶ bool ⇒ bool)⟶ 𝑉
(R-CBool)

(𝑉 ∶ nat ⇒ nat)⟶ 𝑉
(R-CNat)

(𝑥 ≠ 𝑦)
(𝑉 ∶ (𝑥∶𝜎1) → 𝜎2 ⇒ (𝑦∶𝜏1) → 𝜏2)⟶ 𝜆𝑦∶𝜏1.(𝜆𝑥∶𝜎1.(𝑉 𝑥 ∶ 𝜎2 ⇒ 𝜏2)) (𝑦 ∶ 𝜏1 ⇒ 𝜎1)

(R-CArrow)

(𝑉 ∶ {𝑥∶𝜎 ∣ 𝑀} ⇒ 𝜏)⟶ (𝑉 ∶ 𝜎 ⇒ 𝜏)
(R-CForget)

(𝜎 ≠ {𝑥′∶𝜎′ ∣ 𝑀′})
(𝑉 ∶ 𝜎 ⇒ {𝑥∶𝜏 ∣ 𝑀})⟶ ⟪(𝑉 ∶ 𝜎 ⇒ 𝜏) ? {𝑥∶𝜏 ∣ 𝑀}⟫

(R-CWait)

⟪𝑉 ? {𝑥∶𝜏 ∣ 𝑀}⟫⟶ ⟪𝑀[𝑥 ≔ 𝑉]⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}⟫
(R-CActive)

⟪True⟹𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}⟫⟶ 𝑉
(R-CSucceed)

⟪False⟹𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}⟫⟶ blame
(R-CFail)

𝑀 ⟶𝑁
ℰ[𝑀]⟶ ℰ[𝑁]

(R-Ctx)

ℰ[blame]⟶ blame
(R-Exit)

Figure 2.4: Operational semantics of PCFH
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2.1.2 Semantics

The semantics of PCFH is defined as small-step reduction relation between closed expressions
𝑀 and 𝑁, written𝑀 ⟶𝑁 and read “𝑀 steps into 𝑁 in one step”, defined by the inference
rules in Figure 2.4. Each rule consists of premises above the bar and conclusion below the
bar, and says if the premises hold the conclusion holds. So, for example, the first rule (R-Pred),
defines that pred(succ(𝑛)) unconditionally (since the rule has no premises) steps into 𝑛
in one step. The rules are split into three categories: PCF evaluation; run-time checking; and
contextural evaluation.

PCF evaluation consists of the first seven rules. Most rules are standard, but there are
two notes. One is that PCFH does not have a reduction rule for pred(O); while an usual
PCF-like system has a reduction rule, e.g., pred(O) ⟶ O. PCFH can deal with such a
partial function by refinement types, ensuring a well-typed expression does not reach such
an expression. (As we can see from the type system, applying pred to a natural number
requires a nonzero check in terms of a cast, which may result in blame.) Another is that the
body of a fixpoint operator is restricted to a lambda abstraction.

Run-time checking consists of the next eight rules. A dynamic checking starts from pealing
the refinements of the source type by (R-CForget) if exists because those are useless2 for
run-time checking. Note that (R-CWait) cannot apply until the pealing has finished because
of its side-condition (and therefore the semantics becomes deterministic). Next, we can use
one of four rules (R-CBool), (R-CNat), (R-CArrow), and (R-CWait). By the first two rules,
a cast between the same ground types is just removed. The third rule is for a higher-order
contract checking, which wraps a function being cast with monitors (casts) for input and
output. The side-condition exists so that lambda abstractions after the reduction do not
capture unintended variables3—e.g., the inner abstraction 𝜆𝑥∶𝜎1. …will capture 𝑦 in 𝜏2, which
must be captured by the outer abstraction. The last rule does an actual evaluation of the
predicate of the target type; but before the evaluation, it is checked if the subject can have
the underlying type of the target refinement type since 𝜏 could be a refinement type in
general. After the nested check has (successfully) finished, expression goes into a predicate
evaluation state by (R-CActive); and as a result of the predicate evaluation, verified value is
obtained by (R-CSucceed) if the predicate is satisfied or a contract violation is reported by
(R-CFail) otherwise.4 Note that the refinement type annotated in an active check is not used
for run-time checking at all; it is just an annotation and technically used for showing meta
properties.

The rest of the rules (R-Ctx) and (R-Exit) are for sub-expression evaluation and non-local
exit of blame, respectively. Taking ℰ = ▫𝑁 for instance, (R-Ctx) says the function part of
an application is evaluated, namely 𝑀𝑁 ⟶ 𝑀′𝑁. Taking ℰ = 𝑉▫ for another instance,
𝑉𝑀 ⟶ 𝑉𝑀′. These two instances show that the evaluation contexts specify the order of
evaluation between sub-expressions of an application—the function part is evaluated first
and the argument part is never evaluated until the function part becomes a value.

Definition 2.1.9 (Multi-step reduction). Multi-step reduction, written𝑀 ⟶∗ 𝑁, is defined
as the reflexive and transitive closure of⟶.

2Honestly speaking, it depends on what kinds of contracts can be written by the predicate whether refinements
are useless of not.

3This condition suffice since the reduction is defined for closed expressions, i.e., there are no free variables
other than 𝑥 and 𝑦.

4Actually, there is a third situation: the predicate evaluation does not terminate.
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2 Manifest Contract System

Example 2.1.10. The following two reduction sequences show how a cast for a first-order
value is evaluated. Note that we use several expressions that are not given by the syntax,
e.g., 𝑥 > 0 etc., but everything can be represented by the formal ones.

(1 ∶ {𝑥∶nat ∣ 𝑥 = 1} ⇒ {𝑥∶nat ∣ 𝑥 > 0})
⟶ (1 ∶ nat ⇒ {𝑥∶nat ∣ 𝑥 > 0}) by (R-CForget)
⟶⟪(1 ∶ nat ⇒ nat) ? {𝑥∶nat ∣ 𝑥 > 0}⟫ by (R-CWait)
⟶⟪1 ? {𝑥∶nat ∣ 𝑥 > 0}⟫ by (R-Ctx) and (R-CNat)
⟶⟪1 > 0⟹ 1 ∶ {𝑥∶nat ∣ 𝑥 > 0}⟫ by (R-CActive)
⟶∗ ⟪True⟹1 ∶ {𝑥∶nat ∣ 𝑥 > 0}⟫ by (R-Ctx) and PCF evaluation rules
⟶1 by (R-CSucceed)

(1 ∶ {𝑥∶nat ∣ 𝑥 = 1} ⇒ {𝑥∶nat ∣ 𝑥 = 0})
⟶∗ ⟪False⟹1 ∶ {𝑥∶nat ∣ 𝑥 = 0}⟫ Similar to the successful evaluation above
⟶ blame by (R-CFail)

Example 2.1.11. The following shows what happens for a higher-order contract checking.

(𝜆𝑥∶nat.𝑥 ∶ (𝑥∶nat) → nat ⇒ (𝑦∶nat) → {𝑧∶nat ∣ 𝑧 > 𝑦})
⟶ 𝜆𝑦∶nat.(𝜆𝑥∶nat.(𝜆𝑥∶nat.𝑥) 𝑥 ∶ nat ⇒ {𝑧∶nat ∣ 𝑧 > 𝑦}) (𝑦 ∶ nat ⇒ nat)

by (R-CArrow)

The obtained expression is a value; and no more evaluation happens, that means no blame
occurs even though the identity function ideally cannot satisfy the contracts represented by
the target type. The violation is detected when an actual argument is given as follows.

(𝜆𝑦∶nat.(𝜆𝑥∶nat.(𝜆𝑥∶nat.𝑥) 𝑥 ∶ nat ⇒ {𝑧∶nat ∣ 𝑧 > 𝑦}) (𝑦 ∶ nat ⇒ nat)) 0
⟶∗ (0 ∶ nat ⇒ {𝑧∶nat ∣ 𝑧 > 0})
⟶∗ ⟪0 > 0⟹ 0 ∶ {𝑧∶nat ∣ 𝑧 > 0}⟫
⟶∗ blame

2.1.3 Type System

The type system of PCFH consists of type compatibility relation, denoted by 𝜎 ≃ 𝜏 and
read “𝜎 and 𝜏 are compatible”; type equivalence relation, denoted by 𝜎 ≡ 𝜏 and read “𝜎
and 𝜏 are equivalent”; well-formedness relations for types, denoted by Γ ⊩ 𝜏 and read “𝜏 is
well-formed under Γ”, (and environments, denoted by Γ ok and read “Γ is well-formed”; and
typing relations for expressions, denoted by Γ ⊢ 𝑀 ∶ 𝜏 and read “𝑀 has 𝜏 under Γ”.

Type Compatibility

The type compatibility relation is defined by the rules in Figure 2.5. The relation defines
types from and into which an expression can be cast, i.e., the source type and target type
of a cast must be compatible. Intuitively, two types are compatible if and only if the types
refine the same simple type. This expresses that a cast checks only contracts at run-time,
and a cast which completely alternates the type of expression, e.g., (𝑀 ∶ bool ⇒ nat), is
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2.1 Language

bool ≃ bool
(C-Bool)

nat ≃ nat
(C-Nat)

𝜎1 ≃ 𝜏1 𝜎2 ≃ 𝜏2
(𝑥∶𝜎1) → 𝜎2 ≃ (𝑥∶𝜏1) → 𝜏2

(C-Arrow)

𝜎 ≃ 𝜏
{𝑥∶𝜎 ∣ 𝑀} ≃ 𝜏

(C-RefineL)

𝜎 ≃ 𝜏
𝜎 ≃ {𝑥∶𝜏 ∣ 𝑀}

(C-RefineR)

Figure 2.5: Type compatibility of PCFH

bool ≡ bool
(E-Bool)

nat ≡ nat
(E-Nat)

𝜎1 ≡ 𝜎2 𝜏1 ≡ 𝜏2
(𝑥∶𝜎1) → 𝜎2 ≡ (𝑥∶𝜏1) → 𝜏2

(E-Arrow)

𝜎 ≡ 𝜏 𝑁 ⟶ 𝑁′

{𝑥∶𝜎 ∣ 𝑀[𝑧 ≔ 𝑁]} ≡ {𝑥∶𝜏 ∣ 𝑀[𝑧 ≔ 𝑁′]}
(E-RefineLR)

𝜎 ≡ 𝜏 𝑁 ⟶ 𝑁′

{𝑥∶𝜎 ∣ 𝑀[𝑧 ≔ 𝑁′]} ≡ {𝑥∶𝜏 ∣ 𝑀[𝑧 ≔ 𝑁]}
(E-RefineRL)

𝜏1 ≡ 𝜏2 𝜏2 ≡ 𝜏3
𝜏1 ≡ 𝜏3

(E-Trans)

Figure 2.6: Type equivalence of PCFH

rejected at compile-time. Consequently, the number of expressions that can be typed in a
manifest contract system is not beyond the one in a simple type system even if we try to
abuse casts. In other words, a manifest contract system just extends an existing type system
with a software contract system.

Type Equivalence

A dependent type system usually has a type equivalence relation to regard syntactically
different types as the same type—called implicit type conversion, e.g., {𝑥∶nat ∣ 𝑥 = 1 + 1}
and {𝑥∶nat ∣ 𝑥 = 2} are regarded as the same type when an expression is typed. The type
equivalence relation of PCFH is defined by the rules in Figure 2.6. Remembering the reduction
relation is defined for closed expressions, the type equivalence relation of PCFH is weaker than
an usual one which is based on full-reduction of expressions, where expressions involving free
variables are also evaluated. However, it suffices because type conversion is done explicitly
by casts in PCFH, and the type equivalence relation is only used to show type soundness. So,
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∅ ok
(W-Empty)

Γ ok Γ ⊩ 𝜏 (𝑥 ∉ dom(Γ))
Γ, 𝑥∶𝜏 ok

(W-Push)

Γ ok
Γ ⊩ bool

(W-Bool)

Γ ok
Γ ⊩ nat

(W-Nat)

Γ, 𝑥∶𝜎 ⊩ 𝜏
Γ ⊩ (𝑥∶𝜎) → 𝜏

(W-Arrow)

Γ, 𝑥∶𝜏 ⊢ 𝑀 ∶ bool
Γ ⊩ {𝑥∶𝜏 ∣ 𝑀}

(W-Refine)

Figure 2.7: Type system of PCFH (1): well-formedness rules

it is not necessary that the equivalence relation relates many types for programmers; but it
suffices that the equivalence relation only relates enough types to show type soundness—
for instance, one important condition required is that 𝜏[𝑥 ≔ 𝑁] ≡ 𝜏[𝑥 ≔ 𝑁′] holds for
𝑁 ⟶𝑁′.

Well-formed Types and Environments

The well-formedness relation is defined by the rules in Figure 2.7.5 Type well-formedness
checks if the predicate of a refinement type has the Boolean type. Environment well-
formedness checks if all types in an environment are well-formed. Note that well-formedness
of 𝜎 of (𝑥∶𝜎) → 𝜏 and 𝜏 of {𝑥∶𝜏 ∣ 𝑀} does not checked explicitly at (W-Arrow) and
(W-Refine), respectively; but the well-formedness is checked as a part of environment
well-formedness in a leaf of a derivation.

Typing Relation

The typing relation is defined by the rules in Figure 2.8 and Figure 2.9. Each defines compile-
time typing, which is used for type checking of source code, and run-time typing, which exists
for showing meta properties, respectively. This distinction makes type checking of PCFH
decidable since all undecidable side-conditions (caused by the fixpoint operator, which makes
an infinite-reduction possible) are dispelled into run-time typing. This distinction is started
by Belo et al. [1] so that type checking of source code does not rely on operational semantics,
which simplifies the discussion of meta properties; but, as a drawback, some source code,
e.g., (𝜆𝑥∶{𝑥∶nat ∣ 1 + 1 = 2}.𝑥) (0 ∶ nat ⇒ {𝑥∶nat ∣ 2 = 2}), is rejected at compile-time;
while hybrid type checking [19] could accept.

Compile-time typing rules are almost straightforward—True and False have bool
under an arbitrary well-formed environment; if 𝐿 then 𝑀 else 𝑁 has 𝜏 when 𝐿 has

5Actually, well-formedness relation is defined by using typing relation, and vice versa. So, Figure 2.7, Figure 2.8,
and Figure 2.9 are one definition which is mutually defined.
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2.1 Language

Γ ok (𝑥∶𝜏 ∈ Γ)
Γ ⊢ 𝑥 ∶ 𝜏

(T-Var)

Γ ok
Γ ⊢ True ∶ bool

(T-True)

Γ ok
Γ ⊢ False ∶ bool

(T-False)

Γ ok
Γ ⊢ O ∶ nat

(T-Zero)

Γ ⊢ 𝑀 ∶ nat
Γ ⊢ succ(𝑀) ∶ nat

(T-Succ)

Γ ⊢ 𝑀 ∶ {𝑥∶nat ∣ if iszero(𝑥) then False else True}
Γ ⊢ pred(𝑀) ∶ nat

(T-Pred)

Γ ⊢ 𝑀 ∶ nat
Γ ⊢ iszero(𝑀) ∶ bool

(T-IsZero)

Γ ⊢ 𝐿 ∶ bool Γ ⊢ 𝑀 ∶ 𝜏 Γ ⊢ 𝑁 ∶ 𝜏
Γ ⊢ if 𝐿 then 𝑀 else 𝑁 ∶ 𝜏

(T-If)

Γ ⊢ 𝑀 ∶ (𝑥∶𝜎) → 𝜏 Γ ⊢ 𝑁 ∶ 𝜎
Γ ⊢ 𝑀𝑁 ∶ 𝜏[𝑥 ≔ 𝑁]

(T-App)

Γ, 𝑥∶𝜎 ⊢ 𝑀 ∶ 𝜏
Γ ⊢ 𝜆𝑥∶𝜎.𝑀 ∶ (𝑥∶𝜎) → 𝜏

(T-Abs)

Γ, 𝑓∶(𝑥∶𝜎) → 𝜏 ⊢ 𝜆𝑥∶𝜎.𝑀 ∶ (𝑥∶𝜎) → 𝜏
Γ ⊢ 𝜇𝑓∶(𝑥∶𝜎) → 𝜏.𝜆𝑥∶𝜎.𝑀 ∶ (𝑥∶𝜎) → 𝜏

(T-Fix)

Γ ⊢ 𝑀 ∶ 𝜎 Γ ⊩ 𝜏 𝜎 ≃ 𝜏
Γ ⊢ (𝑀 ∶ 𝜎 ⇒ 𝜏) ∶ 𝜏

(T-Cast)

Figure 2.8: Type system of PCFH (2): compile-time typing rules
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Γ ok ⊢ 𝑀 ∶ 𝜏 ⊩ {𝑥∶𝜏 ∣ 𝑁}
Γ ⊢ ⟪𝑀 ? {𝑥∶𝜏 ∣ 𝑁}⟫ ∶ {𝑥∶𝜏 ∣ 𝑁}

(T-Waiting)

Γ ok ⊢ 𝑀 ∶ bool ⊢ 𝑉 ∶ 𝜏 ⊩ {𝑥∶𝜏 ∣ 𝑁} (𝑁[𝑥 ≔ 𝑉]⟶∗ 𝑀)
Γ ⊢ ⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫ ∶ {𝑥∶𝜏 ∣ 𝑁}

(T-Active)
Γ ok ⊩ 𝜏
Γ ⊢ blame ∶ 𝜏

(T-Blame)

Γ ok ⊢ 𝑀 ∶ 𝜎 ⊩ 𝜏 𝜎 ≡ 𝜏
Γ ⊢ 𝑀 ∶ 𝜏

(T-Conv)

Γ ok ⊢ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}
Γ ⊢ 𝑉 ∶ 𝜏

(T-Forget)

Γ ok ⊢ 𝑉 ∶ 𝜏 ⊩ {𝑥∶𝜏 ∣ 𝑁} (𝑁[𝑥 ≔ 𝑉]⟶∗ True)
Γ ⊢ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}

(T-Exact)

Figure 2.9: Type system of PCFH (3): run-time typing rules

bool and both 𝑀 has 𝜏; etc. The three rules (T-Pred), (T-App), and (T-Cast) are worth
explanation. (T-Pred) claims that 𝑀 of pred(𝑀) must not become O by the refinement
type of the premise, which represents the non-zero natural numbers. This is the main reason
that a well-typed expression does not stuck without a reduction rule for pred(O) in PCFH.
(T-App) is a standard rule for function applications in a dependently typed system. The
substitution in the conclusion expresses that the return type of a function depends on an
actual argument. (T-Cast) just checks if the subject has the source type; the target type is
well-formed;6 and the source and the target types are compatible. Therefore, no contract
checking happens at compile-time, i.e., (0 ∶ nat ⇒ {𝑥∶nat ∣ 𝑥 ≠ 0}) is accepted by a type
checker (and a contract violation will be reported at run-time).

Run-time typing rules are rather specific to a manifest contract system. The first three
rules are for run-time expressions. (T-Waiting) just checks if 𝑀 has 𝜏 (and {𝑥∶𝜏 ∣ 𝑁} is
well-formed) since a waiting check represents a state in which a validation of the predicate
𝑁 against𝑀 of 𝜏 waits until𝑀 becomes a value. For (T-Active), the first four premises are
straightforward, remembering 𝑀 is a predicate being evaluated and 𝑉 is the subject. An
important premise is the last one, which guarantees that𝑀 is actually an intermediate state
of the predicate validation. (T-Blame) is used to give an arbitrary type to blame because
any well-typed expression might go to blame by a run-time checking failure. The last three
rules exist for showing the subject reduction property—a type of an expression is preserved by
a reduction. (T-Conv) is used when the reduction happens by (R-Ctx) with the context 𝑉▫;
which will change the type from 𝜏[𝑥 ≔ 𝑁] into 𝜏[𝑥 ≔ 𝑁′], where 𝑁 ⟶ 𝑁′. We recover
the original type by using the type equivalence relation—this is why 𝜏[𝑥 ≔ 𝑁] ≡ 𝜏[𝑥 ≔ 𝑁′]
for 𝑁 ⟶ 𝑁′ is an important condition for the type equivalence relation. (T-Forget) is
used when the reduction happens by (R-CForget). (T-Exact) is used when the reduction
happens by (R-CSucceed), where the expression before the reduction is typed by (T-Active)

6Well-formedness of the source type is obtained by the fact that the subject has the source type.

22



2.2 Properties

under the condition𝑀 = True.
Someone might wonder if the empty typing context suffices for the conclusion of run-time

typing rules since those are only used for run-time expressions, i.e., closed expressions.
However, the generalization is required for showing meta properties.

2.2 Properties

We introduce the desirable properties for manifest contract systems. Here, we just show
statements of properties. Concrete properties and proofs will be seen in the following
chapters.

First of all, as a typed system, the following well-known properties, a.k.a. type soundness,
should hold.

Proposition 2.2.1 (Subject reduction). If ⊢ 𝑀 ∶ 𝜏 and𝑀 ⟶𝑁, then ⊢ 𝑁 ∶ 𝜏.

Proposition 2.2.2 (Progress). If ⊢ 𝑀 ∶ 𝜏, then𝑀 is a value; blame; or𝑀 ⟶𝑁 for some
𝑁.

The characteristic property is the following, which shows a type system guarantees no
necessary casts are omitted.

Proposition 2.2.3 (Value inversion). If ⊢ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}, then𝑀[𝑥 ≔ 𝑉]⟶∗ True.

Remark 2.2.4. One might think that the statement above is too strong since the predicate
will not terminate in general. However, observing the compile-time typing rules, we can see
that a refinement type cannot give directly to source code, e.g, ⊢ O ∶ {𝑥∶nat ∣ 𝑥 = O}. We
always enclose an expression by a cast if we want to give a refinement type. This is the way
to establish the value inversion property. If a predicate diverges, computation diverges at
the run-time checking by a mandatory cast; a program never reaches a value; and thus, it is
out of scope of the value inversion property.

Summarizing the properties, type safety of a manifest contract system becomes as follows.

Proposition 2.2.5 (Type safety). If ⊢ 𝑀 ∶ 𝜏,

• 𝑀 is evaluated into a value 𝑉, namely𝑀 ⟶∗ 𝑉;

• run-time checking fails, namely𝑀 ⟶∗ blame; or

• an evaluation diverges.

Especially, in the first case and 𝜏 is a refinement type {𝑥∶𝜏′ ∣ 𝑁}, 𝑉 satisfies 𝑁, namely
𝑁[𝑥 ≔ 𝑉]⟶∗ True.

2.3 Summary

We have introduced a simple manifest contract system PCFH, which is just a manifest contract
system extension of PCF. As we have seen, in a manifest contract system, contracts are written
in types and checked at run-time by casts. The type system of a manifest contract system
never examines contracts at compile-time but guarantees no necessary casts lack by checking
syntactic consistency. The guarantee is formally stated as a value inversion property, a
characteristic property of manifest contract systems.
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3 Manifest Contracts with Intersection
Types

In this chapter, we develop a formal calculus PCFvΔH, a manifest contract system with
intersection types. The goal of this chapter is to prove its desirable properties: preservation,
progress, value inversion; and one that guarantees that the existence of dynamic checking
does not change the “essence” of computation.

There are several tasks in constructing a manifest contract system, but a specific challenge
for PCFvΔH arises from the fact—manifest contract systems are intended as an intermediate
language for hybrid type checking. Firstly, consider the following definition with a parity
contract in a surface language.

let 𝑠𝑢𝑐𝑐′∶odd→ even = 𝜆𝑥.succ(𝑥).

As we have already known, casts are required in a manifest contract system as follows.

let 𝑠𝑢𝑐𝑐′∶odd→ even = 𝜆𝑥∶odd.(succ((𝑥 ∶ odd ⇒ nat)) ∶ nat ⇒ even).

A problem arises when we consider the following definition equipped with a more compli-
cated parity contract.

let 𝑠𝑢𝑐𝑐′∶(odd→ even) ∧ (even→ odd) = 𝜆𝑥.succ(𝑥).

The problem is that we need to insert different casts into code according to how the code
is typed; and one piece of code might be typed in several essentially different ways in an
intersection type system since it is a polymorphic type system. For instance, in the example
above, 𝜆𝑥∶odd.(succ((𝑥 ∶ odd ⇒ nat)) ∶ nat ⇒ even) is obtained by cast insertion
if the function is typed as odd→ even; while 𝜆𝑥∶even.(succ((𝑥 ∶ even ⇒ nat)) ∶
nat ⇒ odd) is obtained when the body is typed as even→ odd. However, the function
must have both types to have the intersection type. It may seem sufficient to just cast the body
itself, that is, ((𝜆𝑥∶nat.succ(𝑥)) ∶ nat→ nat ⇒ (odd→ even) ∧ (even→ odd)).
However, this just shelves the problem: Intuitively, to check if the subject has the target
intersection type, we need to check if the subject has both types in the conjunction. This
brings us back to the same original question.

We build PCFvΔH on top of the Δ-calculus, a Church-style intersection type system by
Liquori and Stolze [34]. In the Δ-calculus, a canonical expression of an intersection type
is a strong pair, whose elements are the same expressions except for type annotations. To
address the challenge above, we relax strong pairs so that expressions in a pair are the same
except for type annotations and casts, which are a construct for run-time checking.

We give a formal definition of PCFvΔH and show its basic properties as a manifest contract
system: preservation, progress, and value inversion. Furthermore, we show that run-time
checking does not affect essential computation.
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3 Manifest Contracts with Intersection Types

Contributions.

• we design a manifest contracts calculus with refinement intersection types [57, 66], a
restricted form of intersection types.

• we formalize the calculus PCFvΔH; and

• we state and prove type soundness, value inversion, and dynamic soundness.

Disclaimer.

To concentrate on the PCFvΔH-specific problems, we put the following restrictions for
PCFvΔH compared to a system one would imagine from the phrase “a manifest contract
system with intersection types”.

• PCFvΔH does not support dependent function types. As we will see, PCFvΔH uses
nondeterminism for dynamic checking. The combination of dependent function types
and nondeterminism poses a considerable challenge dealt by the next chapter.

• We use refinement intersection types rather than general ones. Roughly speaking, 𝜎 ∧ 𝜏
is a refinement intersection type if both 𝜎 and 𝜏 refine the same type. So, for example,
(even→ even) ∧ (odd→ odd) is a refinement intersection types since types of
both sides refine the same type nat → nat, while (nat → nat) ∧ (float →
float) is not.

3.1 Overview of Language: PCFvΔH

PCFvΔH is obtained by extending PCFH with intersection types (derived from theΔ-calculus [34]).
As it is soon revealed that the dynamic checking used in PCFvΔH is more complicated than
the one in PCFH, we carefully construct the system and show that any valid PCF program is
also a valid PCFvΔH program; and a PCFvΔH program behaves as same as a call-by-value
PCF. In other words, PCFvΔH is a conservative extension of call-by-value PCF.

3.1.1 The Δ-calculus

To address the challenge discussed in the beginning of this chapter, PCFvΔH is strongly
influenced by the Δ-calculus by Liquori and Stolze [34], an intersection type system à la
Church. Their novel idea is a new form called strong pair, written ⟨𝑀,𝑁⟩. It is a kind of pair
and used as a constructor for expressions of intersection types. So, using the strong pair, for
example, we can write an identity function having type (even→ even) ∧ (odd→ odd)
as follows.

⟨𝜆𝑥∶even.𝑥, 𝜆𝑥∶odd.𝑥⟩

Unlike product types, however, 𝑀 and 𝑁 in a strong pair cannot be arbitrarily chosen. A
strong pair requires that the essence of both expressions in a pair be the same. An essence
≀𝑀≀ of a typed expression 𝑀 is the untyped skeleton of 𝑀. For instance, ≀𝜆𝑥∶𝜏.𝑥≀ = 𝜆𝑥.𝑥.
So, the requirement justifies strong pairs as the introduction of intersection types: that is,
computation represented by the two expressions is the same and so the system still follows a
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3.1 Overview of Language: PCFvΔH

Curry-style intersection type system. Strong pairs just give a way to annotate expressions
with a different type in a different context.

We adapt their idea into PCFvΔH by letting an essence represent the contract-irrelevant
part of an expression, rather than an untyped skeleton. For instance, the essence of
𝜆𝑥∶odd.(succ((𝑥 ∶ odd ⇒ nat)) ∶ nat ⇒ even) is 𝜆𝑥∶nat.succ(𝑥) (the erased
contract-relevant parts are casts and predicates of refinement types). Now, we can (ideally
automatically) compile the 𝑠𝑢𝑐𝑐′ definition in the beginning of this chapter into the following
PCFvΔH expression.

let 𝑠𝑢𝑐𝑐′∶(odd→ even) ∧ (even→ odd) =
⟨𝜆𝑥∶odd.(succ((𝑥 ∶ odd ⇒ nat)) ∶ nat ⇒ even),

𝜆𝑥∶even.(succ((𝑥 ∶ even ⇒ nat)) ∶ nat ⇒ odd)⟩

This strong pair satisfies the condition, that is, both expressions have the same essence.

3.1.2 Cast Semantics for Intersection Types

Having introduced intersection types, we have to extend the semantics of casts so that they
handle contracts written with intersection types. Following Keil and Thiemann [26], who
studied intersection (and union) contract checking in the “latent” style [21] for an untyped
language, we give the semantics of a cast to an intersection type by the following rule:

(𝑉 ∶ 𝜎 ⇒ 𝜏1 ∧ 𝜏2)⟶ ⟨(𝑉 ∶ 𝜎 ⇒ 𝜏1), (𝑉 ∶ 𝜎 ⇒ 𝜏2)⟩

The reduction rule should not be surprising: 𝑉 has to have both 𝜏1 and 𝜏2 and a strong pair
introduces an intersection type 𝜏1 ∧ 𝜏2 from 𝜏1 and 𝜏2. For the original cast to succeed, both
of the split casts have to succeed.

A basic strategy of a cast from an intersection type is expressed by the following two rules.

(𝑉 ∶ 𝜎1 ∧ 𝜎2 ⇒ 𝜏)⟶ (𝜋1(𝑉) ∶ 𝜎1 ⇒ 𝜏)
(𝑉 ∶ 𝜎1 ∧ 𝜎2 ⇒ 𝜏)⟶ (𝜋2(𝑉) ∶ 𝜎2 ⇒ 𝜏)

The cast tests whether a nondeterministically chosen element in a (possibly nested) strong
pair can be cast to 𝜏.

One problem, however, arises when a function type is involved. Consider the following
expression.

(𝜆𝑓∶nat→ nat.𝑓 0 + 𝑓 1)𝑀cast

where

𝑀cast ≝ (𝑉 ∶ (even→ nat) ∧ (odd→ nat) ⇒ nat→ nat).

𝑉 can be used as both even→ nat and odd→ nat. This means 𝑉 can handle arbitrary
natural numbers. Thus, this cast should be valid and evaluation of the expression above
should not fail. However, with the reduction rules presented above, evaluation results in
blame in both branches: the choice is made before calling 𝜆𝑓 ∶ nat→ nat.⋯, the function
being assigned into 𝑓 only can handle either even or odd, leading to failure at either 𝑓 1
or 𝑓 0, respectively.
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3 Manifest Contracts with Intersection Types

𝜎, 𝜏 ⩴ nat | bool | 𝜎 → 𝜏
𝐿,𝑀,𝑁 ⩴ O | succ(𝑀) | pred(𝑀) | iszero(𝑀) | True | False |

if𝐿then𝑀else𝑁 | 𝑥 | 𝑀𝑁 | 𝜆𝑥∶𝜏.𝑀 | 𝜇𝑓∶𝜎1 → 𝜎2.𝜆𝑥∶𝜏.𝑀
𝑛 ⩴ O | succ(𝑛)
𝑉 ⩴ 𝑛 | True | False | 𝜆𝑥∶𝜏.𝑀
ℰ ⩴ succ(▫) | pred(▫) | iszero(▫) | if ▫then𝑀else𝑁 | ▫𝑀 | 𝑉 ▫

Figure 3.1: Syntax of PCFv

To solve the problem, we delay a cast into a function type even when the source type is an
intersection type. In fact,𝑀cast reduces to a wrapped value 𝑉cast below

𝑉cast ≝ ⟪𝑉 ∶ (even→ nat) ∧ (odd→ nat) ⇒ nat→ nat⟫,

similarly to higher-order casts [17]. Then, the delayed cast fires when an actual argument is
given:

(𝜆𝑓∶nat→ nat.𝑓 0 + 𝑓 1)𝑀cast

⟶ (𝜆𝑓∶nat→ nat.𝑓 0 + 𝑓 1) 𝑉cast

⟶ 𝑉cast 0 + 𝑉cast 1
⟶∗ (𝑉 ∶ even→ nat ⇒ nat→ nat) 0 + (𝑉 ∶ odd→ nat ⇒ nat→ nat) 1
⟶∗ 1

3.2 Language: PCFvΔH

In this section, we formally define two languages PCFv and PCFvΔH, an extension of PCFv as
sketched in the last section. PCFv is a call-by-value PCF. We only give operational semantics
and omit its type system and a type soundness proof, because we are only interested in how
its behavior is related to PCFvΔH, the main language of this paper.

3.2.1 PCFv

We defines PCFv as Figure 3.1 and Figure 3.2 for syntax and semantics, respectively; which
corresponds to the PCF part of PCFH.

Definition 3.2.1 (Meta operations for PCFv terms). We define free variables of an expression;
substition; and context application in a similar manner to ones for PCFH.

3.2.2 PCFvΔH

The syntax of PCFvΔH is shown in Figure 3.3. We introduce some more metavariables: 𝐼
ranges over interface types, a subset of types; 𝐵 ranges over recursion bodies, a subset of
expressions; and 𝐶 ranges over commands.

Types are extended with intersection types; the restriction that a well-formed intersection
type is a refinement intersection type is enforced by the type system. An interface type,
which is a single function type or (possibly nested) intersection over function types, is used
for the type annotation for a recursive function.
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pred(O)⟶PCF O
(PCF-PredZ)

pred(succ(𝑛))⟶PCF 𝑛
(PCF-Pred)

iszero(O)⟶PCF True
(PCF-IsZeroT)

iszero(succ(𝑛))⟶PCF False
(PCF-IsZeroF)

ifTruethen𝑀else𝑁 ⟶PCF 𝑀
(PCF-IfT)

ifFalsethen𝑀else𝑁 ⟶PCF 𝑁
(PCF-IfF)

(𝜆𝑥∶𝜏.𝑀)𝑉 ⟶PCF 𝑀[𝑥 ↦ 𝑉]
(PCF-Beta)

𝜇𝑓∶𝜎1 → 𝜎2.𝜆𝑥∶𝜏.𝑀 ⟶PCF (𝜆𝑥∶𝜏.𝑀)[𝑓 ↦ 𝜇𝑓∶𝜎1 → 𝜎2.𝜆𝑥∶𝜏.𝑀]
(PCF-Fix)

𝑀 ⟶PCF 𝑀′

ℰ[𝑀]⟶PCF ℰ[𝑀′]
(PCF-Ctx)

Figure 3.2: Operational semantics of PCFv

𝜎, 𝜏 ⩴ bool | nat | 𝜎 → 𝜏 | {𝑥∶𝜏 ∣ 𝑀} | 𝜎 ∧ 𝜏
𝐼 ⩴ 𝜎 → 𝜏 | 𝐼1 ∧ 𝐼2

𝐿,𝑀,𝑁 ⩴ 𝑥 | True | False | O | succ(𝑀) | pred(𝑀) | iszero(𝑀) |
if𝐿then𝑀else𝑁 | 𝑀𝑁 | 𝜆𝑥∶𝜏.𝑀 | 𝜇𝑓∶𝐼.𝐵 | ⟨𝑀,𝑁⟩ | 𝜋1(𝑀) |
𝜋2(𝑀) | (𝑀 ∶ 𝜎 ⇒ 𝜏) | ⟪𝑉 ∶ 𝜎 ⇒ 𝜏1 → 𝜏2⟫ | ⟪𝑀 ? {𝑥∶𝜏 ∣ 𝑁}⟫ |
⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫

𝐵 ⩴ 𝜆𝑥∶𝜏.𝑀 | ⟨𝐵1, 𝐵2⟩
𝑛 ⩴ O | succ(𝑛)

𝑈, 𝑉 ⩴ True | False | 𝑛 | 𝜆𝑥∶𝜏.𝑀 | ⟨𝑉1, 𝑉2⟩ | ⟪𝑉 ∶ 𝜎 ⇒ 𝜏1 → 𝜏2⟫
𝐶 ⩴ 𝑀 | blame
ℰ ⩴ succ(▫) | pred(▫) | iszero(▫) | if ▫then𝑀else𝑁 | ▫𝑀 |

𝑉 ▫ | (▫ ∶ 𝜎 ⇒ 𝜏) | 𝜋1 (▫) | 𝜋2 (▫) | ⟪▫ ? {𝑥∶𝜏 ∣ 𝑀}⟫
Γ ⩴ ∅ | Γ, 𝑥∶𝜏

Figure 3.3: Syntax of PCFvΔH
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3 Manifest Contracts with Intersection Types

≀nat≀ = nat ≀if𝐿then𝑀else𝑁≀ = if ≀𝐿≀then ≀𝑀≀else ≀𝑁≀
≀bool≀ = bool ≀𝑥≀ = 𝑥
≀𝜎 → 𝜏≀ = ≀𝜎≀ → ≀𝜏≀ ≀𝑀𝑁≀ = ≀𝑀≀ ≀𝑁≀

≀𝜎 ∧ 𝜏≀ = ≀𝜎≀ ≀𝜆𝑥∶𝜏.𝑀≀ = 𝜆𝑥∶≀𝜏≀.≀𝑀≀
≀{𝑥∶𝜏 ∣ 𝑀}≀ = ≀𝜏≀ ≀⟨𝑀,𝑁⟩≀ = ≀𝑀≀

≀O≀ = O ≀𝜋𝑖(𝑀)≀ = ≀𝑀≀
≀succ(𝑀)≀ = succ(≀𝑀≀) ≀𝜇𝑓∶𝐼.𝐵≀ = 𝜇𝑓∶≀𝐼≀.≀𝐵≀
≀pred(𝑀)≀ = pred(≀𝑀≀) ≀(𝑀 ∶ 𝜎 ⇒ 𝜏)≀ = ≀𝑀≀

≀iszero(𝑀)≀ = iszero(≀𝑀≀) ≀⟪𝑉 ∶ 𝜎 ⇒ 𝜏1 → 𝜏2⟫≀ = ≀𝑉≀
≀True≀ = True ≀⟪𝑀 ? {𝑥∶𝜏 ∣ 𝑁}⟫≀ = ≀𝑀≀

≀False≀ = False ≀⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫≀ = ≀𝑉≀

Figure 3.4: Essence of a PCFvΔH term

Expressions are extended with strong pairs (namely, pair construction ⟨𝑀,𝑁⟩, left projec-
tion 𝜋1(𝑀), and right projection 𝜋2(𝑀)); and delayed checks ⟪𝑉 ∶ 𝜎 ⇒ 𝜏1 → 𝜏2⟫ are added
to run-time expressions as we have discussed in Section 3.1. Recursion bodies are (possibly
nested strong pairs) of 𝜆-abstractions.

We do not include blame in expressions, although PCFH include it among expressions.
As a consequence, the evaluation relation for PCFvΔH is defined between commands. This
distinction will turn out to be convenient in stating correspondence between the semantics
of PCFvΔH and that of PCFv, which does not have blame.

Someone will notice evaluation contexts for strong pairs and active checks are lacked.
The lack is intentional, i.e., sub-expression reduction rules for those are defined as separated
rules without using evaluation contexts because those require special treatments.

Definition 3.2.2 (Meta operations for PCFvΔH terms). We define free variables of an ex-
pression; substition; and context application in a similar manner to ones for PCFH.

The essence of a PCFvΔH term is defined in Figure 3.4, which is mostly straightforward,
thanks to the blame distinction. The choice of which part we take as the essence of a strong
pair is arbitrary because for a well-typed expression both parts have the same essence. Note
that the essence of an active check ⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫ is 𝑉 rather than 𝑀. This is
because 𝑉 is the subject of the expression.

3.2.3 Operational Semantics of PCFvΔH

Theoperational semantics of PCFvΔH consists of four relations𝑀 ⇀𝗉 𝑁,𝑀 ⇀𝖼 𝐶,𝑀 ⟶𝗉 𝑁,
and 𝑀 ⟶𝖼 𝐶. Bearing in mind the inclusion relation among syntactic categories, these
relations can be regarded as binary relations between commands. The first two are basic
reduction relations, and the other two are contextual evaluation relations (relations for whole
programs). Furthermore, the relations subscripted by 𝗉 correspond to PCFv evaluation, that
is, essential evaluation; and ones subscripted by 𝖼 correspond to dynamic contract checking.
Dynamic checking is nondeterministic because of (RC-WedgeL), (RC-WedgeR), (EC-PairL),
and (EC-PairR).
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pred(succ(𝑛)) ⇀𝗉 𝑛
(RP-Pred)

iszero(O) ⇀𝗉 True
(RP-IsZero-T)

iszero(succ(𝑛)) ⇀𝗉 False
(RP-IsZero-F)

ifTruethen𝑀else𝑁 ⇀𝗉 𝑀
(RP-If-T)

ifFalsethen𝑀else𝑁 ⇀𝗉 𝑁
(RP-If-F)

(𝜆𝑥∶𝜏.𝑀)𝑉 ⇀𝗉 𝑀[𝑥 ↦ 𝑉]
(RP-Beta)

𝜇𝑓∶𝐼.𝐵 ⇀𝗉 𝐵[𝑓 ↦ 𝜇𝑓∶𝐼.𝐵]
(RP-Fix)

𝑀 ⇀𝗉 𝑁
𝑀 ⟶𝗉 𝑁

(RP-Red)

𝑀 ⟶𝗉 𝑁
ℰ[𝑀]⟶𝗉 ℰ[𝑁]

(RP-Ctx)

𝑀 ⟶𝗉 𝑀′ 𝑁 ⟶𝗉 𝑁′

⟨𝑀,𝑁⟩⟶𝗉 ⟨𝑀′, 𝑁′⟩
(RP-PairS)

Figure 3.5: Operational semantics of PCFvΔH (1): essential evaluation
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3 Manifest Contracts with Intersection Types

Essential Evaluation⟶𝗉

The essential evaluation, defined in Figure 3.5, defines the evaluation of the essential, namely
PCF, part of a program; and thus, it is similar to⟶PCF. There are just three differences, that
is: there are two relations; there is no reduction rule for pred(O) as PCFH; and there is a
distinguished contextual evaluation rule (EP-PairS), which synchronizes essential reductions
of the elements in a strong pair. The synchronization in (EP-PairS) is important since a
strong pair requires the essences of both elements to be the same.

Dynamic Checking⟶𝖼

Dynamic checking is more complicated. Firstly, we focus on reduction rules in Figure 3.6.
The rules irrelevant to intersection types ((RC-Nat), (RC-Bool), (RC-Forget), (RC-Delay),

(RC-Arrow), (RC-Waiting), (RC-Activate), (RC-Succeed), and (RC-Fail)) are similar to
PCFH, but how a cast between function types is dealyed is different—in PCFH, it is done
by using lambda abstraction. PCFvΔH uses a special syntax to denote the delay and deals
with (RC-Delay) and (RC-Arrow). Actually, this way is not new—It is used in the original
work [17] on higher-order contract calculi.

The other rules are new ones we propose for dynamic checking of intersection types. As
we have discussed in Section 3.1, a cast into an intersection type is reduced into a pair of
casts by (RC-WedgeI). A cast from an intersection type is done by (RC-Delay), (RC-WedgeL)
and (RC-WedgeR) if the target type is a function type. Otherwise, if the target type is a first
order type, (RC-WedgeN) and (RC-WedgeB) are used, where we arbitrarily choose the left
side of the intersection type and the corresponding part of the value since the source type is
not used for dynamic checking of first-order values.

The contextual evaluation rules, defined in Figure 3.7, are rather straightforward. Be aware
of the use of metavariables, for instance, the use of 𝑁 in (EC-Ctx); it implicitly means that
𝑀 has not been evaluated into blame (so the rule does not overlap with (EB-Ctx)). The
first rule lifts the reduction relation to the evaluation relation. The next six rules express
the case where a sub-expression is successfully evaluated. The rules (EC-ActiveP) and
(EC-ActiveC) mean that evaluation inside an active check is always considered dynamic
checking, even when it involves essential evaluation. The rules (EC-PairL) and (EC-PairR)
mean that dynamic checking does not synchronize because the elements in a strong pair
may have different casts. The other rules express the case where dynamic checking has
failed. An expression evaluates to blame immediately—in one step—when a sub-expression
evaluates to blame. Here is an example of execution of failing dynamic checking, where in
the last step immediately produces blame; while in PCFH, evaluation passes through an
intermediate state blame + 1.

(0 ∶ nat ⇒ {𝑥∶nat ∣ 𝑥 > 0}) + 1⟶ ⟪0 ? {𝑥∶nat ∣ 𝑥 > 0}⟫ + 1
⟶ ⟪0 > 0⟹ 0 ∶ {𝑥∶nat ∣ 𝑥 > 0}⟫ + 1
⟶ ⟪False⟹0 ∶ {𝑥∶nat ∣ 𝑥 > 0}⟫ + 1
⟶ blame

Definition 3.2.3 (Evaluation). The one-step evaluation relation of PCFvΔH, denoted by⟶,
is defined as⟶𝗉 ∪⟶𝖼. The multi-step evaluation relation of PCFvΔH, denoted by⟶∗,
is the reflexive and transitive closure of⟶.
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3.2 Language: PCFvΔH

𝜋1(⟨𝑉1, 𝑉2⟩) ⇀𝖼 𝑉1
(RC-Fst)

𝜋2(⟨𝑉1, 𝑉2⟩) ⇀𝖼 𝑉2
(RC-Snd)

(𝑉 ∶ nat ⇒ nat) ⇀𝖼 𝑉
(RC-Nat)

(𝑉 ∶ bool ⇒ bool) ⇀𝖼 𝑉
(RC-Bool)

(𝑉 ∶ {𝑥∶𝜎 ∣ 𝑀} ⇒ 𝜏) ⇀𝖼 (𝑉 ∶ 𝜎 ⇒ 𝜏)
(RC-Forget)

(∀𝑥𝜏𝑀.𝜎 ≠ {𝑥∶𝜏 ∣ 𝑀})
(𝑉 ∶ 𝜎 ⇒ 𝜏1 → 𝜏2) ⇀𝖼 ⟪𝑉 ∶ 𝜎 ⇒ 𝜏1 → 𝜏2⟫

(RC-Delay)

⟪𝑉1 ∶ 𝜎1 → 𝜎2 ⇒ 𝜏1 → 𝜏2⟫𝑉2 ⇀𝖼 (𝑉1 (𝑉2 ∶ 𝜏1 ⇒ 𝜎1) ∶ 𝜎2 ⇒ 𝜏2)
(RC-Arrow)

⟪𝑉1 ∶ 𝜎1 ∧ 𝜎2 ⇒ 𝜏1 → 𝜏2⟫𝑉2 ⇀𝖼 (𝜋1(𝑉1) ∶ 𝜎1 ⇒ 𝜏1 → 𝜏2) 𝑉2
(RC-WedgeL)

⟪𝑉1 ∶ 𝜎1 ∧ 𝜎2 ⇒ 𝜏1 → 𝜏2⟫𝑉2 ⇀𝖼 (𝜋2(𝑉1) ∶ 𝜎2 ⇒ 𝜏1 → 𝜏2) 𝑉2
(RC-WedgeR)

(𝑉 ∶ 𝜎1 ∧ 𝜎2 ⇒ nat) ⇀𝖼 (𝜋1(𝑉) ∶ 𝜎1 ⇒ nat)
(RC-WedgeN)

(𝑉 ∶ 𝜎1 ∧ 𝜎2 ⇒ bool) ⇀𝖼 (𝜋1(𝑉) ∶ 𝜎1 ⇒ bool)
(RC-WedgeB)

(∀𝑥𝜏𝑀.𝜎 ≠ {𝑥∶𝜏 ∣ 𝑀})
(𝑉 ∶ 𝜎 ⇒ 𝜏1 ∧ 𝜏2) ⇀𝖼 ⟨(𝑉 ∶ 𝜎 ⇒ 𝜏1), (𝑉 ∶ 𝜎 ⇒ 𝜏2)⟩

(RC-WedgeI)

(∀𝑥𝜏𝑀.𝜎 ≠ {𝑥∶𝜏 ∣ 𝑀})
(𝑉 ∶ 𝜎 ⇒ {𝑥∶𝜏 ∣ 𝑀}) ⇀𝖼 ⟪(𝑉 ∶ 𝜎 ⇒ 𝜏) ? {𝑥∶𝜏 ∣ 𝑀}⟫

(RC-Waiting)

⟪𝑉 ? {𝑥∶𝜏 ∣ 𝑀}⟫ ⇀𝖼 ⟪𝑀[𝑥 ↦ 𝑉]⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}⟫
(RC-Activate)

⟪True⟹𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}⟫ ⇀𝖼 𝑉
(RC-Succeed)

⟪False⟹𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}⟫ ⇀𝖼 blame
(RC-Fail)

Figure 3.6: Operational semantics of PCFvΔH (2): reduction rules for dynamic checking
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3 Manifest Contracts with Intersection Types

𝑀 ⇀𝖼 𝐶
𝑀 ⟶𝖼 𝐶

(EC-Red)

𝑀 ⟶𝖼 𝑁
ℰ[𝑀]⟶𝖼 ℰ[𝑁]

(EC-Ctx)

𝑀 ⟶𝗉 𝑀′

⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫⟶𝖼 ⟪𝑀′ ⟹𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫
(EC-ActiveP)

𝑀 ⟶𝖼 𝑀′

⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫⟶𝖼 ⟪𝑀′ ⟹𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫
(EC-ActiveC)

𝑀 ⟶𝖼 𝑀′

⟨𝑀,𝑁⟩⟶𝖼 ⟨𝑀′, 𝑁⟩
(EC-PairL)

𝑁 ⟶𝖼 𝑁′

⟨𝑀,𝑁⟩⟶𝖼 ⟨𝑀,𝑁′⟩
(EC-PairR)

𝑀 ⟶𝖼 blame

ℰ[𝑀]⟶𝖼 blame
(EB-Ctx)

𝑀 ⟶𝖼 blame

⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫⟶𝖼 blame
(EB-Active)

𝑀1 ⟶𝖼 blame

⟨𝑀1,𝑀2⟩⟶𝖼 blame
(EB-PairL)

𝑀2 ⟶𝖼 blame

⟨𝑀1,𝑀2⟩⟶𝖼 blame
(EB-PairR)

Figure 3.7: Operational semantics of PCFvΔH (3): contextual rules for dynamic checking
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3.3 Properties

∅ ok
(W-Empty)

Γ ok ⊩ 𝜏 (𝑥 # Γ)
Γ, 𝑥∶𝜏 ok

(W-Push)

⊩ nat
(W-Nat)

⊩ bool
(W-Bool)

⊩ 𝜎 ⊩ 𝜏
⊩ 𝜎 → 𝜏

(W-Arrow)

𝑥∶𝜏 ⊢ 𝑀 ∶ bool
⊩ {𝑥∶𝜏 ∣ 𝑀}

(W-Refine)

⊩ 𝜎 ⊩ 𝜏 (≀𝜎≀ = ≀𝜏≀)
⊩ 𝜎 ∧ 𝜏

(W-Wedge)

Figure 3.8: Type system of PCFvΔH (1): well-formedness rules

3.2.4 Type System of PCFvΔH

The type system consists of three judgments: Γ ok, ⊩ 𝜏, and Γ ⊢ 𝑀 ∶ 𝜏, read “Γ is well-
formed”, “𝜏 is well-formed”, and “𝑀 has 𝜏 under Γ,” respectively. They are defined inductively
by the rules in Figures 3.8, 3.9 and 3.10.

The rules for well-formed types check that an intersection type is restricted to a refinement
intersection type by the side condition ≀𝜎≀ = ≀𝜏≀ in (W-Wedge) and that the predicate in a
refinement type is a Boolean expression by (W-Refine). Note that, since PCFvΔH has no
dependent function type, all types are closed and the predicate of a refinement type only
depends on the parameter itself; and thus the type well-formedness relation does not involve
type environments.

Extension parts comes from Liquori and Stolze [34]. As an intersection type system,
(T-Pair), (T-Fst), and (T-Snd) stands for introduction and elimination rules of intersection
types (or we can explicitly introduce and/or eliminate an intersection type by a cast). The rule
(T-Pair) checks a strong pair is composed by essentially the same expressions by ≀𝑀≀ = ≀𝑁≀.
The premise ≀𝜎≀ = ≀𝜏≀ of the rule (T-Cast) for casts requires the essences of the source and
target types to agree. It amounts to checking the two types 𝜎 and 𝜏 are compatible.

The run-time rules have one extra rule (T-Delayed). The rule (T-Delayed) is for a delayed
checking for function types, which restrict the source type so that it respects the evaluation
relation (there is no evaluation rule for a delayed checking inwhich source type is a refinement
type), and inherits the condition on the source and target types from (T-Cast).

3.3 Properties

We start from properties of evaluation relations. As we have mentioned,⟶𝗉 is essential
evaluation, and thus, it should simulate⟶PCF; and⟶𝖼 is dynamic checking, and therefore,
it should not change the essence of the expression. We formally state and show these

35



3 Manifest Contracts with Intersection Types

Γ ok
Γ ⊢ O ∶ nat

(T-Zero)

Γ ⊢ 𝑀 ∶ nat
Γ ⊢ succ(𝑀) ∶ nat

(T-Succ)

Γ ⊢ 𝑀 ∶ {𝑥∶nat ∣ ifiszero(𝑥)thenFalseelseTrue}
Γ ⊢ pred(𝑀) ∶ nat

(T-Pred)

Γ ⊢ 𝑀 ∶ nat
Γ ⊢ iszero(𝑀) ∶ bool

(T-IsZero)

Γ ok
Γ ⊢ True ∶ bool

(T-True)

Γ ok
Γ ⊢ False ∶ bool

(T-False)

Γ ⊢ 𝐿 ∶ bool Γ ⊢ 𝑀 ∶ 𝜏 Γ ⊢ 𝑁 ∶ 𝜏
Γ ⊢ if𝐿then𝑀else𝑁 ∶ 𝜏

(T-If)

Γ ok (𝑥∶𝜏 ∈ Γ)
Γ ⊢ 𝑥 ∶ 𝜏

(T-Var)

Γ, 𝑥∶𝜎 ⊢ 𝑀 ∶ 𝜏
Γ ⊢ 𝜆𝑥∶𝜎.𝑀 ∶ 𝜎 → 𝜏

(T-Abs)

Γ ⊢ 𝑀 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑁 ∶ 𝜎
Γ ⊢ 𝑀𝑁 ∶ 𝜏

(T-App)

Γ ⊢ 𝑀 ∶ 𝜎 Γ ⊢ 𝑁 ∶ 𝜏 (≀𝑀≀ = ≀𝑁≀) (≀𝜎≀ = ≀𝜏≀)
Γ ⊢ ⟨𝑀,𝑁⟩ ∶ 𝜎 ∧ 𝜏

(T-Pair)

Γ ⊢ 𝑀 ∶ 𝜎 ∧ 𝜏
Γ ⊢ 𝜋1(𝑀) ∶ 𝜎

(T-Fst)

Γ ⊢ 𝑀 ∶ 𝜎 ∧ 𝜏
Γ ⊢ 𝜋2(𝑀) ∶ 𝜏

(T-Snd)

Γ, 𝑓∶𝐼 ⊢ 𝐵 ∶ 𝐼
Γ ⊢ 𝜇𝑓∶𝐼.𝐵 ∶ 𝐼

(T-Fix)

Γ ⊢ 𝑀 ∶ 𝜎 ⊩ 𝜏 (≀𝜎≀ = ≀𝜏≀)
Γ ⊢ (𝑀 ∶ 𝜎 ⇒ 𝜏) ∶ 𝜏

(T-Cast)

Figure 3.9: Type system of PCFvΔH (2): compile-time typing rules
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3.3 Properties

Γ ok ⊢ 𝑉 ∶ 𝜎 ⊩ 𝜏1 → 𝜏2 (∀𝑥𝜏𝑀.𝜎 ≠ {𝑥∶𝜏 ∣ 𝑀}) (≀𝜎≀ = ≀𝜏1 → 𝜏2≀)
Γ ⊢ ⟪𝑉 ∶ 𝜎 ⇒ 𝜏1 → 𝜏2⟫ ∶ 𝜏1 → 𝜏2

(T-Delayed)
Γ ok ⊢ 𝑀 ∶ 𝜏 ⊩ {𝑥∶𝜏 ∣ 𝑁}
Γ ⊢ ⟪𝑀 ? {𝑥∶𝜏 ∣ 𝑁}⟫ ∶ {𝑥∶𝜏 ∣ 𝑁}

(T-Waiting)

Γ ok ⊢ 𝑀 ∶ bool ⊢ 𝑉 ∶ 𝜏 ⊩ {𝑥∶𝜏 ∣ 𝑁} 𝑁[𝑥 ↦ 𝑉]⟶∗ 𝑀
Γ ⊢ ⟪𝑀 ⟹ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}⟫ ∶ {𝑥∶𝜏 ∣ 𝑁}

(T-Active)

Γ ok ⊢ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}
Γ ⊢ 𝑉 ∶ 𝜏

(T-Forget)

Γ ok ⊢ 𝑉 ∶ 𝜏 ⊩ {𝑥∶𝜏 ∣ 𝑁} 𝑁[𝑥 ↦ 𝑉]⟶∗ True

Γ ⊢ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑁}
(T-Exact)

Figure 3.10: Type system of PCFvΔH (3): run-time typing rules

properties here. Note that most properties require that the expression before evaluation is
well typed. This is because the condition of strong pairs is imposed by the type system.

Lemma 3.3.1. If𝑀 ⟶PCF 𝑁 and𝑀 ⟶PCF 𝐿, then 𝑁 = 𝐿.

Proof. The proof is routine by induction on one of the given derivations.

Lemma 3.3.2. If ⊢ 𝑀 ∶ 𝜏 and𝑀 ⟶𝗉 𝑁, then ≀𝑀≀⟶PCF ≀𝑁≀.

Proof. The proof is by induction on the given evaluation derivation.

The following corollary is required to prove the preservation property.

Corollary 3.3.3. If ⊢ 𝑀 ∶ 𝜎, ⊢ 𝑁 ∶ 𝜏, 𝑀 ⟶𝗉 𝑀′, 𝑁 ⟶𝗉 𝑁′, and ≀𝑀≀ = ≀𝑁≀; then
≀𝑀′≀ = ≀𝑁′≀.

Lemma 3.3.4. If ⊢ 𝑀 ∶ 𝜏 and𝑀 ⟶𝖼 𝑁, then ≀𝑀≀ = ≀𝑁≀.

Proof. The proof is by induction on the given evaluation derivation.

Now we can have the following theorem as a corollary of Lemma 3.3.2 and Lemma 3.3.4.
It guarantees the essential computation in PCFvΔH is the same as the PCFv computation as
far as the computation does not fail. In other words, run-time checking may introduce blame
but otherwise does not affect the essential computation.

Theorem 3.3.5. If ⊢ 𝑀 ∶ 𝜏 and𝑀 ⟶𝑁, then ≀𝑀≀⟶∗
PCF ≀𝑁≀.

3.3.1 Type Soundness

We conclude this section with type soundness. Firstly, we show a substitution property; and
using it, we show the preservation property.

Lemma 3.3.6. If Γ1, 𝑥∶𝜎, Γ2 ⊢ 𝑀 ∶ 𝜏 and Γ1 ⊢ 𝑁 ∶ 𝜎, then Γ1, Γ2 ⊢ 𝑀[𝑥 ↦ 𝑁] ∶ 𝜏.

37



3 Manifest Contracts with Intersection Types

Proof. The proof is by induction on the derivation for𝑀.

Theorem 3.3.7 (Subject reduction). If ⊢ 𝑀 ∶ 𝜏 and𝑀 ⟶𝑁, then ⊢ 𝑁 ∶ 𝜏.

Proof. We prove subject reduction properties for each ⟶𝗉 and ⟶𝖼 and combine them.
Both proofs are done by induction on the given typing derivation. For the case in which
substitution happens, we use Lemma 3.3.6 as usual. For the context evaluation for strong
pairs, we use Corollary 3.3.3 and Lemma 3.3.4 to guarantee the side-condition of strong
pairs.

Next we show the value inversion property, which guarantees a value of a refinement type
satisfies its predicate. For PCFvΔH, this property can be quite easily shown since PCFvΔH
does not have dependent function types, while previous manifest contract systems need
quite complicated reasoning [54, 52, 45]. The property itself is proven by using the following
two, which are for strengthening an induction hypothesis.

Definition 3.3.8. We define a relation between values and types, written 𝑉 ⊧ 𝜏, by the
following rules.

𝑉 ⊧ 𝜏 𝑀[𝑥 ↦ 𝑉]⟶∗ True
𝑉 ⊧ {𝑥∶𝜏 ∣ 𝑀}

(𝜏 ≠ {𝑥∶𝜎 ∣ 𝑀})
𝑉 ⊧ 𝜏

Lemma 3.3.9. If ⊢ 𝑉 ∶ 𝜏, then 𝑉 ⊧ 𝜏.

Proof. The proof is by induction on the given derivation.

Theorem 3.3.10 (Value inversion). If ⊢ 𝑉 ∶ {𝑥∶𝜏 ∣ 𝑀}, then𝑀[𝑥 ↦ 𝑉]⟶∗ True.

Proof. Immediate from Lemma 3.3.9.

Remark 3.3.11. As a corollary of value inversion, it follows that a value of an intersection
type must be a strong pair and its elements satisfy the corresponding predicate in the
intersection type: For example, if ⊢ ⟨𝑉1, 𝑉2⟩ ∶ {𝑥∶𝜎 ∣ 𝑀} ∧ {𝑥∶𝜏 ∣ 𝑁}, then𝑀[𝑥 ↦ 𝑉1]⟶∗

True and 𝑁[𝑥 ↦ 𝑉2]⟶∗ True. In particular, for first-order values, every element of the
pair is same. That means the value satisfies all contracts concatenated by ∧. For example,
⊢ 𝑉 ∶ {𝑥∶nat ∣ 𝑀1} ∧⋯∧{𝑥∶nat ∣ 𝑀𝑛}, then𝑀𝑘[𝑥 ↦ ≀𝑉≀]⟶∗ True for any 𝑘 = 1..𝑛.
This is what we have desired for a contract written by using intersection types.

Lastly, the progress property also holds. In our setting, where pred(𝑀) is partial, this
theorem can be proved only after Theorem 3.3.10.

Theorem 3.3.12 (Progress). If ⊢ 𝑀 ∶ 𝜏, then𝑀 is a value or𝑀 ⟶𝐶 for some 𝐶.

Proof. The proof is by induction on the given derivation. Since the evaluation relation is
defined as combination of ⟶𝗉 and ⟶𝖼, the proof is a bit tricky, but most cases can be
proven as usual. An interesting case is (T-Pair). We need to guarantee that if one side of a
strong pair is a value, another side must not be evaluated by⟶𝗉 since a value is in normal
form. This follows from Lemma 3.3.2 and proof by contradiction because the essence of a
PCFvΔH value is a PCFv value and it is normal form.
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3.4 Summary

3.4 Summary

We design and formalize a manifest contract system PCFvΔH with refinement intersection
types. As a result of our formal development, PCFvΔH guarantees not only ordinary preser-
vation and progress but also the property that a value of an intersection type, which can
be seen as an enumeration of small contracts, satisfies all the contracts. The characteristic
point of our formalization is that we regard a manifest contract system as an extension of a
more basic calculus, which has no software contract system, and investigate the relationship
between the basic calculus and the manifest contract system. More specifically, essential
computation and dynamic checking are separated. We believe this investigation is important
for modern manifest contract systems because those become more and more complicated
and the separation is no longer admissible at a glance.
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4 Nondeterministic Manifest Contracts

A well-known approach to bringing nondeterminism to a functional language is the intro-
duction of a choice operator, which we write (𝑀 ∥ 𝑁) in this paper. It takes two operands
𝑀,𝑁 and returns one of them nondeterministically. Using the choice, choose function we
have seen in the example above can be defined as follows.

1 let rec choose l =
2 match l with
3 | [x] -> x
4 | x::xs -> (x || choose xs)

To deal with the case where choose is called with an empty list, one may want to insert
require (not (isempty l)) before match.

We believe that it is meaningful to introduce manifest contracts into a nondeterministic lan-
guage. Let us revisit the example of prime_sum_pair. By using casts, prime_sum_pair
could be written as follows:

1 let prime_sum_pair =
2 let aux (l: intlist) =
3 let a1 = choose l and a2 = choose l in
4 (a1, a2)
5 in
6 (aux : intlist→ int × int
7 ⇒ intlist→ {x∶int × int ∣ isprime (fst x + snd x)})

The type of prime_sum_pair, which is the target type of the cast on aux, is as expected.
In this chapter, we develop a formal calculus 𝜆𝐻∥Φ of manifest contracts with a nonde-

terministic choice operator. An interesting (and perhaps controversial) point in the design
space is that whether we should allow nondeterminism in predicates in refinement types.
We would like to allow it so that any library function, which may be nondeterministic, can
be used to describe predicates. Moreover, it is necessary if we use the result of 𝜆𝐻∥Φ to
introduce dependent function types into PCFvΔH. Among variants of the semantics for
choice [55], we will investigate the so-called singular semantics,1 which corresponds to
call-time choice [23], because we think it is easy to understand. This semantics also poses
interesting technical challenges, as we will discuss shortly. The goal of the present paper is to
prove basic meta-theoretic properties of progress, type preservation (subject reduction) [65],
and contract satisfaction, which is a generalization of value inversion and means that, if𝑀 is
given type {x∶𝜏 ∣ 𝑁}, then the result of any successful execution of𝑀 satisfies predicate 𝑁
nondeterministically.

1Roughly speaking, in the singular semantics, every occurrence of a variable of the same name in the same
scope yields the same value, although the value itself may be chosen nondeterministically. For example, the
value of (𝜆x.x + x) (1 ∥ 2) is either 2 or 4.
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4 Nondeterministic Manifest Contracts

As far as a simple program like prime_sum_pair is concerned, nondeterministic choice
seems to integrate smoothly into a manifest contract system. In fact, it would integrate
smoothly, if it were not for dependent function types.

However, the combination of dependent function types and nondeterministic choice—in
particular, call-time choice—poses a few technical challenges. Before discussing them, let
us recall the typing rule for function applications, which is standard in a language with
dependent function types:

Γ ⊢ 𝑀 ∶ (x∶𝜏1) → 𝜏2 Γ ⊢ 𝑁 ∶ 𝜏1
Γ ⊢ 𝑀𝑁 ∶ 𝜏2[x ≔ 𝑁]

The first challenge is how to define type equivalence, which is used to show type preserva-
tion. Dependent type systems have a type equivalence relation≡ and a typing rule that allows
the type of a term to be converted to an equivalent one, so that the two types 𝜏2[x ≔ 𝑁] and
𝜏2[x ≔ 𝑁′] where 𝑁 ⟶ 𝑁′ are related and thereby a reduction step 𝑉𝑁 ⟶ 𝑉𝑁′, where
𝑉 is a value of type (x∶𝜏1) → 𝜏2, preserves the type. In (subsumption-free) manifest contract
calculi, their type equivalence relations are derived from term equivalence, which includes
the reduction relation. However, standard reduction rules for choice

(𝑀 ∥ 𝑁) ⟶ 𝑀 (𝑀 ∥ 𝑁) ⟶ 𝑁

would make type equivalence inconsistent because term equivalence closed under these
rules would relate any two expressions 𝑀 and 𝑁 through 𝑀 ⟵ (𝑀 ∥ 𝑁) ⟶ 𝑁. Such
inconsistency would break value inversion because any refinement type {x∶𝜏 ∣ 𝑀} can be
converted to {x∶𝜏 ∣ False}.

Another challenge is how to settle down interaction between the singular semantics and
substitution 𝜏2[x ≔ 𝑁] that appears in the typing rule for applications above. It duplicates
possibly nondeterministic computation 𝑁. However, such duplication is contradictory to
the expectation in the singular semantics that x has a single value. One solution to the
problem would be to restrict predicates of refinement types to pure ones, that is, predicates
has no nondeterminism. Although the restriction seems reasonable and could be easily
accomplished [59], we avoid such a restriction to give programmers full expressiveness in
writing software contracts.

To address the two challenges above, we give a new kind of choice, called coordinated
choice. For the former, the choice does not discard an alternative, but reduction retains the
set of all possible executions as Kutzner and Schmidt-Schauß work does [32]. For the latter,
different occurrences of choices can share nondeterministic decisions via names; thus the
semantics stays singular even though syntactic duplication of a choice takes place.

Contributions.

• we propose a new kind of nondeterministic choice, called coordinated choice;

• we formalize an operational semantics of coordinated choice;

• we formalize 𝜆𝐻∥Φ , a nondeterministic manifest contract system by using coordinated
choice; and

• we state progress, type preservation, and contract satisfaction and sketch their proofs.
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4.1 Coordinated Choice

Outline. Firstly, in Section 4.1, we introduce coordinated choice. Then, in Section 4.2, we
integrate the new choice into a manifest contract system. In Section 4.3, we discuss the basic
properties and sketch their proofs.

4.1 Coordinated Choice

As we have discussed, the combination of dependent function types and nondeterministic
choice, in particular, naive call-time choice, poses two challenges on manifest contracts. In
this section, we informally describe our solution.

The first problem of inconsistency of type equivalence is avoided by not using the naive
rules to choose one branch and, instead, introducing rules that distribute an evaluation
context over choices [32], such as

𝑉 (𝑀1 ∥ 𝑀2) ⟶ (𝑉𝑀1 ∥ 𝑉𝑀2)

(where 𝑉 stands for a value). For example, (𝜆x .x) (1 ∥ 2) reduces to (1 ∥ 2) via ((𝜆x .x) 1 ∥
(𝜆x .x) 2). Similarly, (1 ∥ 2) + (3 ∥ 4) reduces to ((4 ∥ 5) ∥ (5 ∥ 6)). So, our reduction
relation expresses all possible nondeterministic executions at once.

The second problem of the interaction between the singular semantics and substitution is
addressed by coordination of choices. Actually, our choice is given a name Φ and written
(𝑀 ∥Φ 𝑁); the name can be shared by another choice. The choices of the same name
“synchronize,” that is, globally make the same decision: For example, expression (1 ∥foo
2) + (3 ∥bar 4) (here foo and bar are names) nondeterministically evaluates to 4, 5, or
6, whereas (1 ∥foo 2) + (3 ∥foo 4) cannot evaluate to 5 because if 1 is chosen by the first
choice, 3 must be chosen by the other.

To accomplish the coordination, we will introduce rules to discard impossible results. For
example, (1 ∥foo 2) + (3 ∥foo 4) reduces to ((4 ∥foo 5) ∥foo (5 ∥foo 6)) (via distribution
of evaluation contexts), but the two occurrences of 5 are bogus. Actually, we can see
that they are bogus only from the syntactic structure of an expression: a subexpression
is bogus if it is reached by choosing different sides at choices of the same name. In the
example above, the first occurrence of 5 is bogus because it is reached by first taking the
left side of ∥foo and then the right of ∥foo. Although the general rule to discard one
branch of a choice is not allowed, our reduction relation does allow a bogus expression to
be discarded; so, ((4 ∥foo 5) ∥foo (5 ∥foo 6)) reduces to (4 ∥foo 6) in two steps, whereas
(1 ∥foo 2) + (3 ∥bar 4) reduces to ((4 ∥foo 5) ∥bar (5 ∥foo 6)), which is normal.

Somewhat surprisingly, these two ideas are sufficient for basic correctness properties to
hold of a manifest contract system with nondeterministic choice.

To formalize the reduction relation as described above, we introduce the notion of orthant,
inspired by geometry.

4.1.1 Orthant

As we have described, an expression evaluates to a set of values (combined by ∥Φ). We view
each element in the set inhabit an “orthant,” generated by splitting the whole space by axes
corresponding to names on choices.

Figure 4.1 shows an informal interpretation of expressions. The first example shows a basic
interpretation: the expression (1 ∥Φ 2)+(3 ∥Ψ 4) (whereΦ ≠ Ψ) represents four expressions
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{Φ+, Ψ+}

{Φ−, Ψ+}

{Φ+, Ψ−}

{Φ−, Ψ−}

1 + 3

2 + 3

1 + 4

2 + 4

(1 ∥Φ 2) + (3 ∥Ψ 4)

{Φ+}

{Φ−}

1 + 3

2 + 4

(1 ∥Φ 2) + (3 ∥Φ 4)

{Φ+}

{Φ−}

1 + (3 ∥Ψ 4)

2 + (3 ∥Ψ 4)

(1 ∥Φ 2) + (3 ∥Ψ 4)

{Φ+, Ψ+}

{Φ−, Ψ+}

{Φ+, Ψ−}

{Φ−, Ψ−}

1

2

3

3

((1 ∥Φ 2) ∥Ψ 3)

Figure 4.1: Examples of an informal interpretation of expressions.

since the names of the choices are different. Furthermore, each expression inhabits a different
orthant, which is denoted by a set of signed names (Φ+, meaning the left side of ∥Φ, or Φ−,
meaning the right): For instance, the expression 1 + 3 inhabits the orthant {Φ+, Ψ+} since 1
is on the left of the choice named Φ and 3 is on the left of the choice named Ψ.

In contrast, the second example shows a case in which choices have the same name. It
shows that the expression (1 ∥Φ 2) + (3 ∥Φ 4) represents only two expressions since the
name is shared.

The third example shows another interpretation—which considers only axis Φ—of the
expression in the first example. We do not have to decompose all the choices that occur in
an expression, leaving some choices. We can even choose a name that does not occur in an
expression. For example, 3, which a simple expression without coordinated choice, splits
into 3 that inhabits {Φ+} and 3 that inhabits {Φ−}. Such freedom in the choice of axes is
useful to give an interpretation to the fourth example, where a choice is nested only in one
branch of a choice.

These interpretations based on orthant-local viewpoints play an important role when we
consider formal semantics.

Remark 4.1.1. Some orthants such as {Φ+, Φ−} do not really make sense from a geometric
point of view. Nevertheless, we allow such orthants for technical reasons (Lemma 4.3.1).
For example, 2 in ((1 ∥Φ 2) ∥Φ 3) is considered to inhabit the nonsensical orthant {Φ+, Φ−},
which indicates 2 is bogus.

4.1.2 Orthant-local Reduction

More formally, we augment the reduction relation with an orthant Δ and write𝑀
Δ
⟶ 𝑁,

which intuitivelymeans “𝑀 reduces to𝑁 in orthantΔ.” The crux here is that bogus expressions
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in orthant Δ can be discarded because it cannot be seen from the Δ-local viewpoint: For
example, (1 ∥foo 2)

{foo+}⟶ 1 holds since 2 inhabits {foo−} and is considered bogus in this
orthant. Similarly, (1 ∥foo 2)

{foo−}⟶ 2 holds. Thanks to orthant, we can avoid inconsistency
of equivalence discussed at the beginning of this section by making the equivalence a family
of equivalences indexed by an orthant. 2 In general, reduction rules that allow discarding
bogus expressions can be given as

(𝑀 ∥Φ 𝑁)
Δ∪{Φ+}⟶ 𝑀 and (𝑀 ∥Φ 𝑁)

Δ∪{Φ−}⟶ 𝑁.

Along the same lines, when a subexpression under choice is reduced, the subexpression
is reduced in the corresponding orthant. For example, ((1 ∥foo 2) ∥foo 3)

{ }
⟶ (1 ∥foo 3)

since (1 ∥foo 2) inhabits the orthant {foo+} and (1 ∥foo 2)
{foo+}⟶ 1. We formalize such

reduction by the following two rules:

𝑀
Δ∪{Φ+}⟶ 𝑀′

(𝑀 ∥Φ 𝑁)
Δ
⟶ (𝑀′ ∥Φ 𝑁)

𝑁
Δ∪{Φ−}⟶ 𝑁′

(𝑀 ∥Φ 𝑁)
Δ
⟶ (𝑀 ∥Φ 𝑁′)

Multi-step reduction is written𝑀
Δ
⟶∗ 𝑁. Note that the orthant in each reduction step

is fixed to Δ. So,𝑀
Δ
⟶∗ 𝑁 means𝑀

Δ
⟶⋯

Δ
⟶𝑁.

Example 4.1.2. Now we can see how (1 ∥Φ 2) + (3 ∥Φ 4) is evaluated into (4 ∥Φ 6) in the
empty orthant { }.

(1 ∥Φ 2) + (3 ∥Φ 4)
{ }
⟶∗ (1 + (3 ∥Φ 4) ∥Φ 2 + (3 ∥Φ 4))
{ }
⟶∗ (1 + 3 ∥Φ 2 + 4)
{ }
⟶∗ (4 ∥Φ 6)

4.1.3 Programming with Names

It is cumbersome to assign appropriate names to choices in a program. Although we believe
that in many cases it suffices to assign a fresh name to each choice, choices still coordinate
if they are derived from the same program location. To avoid unintentional sharing, we
introduce some mechanisms for programming with names below. We give the compilation
method in a simpler setting in Chapter 5, which will automate the following discussions.
Anyway, the following discussion will help to understand Chapter 5.

First, we consider the following program.

1 let choose x y = (x ∥foo y) in
2 choose 1 2 + choose 3 4

The intention of the function choose is that it returns one of the given arguments nondeter-
ministically. Thus we expect that the program results in three values: 4, 5, and 6. However,
this program does not work as we expect. The result of the program is actually (4 ∥foo 6)
because the two calls of choose will result in two choices of the same name and it is not
possible for choose to return 2 and 3.

We introduce name abstraction and name application to solve the problem:
2Actually, 1 is considered equivalent to 2 (through (1 ∥foo 2)) in orthant {foo+,foo−} but this orthant is
nonsensical—see Remark 4.1.1 above—meaning both branches are actually bogus.
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1 let choose 𝛼 x y = (x ∥𝛼 y) in
2 choose foo 1 2 + choose bar 3 4

Here, choose takes an additional name parameter 𝛼, which is used at the choice, and
choose is called twice with different names foo and bar. As a result, each call indepen-
dently returns one of the given arguments, and we can get the expected result.

Unfortunately, when a function is recursive, simple name abstraction and application do
not suffice. Consider the following program:

1 let rec upto 𝛼 x =
2 if x > 0 then (𝑥 ∥𝛼 upto Φ (𝑥 − 1)) else 0
3 in upto bar 3

The intention of the function upto is that it returns a random number between 0 and the
given argument. Similarly to function choose above, the name of the choice is abstracted
as a parameter 𝛼, which is used in the coordinated choice. Now, the question is what Φ, the
name argument to the recursive call to upto, should be. Neither foo nor 𝛼 is satisfactory
because in either case choices of the same name will emerge after a few recursive calls. What
we would like here is an ability to create a name that is different from foo and 𝛼.

We introduce name concatenation ΦΨ, which yields a name different from Φ and Ψ. Here
is the final version of upto:

1 let rec upto 𝛼 x =
2 if x > 0 then (𝑥 ∥𝛼 upto (𝛼foo) (𝑥 − 1)) else 0
3 in upto bar 3

Expanding upto bar 3 will result in (3 ∥foo (2 ∥barfoo (1 ∥barfoofoo 0))), in which the
choices do not share their names.

One may wonder why we do not adopt a construct for name generation, found in process
calculi such as the 𝜋-calculus [39]. Simply put, the main reason is that name generation is
another effectful construct and it is not clear how to integrate it into a manifest contract
calculus.

4.2 Language

We demonstrate that the coordinated choice actually solves all problems we introduced by
first formalizing a manifest contract calculus 𝜆𝐻∥Φ with coordinated choice in this section
and show its soundness properties, including progress, type preservation, and contract
satisfaction in the next section. 𝜆𝐻∥Φ is PCFH.

4.2.1 Syntax

The syntax of 𝜆𝐻∥Φ is shown in Figure 4.2. We use additional meta-variables: 𝛼, 𝛽 ranging
over string variables; Φ,Ψ ranging over strings; and 𝑅 ranging over raw results.

Formally (and unlike examples in the last section), names for choices are strings, i.e.,
sequences of distinguished constants ⚫ and ⚪ and string variables 𝛼. ΦΨ is concatenation
of two strings.

Types are extended with forall types ∀𝛼.𝜏 for name abstractions, in which the string
variable 𝛼 is bound in 𝜏.
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Φ,Ψ ⩴ ⚫ | ⚪ | 𝛼 | ΦΨ
𝜎, 𝜏 ⩴ bool | nat | (x∶𝜎) → 𝜏 | {x∶𝜏 ∣ 𝑀} | ∀𝛼.𝜏

𝐿,𝑀,𝑁 ⩴ True | False | O | x | 𝑀𝑁 | 𝑀Φ | fix f (x∶𝜎) ∶ 𝜏.𝑀 |
succ (𝑀) | pred (𝑀) | iszero (𝑀) | if𝐿then𝑀else𝑁 |
𝜆𝛼.𝑀 | (𝑀 ∥Φ 𝑁) | (𝑀 ∶ 𝜎 ⇒ 𝜏) | ⟨⟨𝑀 ? {x∶𝜏 ∣ 𝑁}⟩⟩ |
⟨⟨𝑀 ⟹ 𝑉 ∶ {x∶𝜏 ∣ 𝑁}⟩⟩ | blame

̄𝑛 ⩴ O | succ ( ̄𝑛)
𝑈, 𝑉 ⩴ True | False | ̄𝑛 | fix f (x∶𝜎) ∶ 𝜏.𝑀 | 𝜆𝛼.𝑀

𝑅 ⩴ 𝑉 | blame | (𝑅1 ∥Φ 𝑅2)
ℰ ⩴ succ ( ▫ ) | pred ( ▫ ) | iszero ( ▫ ) | if ▫then𝑀else𝑁 | ▫𝑁 |

𝑉 ▫ | ▫Φ | ( ▫ ∶ 𝜎 ⇒ 𝜏) | ⟨⟨ ▫ ? {x∶𝜏 ∣ 𝑀}⟩⟩ | ⟨⟨ ▫ ⟹ 𝑉 ∶ {x∶𝜏 ∣ 𝑀}⟩⟩
Γ ⩴ ∅ | Γ, 𝛼 | Γ, x∶𝜏

Figure 4.2: Syntax of 𝜆𝐻∥Φ .

Expressions are extended with string abstractions 𝜆𝛼.𝑀, in which 𝛼 is bound in𝑀; string
applications𝑀Φ; coordinated choices (𝑀 ∥Φ 𝑁). Note that lambda abstractions and fixpoint
operator are integrated into one form fix f (x∶𝜎) ∶ 𝜏.𝑀; while those are separated in PCFH.

Values are extended with string abstractions. We present raw results to represent the result
of the evaluation of an expression since the result needs to represent several possibilities
rather than a simple value or blame. The raw result consists of value 𝑉; blame; and choice
of raw results (𝑅1 ∥Φ 𝑅2).

Evaluation contexts stay in the original, and sub-expression reductions of choices are
defined without evaluation contexts and as separated rules because those requires special
treatment.

Type environments are extended with declarations of string variable.

Definition 4.2.1 (Orthant). An orthant, denoted by Δ, is a set of pairs of a string and a
symbol + or −, written Φ+ or Φ−.

We introduce string substitution [𝛼 ∶= Φ] of a string for a string variable and substitution
[𝑀 ∶= x] of an expression for a variable.

Definition 4.2.2 (String substitution). String substitutionΦ[𝛼 ≔ Ψ] ofΨ for 𝛼 inΦ is defined
by:

⚫[𝛼 ≔ Ψ] = ⚫ ⚪[𝛼 ≔ Ψ] = ⚪
𝛼[𝛼 ≔ Ψ] = Ψ 𝛽[𝛼 ≔ Ψ] = 𝛽 (if 𝛼 ≠ 𝛽)
(Φ1Φ2)[𝛼 ≔ Ψ] = Φ1[𝛼 ≔ Ψ]Φ2[𝛼 ≔ Ψ]

We extend string substitution to one for orthants by:

Δ[𝛼 ≔ Φ] = {Ψ[𝛼 ≔ Φ]+ ∣ Ψ+ ∈ Δ} ∪ {Ψ[𝛼 ≔ Φ]− ∣ Ψ− ∈ Δ}

and for types (written 𝜏[𝛼 ≔ Φ]) and expressions (written𝑀[𝛼 ≔ Φ]) in a straightforward
capture-avoiding manner. We extend to type environments Γ[𝛼 ≔ Φ] as follows:

∅[𝛼 ≔ Φ] = ∅
(Γ, y∶𝜏)[𝛼 ≔ Φ] = Γ[𝛼 ≔ Φ], y∶𝜏[𝛼 ≔ Φ]
(Γ, 𝛽)[𝛼 ≔ Φ] = Γ[𝛼 ≔ Φ], 𝛽
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Definition 4.2.3 (Substitutions). We define capture-avoiding substitution, written𝑀[x ≔ 𝑁]
and 𝜏[x ≔ 𝑁], of an expression𝑁 for a variable x in an expression𝑀 and a type 𝜏, respectively,
in a usual manner. We extend to type environments Γ[x ≔ 𝑁] as follows:

∅[x ≔ 𝑁] = ∅
(Γ, y∶𝜏)[x ≔ 𝑁] = Γ[x ≔ 𝑁], y∶𝜏[x ≔ 𝑁]
(Γ, 𝛼)[x ≔ 𝑁] = Γ[x ≔ 𝑁], 𝛼

Definition 4.2.4 (Environment domain and string domain). The domain and string domain
of a type environment, written dom (Γ) and sdom (Γ), respectively, are defined as follows.

dom (∅) = ∅ sdom (∅) = ∅
dom (Γ, x∶𝜏) = dom (Γ) ∪ {x} sdom (Γ, x∶𝜏) = sdom (Γ)
dom (Γ, 𝛼) = dom (Γ) sdom (Γ, 𝛼) = sdom (Γ) ∪ {𝛼}

Definition 4.2.5 (Free variables and free string variables). Wedenote the sets of free variables
and free string variables in type 𝜏 by fv (𝜏) and fsv (𝜏), respectively; and denote those in
expression𝑀 by fv (𝑀) and fsv (𝑀), respectively.

4.2.2 Semantics

As we have mentioned in Section 4.1, the reduction relation of 𝜆𝐻∥Φ is extended with an
orthant and defines how an expression is reduced in a specific orthant. The relation formally
defined by the rules in Figure 4.3 and Figure 4.4. Each defines deterministic reductions and
nondeterministic reductions.

Deterministic reductions are almost same as the ones of PCFH, but there are a few ex-
ceptions. First of all, there is an orthant on⟶. However, it changes nothing because no
rules for deterministic reductions examine the orthant. Next is that the run-time checking
rule (R-CForall) is added since types are extended with forall types. It pulls out common
foralls as string abstraction. Note that the forall types of 𝜆𝐻∥Φ are not ones for parametric
polymorphism, and thus, this simple reduction rule does not make a problem discussed by
Sekiyama et al. [53]. The last is (R-CArrow), but the difference just caused by the integration
of lambda abstractions and a fixpoint operator and what the rule does is same as the original
rule does.

Nondeterministic reductions are as discussed in Section 4.1. One note is that choice of ℰ
in (R-Branch) is deterministic since evaluation contexts are defined as single frames.

Definition 4.2.6 (Multi-step reduction). For each orthantΔ, the multi-step reduction relation
𝑀

Δ
⟶∗ 𝑁 is defined as the reflexive and transitive closure of

Δ
⟶.

We define the notion of results below. Actually, a raw result may not be a normal form,
e.g., ((1 ∥Φ 2) ∥Φ 3)

{ }
⟶ (1 ∥Φ 3). In other words, it depends on an orthant whether a

given raw result is a normal form.

Definition 4.2.7 (Results in an orthant). A raw result 𝑅 is an actual result in an orthant Δ
iff Δ ⊧ 𝑅 can be derived by the rules in Figure 4.5.
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(fix f (x∶𝜎) ∶ 𝜏.𝑀)𝑉
Δ
⟶ 𝑀[x ≔ 𝑉][f ≔ fix f (x∶𝜎) ∶ 𝜏.𝑀]

(R-Beta)

(𝜆𝛼.𝑀)Φ
Δ
⟶ 𝑀[𝛼 ≔ Φ]

(R-Sigma)

pred (succ ( ̄𝑛))
Δ
⟶ ̄𝑛

(R-Pred)

iszero (O)
Δ
⟶ True

(R-IsZeroT)

iszero (succ ( ̄𝑛))
Δ
⟶ False

(R-IsZeroF)

ifTruethen𝑀else𝑁
Δ
⟶ 𝑀

(R-IfT)

ifFalsethen𝑀else𝑁
Δ
⟶ 𝑁

(R-IfF)

(𝑉 ∶ bool ⇒ bool)
Δ
⟶ 𝑉

(R-CBool)

(𝑉 ∶ nat ⇒ nat)
Δ
⟶ 𝑉

(R-CNat)

(𝑉 ∶ ∀𝛼.𝜎 ⇒ ∀𝛼.𝜏)
Δ
⟶ 𝜆𝛼.(𝑉𝛼 ∶ 𝜎 ⇒ 𝜏)

(R-CForall)

(x ≠ y)

(𝑉 ∶ (y∶𝜎1) → 𝜎2 ⇒ (x∶𝜏1) → 𝜏2)
Δ
⟶

fix x(x∶𝜏1) ∶ 𝜏2.(fix y(y∶𝜎1) ∶ 𝜏2.(𝑉 y ∶ 𝜎2 ⇒ 𝜏2)) (x ∶ 𝜏1 ⇒ 𝜎1)

(R-CArrow)

(𝑉 ∶ {x∶𝜎 ∣ 𝑀} ⇒ 𝜏)
Δ
⟶ (𝑉 ∶ 𝜎 ⇒ 𝜏)

(R-CForget)

(𝜎 ≠ {x ′∶𝜏′ ∣ 𝑀′})

(𝑉 ∶ 𝜎 ⇒ {x∶𝜏 ∣ 𝑀})
Δ
⟶ ⟨⟨(𝑉 ∶ 𝜎 ⇒ 𝜏) ? {x∶𝜏 ∣ 𝑀}⟩⟩

(R-CWait)

⟨⟨𝑉 ? {x∶𝜏 ∣ 𝑀}⟩⟩
Δ
⟶ ⟨⟨𝑀[x ≔ 𝑉]⟹ 𝑉 ∶ {x∶𝜏 ∣ 𝑀}⟩⟩

(R-CActive)

⟨⟨True⟹𝑉 ∶ {x∶𝜏 ∣ 𝑀}⟩⟩
Δ
⟶ 𝑉

(R-CSucceed)

⟨⟨False⟹𝑉 ∶ {x∶𝜏 ∣ 𝑀}⟩⟩
Δ
⟶ blame

(R-CFail)

𝑀
Δ
⟶ 𝑁

ℰ[𝑀]
Δ
⟶ ℰ[𝑁]

(R-Ctx)

ℰ[blame]
Δ
⟶ blame

(R-Exit)

Figure 4.3: Operational semantics of 𝜆𝐻∥Φ (1): deterministic part
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(𝑀 ∥Φ 𝑁)
Δ∪{Φ+}⟶ 𝑀 (R-WorldL)

(𝑀 ∥Φ 𝑁)
Δ∪{Φ−}⟶ 𝑁 (R-WorldR)

ℰ[(𝑀1 ∥Φ 𝑀2)]
Δ
⟶ (ℰ[𝑀1] ∥Φ ℰ[𝑀2]) (R-Branch)

𝑀
Δ∪{Φ+}⟶ 𝑀′

(𝑀 ∥Φ 𝑁)
Δ
⟶ (𝑀′ ∥Φ 𝑁)

(R-ChoiceL)

𝑁
Δ∪{Φ−}⟶ 𝑁′

(𝑀 ∥Φ 𝑁)
Δ
⟶ (𝑀 ∥Φ 𝑁′)

(R-ChoiceR)

Figure 4.4: Operational semantics of 𝜆𝐻∥Φ (2): nondeterministic part

Δ ⊧ 𝑉 (Res-Value)

Δ ⊧ blame (Res-Blame)

Δ ⊎ {Φ+} ⊧ 𝑅1 Δ ⊎ {Φ−} ⊧ 𝑅2

Δ ⊧ (𝑅1 ∥Φ 𝑅2)
(Res-Choice)

Figure 4.5: Results

4.2.3 Type System

The type system of 𝜆𝐻∥Φ consists of similar relations to PCFH, namely 𝜎 ∼ 𝜏, 𝜎
Δ
≡ 𝜏, Γ ⊩Δ 𝜏,

and Γ ⊢Δ 𝑀 ∶ 𝜏. There are two differences from PCFH: the last three involve orthants, so
for example, 𝜎

Δ
≡ 𝜏 read “𝜎 and 𝜏 are equivalent in Δ”; and there is no explicit relation for

environment well-formedness. The former comes from the fact that the reduction relation
of 𝜆𝐻∥Φ involves orthants. For the latter, well-formedness of an environment is required
for 𝜆𝐻∥Φ , of course; but it is checked as a part of well-formedness checking and typeabilty
checking. For 𝜆𝐻∥Φ , we call Γ occurring in a derivation well-formed.

Type compatibility and equivalence

The type compatibility relation and the type equivalence relation are defined by the rules in
Figure 4.6 and Figure 4.7, respectively. Both are straightforward extension of ones of PCFH
with the rules for forall types, namely (C-Forall) and (E-Forall). In the type equivalence
relation, orthants are involved; but an orthant is just passed to the reduction relation used in
premises and not examined by the equivalence relation itself.

Type well-formedness and typing

The typewell-formedness relation and the typing relation are defined by the rules in Figure 4.8,
Figure 4.9, and Figure 4.10. Well-formedness checking for environments, we has touched,
are done by the explicit weakening rules (W-Weaken), (W-SWeaken), (T-Weaken), and
(T-SWeaken). The checking is done in pieces and middles of a derivation since the axiom
rules demand the environment used empty. Assuming the difference how well-formedness
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4.2 Language

bool ∼ bool
(C-Bool)

nat ∼ nat
(C-Nat)

𝜎1 ∼ 𝜏1 𝜎2 ∼ 𝜏2
(x∶𝜎1) → 𝜎2 ∼ (x∶𝜏1) → 𝜏2

(C-Arrow)

𝜎 ∼ 𝜏
{x∶𝜎 ∣ 𝑀} ∼ 𝜏

(C-RefineL)

𝜎 ∼ 𝜏
𝜎 ∼ {x∶𝜏 ∣ 𝑀}

(C-RefineR)

𝜎 ∼ 𝜏
∀𝛼.𝜎 ∼ ∀𝛼.𝜏

(C-Forall)

Figure 4.6: Type compatibility of 𝜆𝐻∥Φ

bool
Δ
≡ bool

(E-Bool)

nat
Δ
≡ nat

(E-Nat)

𝜎1
Δ
≡ 𝜏1 𝜎2

Δ
≡ 𝜏2

(x∶𝜎1) → 𝜎2
Δ
≡ (x∶𝜏1) → 𝜏2

(E-Arrow)

𝜎
Δ
≡ 𝜏 𝑁

Δ
⟶ 𝑁′

{x∶𝜎 ∣ 𝑀[z ≔ 𝑁]}
Δ
≡ {x∶𝜏 ∣ 𝑀[z ≔ 𝑁′]}

(E-RefineL)

𝜎
Δ
≡ 𝜏 𝑁

Δ
⟶ 𝑁′

{x∶𝜎 ∣ 𝑀[z ≔ 𝑁′]}
Δ
≡ {x∶𝜏 ∣ 𝑀[z ≔ 𝑁]}

(E-RefineR)

𝜏1
Δ
≡ 𝜏2 𝜏2

Δ
≡ 𝜏3

𝜏1
Δ
≡ 𝜏3

(E-Trans)

𝜎
Δ
≡ 𝜏

∀𝛼.𝜎
Δ
≡ ∀𝛼.𝜏

(E-Forall)

Figure 4.7: Type equivalence of 𝜆𝐻∥Φ
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⊩Δ bool
(W-Bool)

⊩Δ nat
(W-Nat)

Γ, x∶𝜎 ⊩Δ 𝜏
Γ ⊩Δ (x∶𝜎) → 𝜏

(W-Arrow)

Γ, x∶𝜏 ⊢Δ 𝑀 ∶ bool
Γ ⊩Δ {x∶𝜏 ∣ 𝑀}

(W-Refine)

Γ, 𝛼 ⊩Δ 𝜏 (𝛼 ∉ fsv (Δ))
Γ ⊩Δ ∀𝛼.𝜏

(W-Forall)

Γ ⊩Δ 𝜎 Γ ⊩Δ 𝜏 (x ∉ dom (Γ))
Γ, x∶𝜎 ⊩Δ 𝜏

(W-Weaken)

Γ ⊩Δ 𝜏 (𝛼 ∉ sdom (Γ))
Γ, 𝛼 ⊩Δ 𝜏

(W-SWeaken)

Figure 4.8: Type system of 𝜆𝐻∥Φ (1): well-formedness rules

of environments is dealt with, most rules define the same things which the corresponding
ones of PCFH do.

The additional rules are for the additional terms. (W-Forall) is for forall types, where
the side-condition guarantees freshness of the bound string variable. (T-SApp) is for string
applications, where fsv (Φ) ⊆ sdom (Γ) checks that all string variables that appear are
declared in the environment, e.g., a kind of well-formedness checking for strings. (T-SFun)
is for string abstractions, where the side-condition does the same thing as (W-Forall) does.
(T-Choice) is the heart of the type system and reflects the following intuition: a choice is
well typed if its operands have the same type in corresponding orthants. The premise Γ ⊩Δ 𝜏
is required because the first two ensures only that 𝜏 is well-formed in orthants Δ ∪ {Φ+} and
Δ ∪ {Φ−} but not necessarily in Δ.

Remark 4.2.8. An orthant appear in the judgment do not closed under a typing environment.
Actually, (W-SWeaken) and (T-SWeaken) work as if an additional declaration of a free
string variable captures one in an orthant. See the derivation in Figure 4.11.

Remark 4.2.9. As we have touched in Section 2.1, the type equivalence playes a crucial
role to prove a subject reduction property in a dependently typed system. In 𝜆𝐻∥Φ , where
f (𝑀1 ∥Φ 𝑀2) reduces to (f 𝑀1 ∥Φ f 𝑀2), showing subject reduction is more tricky. The
crux here is that type 𝜏[x ≔ (𝑀1 ∥Φ 𝑀2)] is equivalent to 𝜏[x ≔ 𝑀1] in an orthant including
Φ+ and also to 𝜏[x ≔ 𝑀2] in an orthant including Φ− (but not equivalent to either of them
in an orthant without them). So, f 𝑀1 and f 𝑀2 are given type 𝜏[x ≔ (𝑀1 ∥Φ 𝑀2)] in an
orthant including Φ+ and Φ−, respectively, and by the rule (T-Choice), (f 𝑀1 ∥Φ f 𝑀2) is
given type 𝜏[x ≔ (𝑀1 ∥Φ 𝑀2)].

Example 4.2.10 (Concrete example for the remark above). Let Γ = f ∶(x∶bool) →
{z∶bool ∣ x}. Then, Γ ⊢{ } f (True ∥foo False) ∶ {z∶bool ∣ (True ∥foo False)}
is derived by (T-App). Since f (True ∥foo False)

{ }
⟶ (f True ∥foo f False),
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4.2 Language

Γ ⊩Δ 𝜏 (x ∉ dom (Γ))
Γ, x∶𝜏 ⊢Δ x ∶ 𝜏

(T-Var)

⊢Δ True ∶ bool
(T-True)

⊢Δ False ∶ bool
(T-False)

⊢Δ O ∶ nat
(T-Zero)

Γ ⊢Δ 𝑀 ∶ nat
Γ ⊢Δ succ (𝑀) ∶ nat

(T-Succ)

Γ ⊢Δ 𝑀 ∶ {x∶nat ∣ ifiszero (x)thenFalseelseTrue}
Γ ⊢Δ pred (𝑀) ∶ nat

(T-Pred)

Γ ⊢Δ 𝑀 ∶ nat
Γ ⊢Δ iszero (𝑀) ∶ bool

(T-IsZero)

Γ ⊢Δ 𝐿 ∶ bool Γ ⊢Δ 𝑀 ∶ 𝜏 Γ ⊢Δ 𝑁 ∶ 𝜏
Γ ⊢Δ if𝐿then𝑀else𝑁 ∶ 𝜏

(T-If)

Γ ⊢Δ 𝑀 ∶ (x∶𝜎) → 𝜏 Γ ⊢Δ 𝑁 ∶ 𝜎
Γ ⊢Δ 𝑀𝑁 ∶ 𝜏[x ≔ 𝑁]

(T-App)

Γ, f ∶(x∶𝜎) → 𝜏, x∶𝜎 ⊢Δ 𝑀 ∶ 𝜏
Γ ⊢Δ fix f (x∶𝜎) ∶ 𝜏.𝑀 ∶ (x∶𝜎) → 𝜏

(T-Fun)

Γ ⊢Δ 𝑀 ∶ 𝜎 Γ ⊩Δ 𝜏 𝜎 ∼ 𝜏
Γ ⊢Δ (𝑀 ∶ 𝜎 ⇒ 𝜏) ∶ 𝜏

(T-Cast)

Γ ⊢Δ 𝑀 ∶ ∀𝛼.𝜏 (fsv (Φ) ⊆ sdom (Γ))
Γ ⊢Δ 𝑀Φ ∶ 𝜏[𝛼 ≔ Φ]

(T-SApp)

Γ, 𝛼 ⊢Δ 𝑀 ∶ 𝜏 𝛼 ∉ fsv (Δ)
Γ ⊢Δ 𝜆𝛼.𝑀 ∶ ∀𝛼.𝜏

(T-SFun)

Γ ⊢Δ∪{Φ+} 𝑀 ∶ 𝜏 Γ ⊢Δ∪{Φ−} 𝑁 ∶ 𝜏 Γ ⊩Δ 𝜏 (fsv (Φ) ⊆ sdom (Γ))
Γ ⊢Δ (𝑀 ∥Φ 𝑁) ∶ 𝜏

(T-Choice)

Γ ⊩Δ 𝜎 Γ ⊢Δ 𝑀 ∶ 𝜏 (x ∉ dom (Γ))
Γ, x∶𝜎 ⊢Δ 𝑀 ∶ 𝜏

(T-Weaken)

Γ ⊢Δ 𝑀 ∶ 𝜏 (𝛼 ∉ sdom (Γ))
Γ, 𝛼 ⊢Δ 𝑀 ∶ 𝜏

(T-SWeaken)

Figure 4.9: Type system of 𝜆𝐻∥Φ (2): typing rules
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4 Nondeterministic Manifest Contracts

⊢Δ 𝑀 ∶ 𝜏 ⊩Δ {x∶𝜏 ∣ 𝑁}
⊢Δ ⟨⟨𝑀 ? {x∶𝜏 ∣ 𝑁}⟩⟩∶ {x∶𝜏 ∣ 𝑁}

(T-Waiting)

⊢Δ 𝑀 ∶ bool ⊢Δ 𝑉 ∶ 𝜏 ⊩Δ {x∶𝜏 ∣ 𝑁} (𝑁[x ≔ 𝑉]
Δ
⟶∗ 𝑀)

⊢Δ ⟨⟨𝑀 ⟹ 𝑉 ∶ {x∶𝜏 ∣ 𝑁}⟩⟩∶ {x∶𝜏 ∣ 𝑁}
(T-Active)

⊩Δ 𝜏
⊢Δ blame ∶ 𝜏

(T-Blame)

⊢Δ 𝑀 ∶ 𝜎 ⊩Δ 𝜏 𝜎
Δ
≡ 𝜏

⊢Δ 𝑀 ∶ 𝜏
(T-Conv)

⊢Δ 𝑉 ∶ {x∶𝜏 ∣ 𝑀}
⊢Δ 𝑉 ∶ 𝜏

(T-Forget)

⊢Δ 𝑉 ∶ 𝜏 ⊩Δ {x∶𝜏 ∣ 𝑀} (𝑀[x ≔ 𝑉]
Δ
⟶∗ True)

⊢Δ 𝑉 ∶ {x∶𝜏 ∣ 𝑀}
(T-Exact)

Figure 4.10: Type system of 𝜆𝐻∥Φ (3): run-time typing rules

Γ ⊢{ } (f True ∥foo f False) ∶ {z∶bool ∣ (True ∥foo False)} must be derived
for subject reduction. Actually, it can be derived as Figure 4.12. The point is f True inhabits

the orthant {foo+} and {z∶bool ∣ True}
{foo+}≡ {z∶bool ∣ (True ∥foo False)}. This

is the way our type system preserves an expression type before and after distributing a
function argument.

4.3 Properties

The type soundness of 𝜆𝐻∥Φ is consist of the desirable properties of a manifest contract
system, namely subject reduction, progress, and value inversion; and, in addition to those,
contract satisfaction. which is a generalization of value inversion under nondeterminism.

Contract satisfaction deserves some more informal explanation. Suppose 𝑀 has type
{x∶𝜏 ∣ 𝑁} and all of its nondeterministic executions terminate. We denote the result of the
evaluation as 𝑅, which is essentially a multi set of values and blame. Roughly speaking, the
contract satisfaction says 𝑅 satisfies 𝑁—for any value, denoted 𝑉i , in 𝑅 satisfies the predicate
𝑁, i.e., 𝑁[x ≔ 𝑉i] nondeterministically evaluates to True. Note that blame in 𝑅 is ignored
because it denotes failed execution. The phrase “𝑁[x ≔ 𝑉i] nondeterministically evaluates
to True” means that 𝑁[x ≔ 𝑉i]

Δ
⟶∗ True, where Δ is the orthant that 𝑉i inhabits.

One might wonder if it is too strong to require a predicate 𝑁 to reduce to True, not to
an expression like (True ∥Φ 𝑀), even when 𝑁 can be nondeterministic. For example,
consider type 𝜏 = {x∶nat ∣ (x = 1 ∥Φ x = 2)}, whose predicate is nondeterministic,
and a constant 1; then, (x = 1 ∥Φ x = 2)[x ≔ 1] ⟶∗ (True ∥Φ False) ≠ True,
which may look like a counterexample to contract satisfaction. Actually, it is not. First
of all, ⊢{ } 1 ∶ 𝜏 cannot be derived because the type of 1 is only nat. We can make the
expression well typed by inserting a cast. The judgment ⊢{ } (1 ∶ nat ⇒ 𝜏) ∶ 𝜏 is derivable
and this cast expression is reduced to (1 ∥Φ blame). Now, the trick is to use the orthant
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4 Nondeterministic Manifest Contracts

that each value inhabit to run the predicate. So, the predicate is run in {Φ+} for 1 and we get
(x = 1 ∥Φ x = 2)[x ≔ 1]

{Φ+}⟶∗ True.
We start with the following lemma, which is used everywhere implicitly in proofs and

states a judgment that holds in some orthant holds in a more split orthant. This lemma is
why we allow nonsensical orthants (see Remark 4.1.1).

Lemma 4.3.1 (Orthant weakening). Suppose Δ ⊆ Δ′.

1. If𝑀
Δ
⟶ 𝑁, then𝑀

Δ′
⟶ 𝑁.

2. If𝑀
Δ
⟶∗ 𝑁, then𝑀

Δ′
⟶∗ 𝑁.

3. If𝑀
Δ
≡ 𝑁, then𝑀

Δ′
≡ 𝑁.

4. If Γ ⊩Δ 𝜏, then Γ ⊩Δ′ 𝜏.

5. If Γ ⊢Δ 𝑀 ∶ 𝜏, then Γ ⊢Δ′ 𝑀 ∶ 𝜏.

Proof of Lemma 4.3.1 (1). The proof is straightforward by the induction on the given deriva-
tion.

Proof of Lemma 4.3.1 (2). This is a corollary of Lemma 4.3.1 (1).

Proof of Lemma 4.3.1 (3). The proof is done by the induction on the given derivation. In the
cases (E-RefineL) and (E-RefineR), we use Lemma 4.3.1 (1).

Proof of Lemma 4.3.1 (4) and (5). The proof is done by the mutually induction on the given
derivation. In the cases (T-Active) and (T-Exact), we use Lemma 4.3.1 (2). In the case
(T-Conv), we use Lemma 4.3.1 (3).

4.3.1 Co-termination

In this subsection we show the type equivalence preserves the meaning of predicates, which
is required to show the value inversion property. Technically, this is guaranteed by the
following lemma.

Definition 4.3.2 (Normal orthant). An orthant Δ is normal if and only if {Φ+, Φ−} ⊈ Δ for
any Φ.

Lemma 4.3.3 (Co-termination for true). Suppose Δ is normal and 𝑁
Δ
⟶ 𝑁′. Then𝑀[x ≔

𝑁]
Δ
⟶∗ True ⟺ 𝑀[x ≔ 𝑁′]

Δ
⟶∗ True.

This is a technical reason for which we develop the orthant-based reduction of 𝜆𝐻∥Φ . If
we adopted a naive choice semantics (𝑀 ∥Φ 𝑁) ⟶ 𝑀 and (𝑀 ∥Φ 𝑁) ⟶ 𝑁 (regardless
of orthants), we would have (True ∥Φ False) ⟶ False and x[x ≔ (True ∥Φ
False)] ⟶ True and x[x ≔ False] ⟶ False, breaking the property. Actually,
the same problem still occurs in nonsensical orthants, so we consider only the normal
orthants, excluding nonsensical orthants.

Lemma 4.3.3 is, however, not easy to prove directly since our operational semantics is
nondeterministic even if Δ is restricted to be normal and moreover subexpression would be
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True ⇓Δ True
(N-True)

False ⇓Δ False
(N-False)

O ⇓Δ O
(N-Zero)

fix f (x∶𝜎) ∶ 𝜏.𝑀 ⇓Δ fix f (x∶𝜎) ∶ 𝜏.𝑀
(N-Fun)

𝜆𝛼.𝑀 ⇓Δ 𝜆𝛼.𝑀
(N-SFun)

𝑀 ⇓Δ ̄𝑛
succ (𝑀) ⇓Δ succ ( ̄𝑛)

(N-Succ)

𝑀 ⇓Δ succ ( ̄𝑛)
pred (𝑀) ⇓Δ ̄𝑛

(N-Pred)

𝑀 ⇓Δ O

iszero (𝑀) ⇓Δ True
(N-IsZeroT)

𝑀 ⇓Δ succ ( ̄𝑛)
iszero (𝑀) ⇓Δ False

(N-IsZeroF)

𝑀 ⇓Δ fix f (x∶𝜎) ∶ 𝜏.𝑀1 𝑁 ⇓Δ 𝑉1 𝑀1[x ≔ 𝑉1][f ≔ fix f (x∶𝜎) ∶ 𝜏.𝑀1] ⇓Δ 𝑅
𝑀𝑁 ⇓Δ 𝑅

(N-Beta)
𝑀 ⇓Δ 𝜆𝛼.𝑀1 𝑀1[𝛼 ≔ Φ] ⇓Δ 𝑅

𝑀Φ ⇓Δ 𝑅
(N-Sigma)

𝑀1 ⇓Δ True 𝑀2 ⇓Δ 𝑅
if𝑀1 then𝑀2 else𝑀3 ⇓Δ 𝑅

(N-IfT)

𝑀1 ⇓Δ False 𝑀3 ⇓Δ 𝑅
if𝑀1 then𝑀2 else𝑀3 ⇓Δ 𝑅

(N-IfF)

Figure 4.13: Deterministic evaluation (1)
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𝑀 ⇓Δ 𝑉
(𝑀 ∶ bool ⇒ bool) ⇓Δ 𝑉

(N-CBool)

𝑀 ⇓Δ 𝑉
(𝑀 ∶ nat ⇒ nat) ⇓Δ 𝑉

(N-CNat)

𝑀 ⇓Δ 𝑉
(𝑀 ∶ ∀𝛼.𝜎 ⇒ ∀𝛼.𝜏) ⇓Δ 𝜆𝛼.(𝑉 𝛼 ∶ 𝜎 ⇒ 𝜏)

(N-CForall)

𝑀 ⇓Δ 𝑉 (x ≠ y)
(𝑀 ∶ (y∶𝜎1) → 𝜎2 ⇒ (x∶𝜏1) → 𝜏2) ⇓Δ

fix x(x∶𝜏1) ∶ 𝜏2.(fix y(y∶𝜎1) ∶ 𝜏2.(𝑉 y ∶ 𝜎2 ⇒ 𝜏2)) (x ∶ 𝜏1 ⇒ 𝜎1)

(N-CArrow)

𝑀 ⇓Δ 𝑉 (𝑉 ∶ 𝜎 ⇒ 𝜏) ⇓Δ 𝑅
(𝑀 ∶ {x∶𝜎 ∣ 𝑁} ⇒ 𝜏) ⇓Δ 𝑅

(N-CForget)

𝑀 ⇓Δ 𝑉 ⟨⟨(𝑉 ∶ 𝜎 ⇒ 𝜏) ? {x∶𝜏 ∣ 𝑁}⟩⟩⇓Δ 𝑅 (𝜎 ≠ {x ′∶𝜏′ ∣ 𝑀′})
(𝑀 ∶ 𝜎 ⇒ {x∶𝜏 ∣ 𝑁}) ⇓Δ 𝑅

(N-CPreCheck)

𝑀 ⇓Δ 𝑉 ⟨⟨𝑁[x ≔ 𝑉]⟹ 𝑉 ∶ {x∶𝜏 ∣ 𝑁}⟩⟩⇓Δ 𝑅
⟨⟨𝑀 ? {x∶𝜏 ∣ 𝑁}⟩⟩⇓Δ 𝑅

(N-Check)

𝑀 ⇓Δ True

⟨⟨𝑀 ⟹ 𝑉 ∶ {x∶𝜏 ∣ 𝑁}⟩⟩⇓Δ 𝑉
(N-Good)

𝑀 ⇓Δ False

⟨⟨𝑀 ⟹ 𝑉 ∶ {x∶𝜏 ∣ 𝑁}⟩⟩⇓Δ blame
(N-Bad)

blame ⇓Δ blame
(N-Blame)

𝑀 ⇓Δ blame (ℰ ≠ 𝑉 ▫)
ℰ[𝑀] ⇓Δ blame

(N-CtxBlame)

𝑀 ⇓Δ (𝑅1 ∥Φ 𝑅2) (ℰ[𝑅1] ∥Φ ℰ[𝑅2]) ⇓Δ 𝑅 (ℰ ≠ 𝑉▫)
ℰ[𝑀] ⇓Δ 𝑅

(N-Branch)

𝑀 ⇓Δ 𝑉 𝑁 ⇓Δ blame

𝑀𝑁 ⇓Δ blame
(N-CtxBlameA)

𝑀 ⇓Δ 𝑉 𝑁 ⇓Δ (𝑅1 ∥Φ 𝑅2) (𝑉𝑅1 ∥Φ 𝑉𝑅2) ⇓Δ 𝑅
𝑀𝑁 ⇓Δ 𝑅

(N-BranchA)

𝑀1 ⇓Δ⊎{Φ+} 𝑅1 𝑀2 ⇓Δ⊎{Φ−} 𝑅2

(𝑀1 ∥Φ 𝑀2) ⇓Δ (𝑅1 ∥Φ 𝑅2)
(N-Choice)

𝑀1 ⇓Δ∪{Φ+} 𝑅 (Φ− ∉ Δ)
(𝑀1 ∥Φ 𝑀2) ⇓Δ∪{Φ+} 𝑅

(N-WorldL)

𝑀2 ⇓Δ∪{Φ−} 𝑅 (Φ+ ∉ Δ)
(𝑀1 ∥Φ 𝑀2) ⇓Δ∪{Φ−} 𝑅

(N-WorldR)

Figure 4.14: Deterministic evaluation (2)
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evaluated in a nonsensical orthant by (R-ChoiceL) and (R-ChoiceR). Instead, we give an
alternative semantics, which is big-step and deterministic, and prove the property via this
semantics.

Figure 4.13 and Figure 4.14 define the alternative semantics for 𝜆𝐻∥Φ in a big-step style.
Most of the rules are straightforward; the key rules are (N-Choice), (N-WorldL), and (N-
WorldR), which correspond to (R-ChoiceL), (R-ChoiceR), (R-WorldL), and (R-WorldR).
The point is that (N-Choice) uses disjoint union: both branches of a choice are evaluated only
if they are not bogus. The following lemmas guarantee determinism and the two semantics
agree with each other.

Lemma 4.3.4 (Well-definedness). If𝑀 ⇓Δ 𝑁, then 𝑁 is a result, namely Δ ⊧ 𝑁.

Proof. The proof is straightforward by the induction on the given derivation.

Lemma 4.3.5 (Determinacy). If𝑀 ⇓Δ 𝑅1 and𝑀 ⇓Δ 𝑅2, then 𝑅1 = 𝑅2.

Proof. The proof is straightforward by the induction on the given derivation of𝑀 ⇓Δ 𝑅1.

Lemma 4.3.6 (Normal form).

1. ̄𝑛 ⇓Δ ̄𝑛.

2. 𝑉 ⇓Δ 𝑉.

3. If Δ ⊧ 𝑅, then 𝑅 ⇓Δ 𝑅.

Proof. (1) and (2) can be easily shown by the structural induction on ̄𝑛 and 𝑉, respectively;
the proof of (2) uses (1). (3) is shown by the induction on the given derivation.

Lemma 4.3.7.

1. If𝑀
Δ
⟶∗ 𝑀′, then ℰ[𝑀]

Δ
⟶∗ ℰ[𝑀′].

2. If𝑀
Δ∪{Φ+}⟶ 𝑀′, then (𝑀 ∥Φ 𝑁)

Δ
⟶∗ (𝑀′ ∥Φ 𝑁).

3. If 𝑁
Δ∪{Φ+}⟶ 𝑁′, then (𝑀 ∥Φ 𝑁)

Δ
⟶∗ (𝑀 ∥Φ 𝑁′).

Proof. Each can be shown by mathematical induction on the length of the given reduction
sequence.

Lemma 4.3.8. If𝑀
Δ
⟶ 𝑁 and𝑀 ⇓Δ 𝑅, then 𝑁 ⇓Δ 𝑅.

Lemma 4.3.9. Suppose Δ is normal. If𝑀
Δ
⟶ 𝑁 and 𝑁 ⇓Δ 𝑅, then𝑀 ⇓Δ 𝑅.

Lemma 4.3.10. If𝑀 ⇓Δ 𝑅, then𝑀
Δ
⟶∗ 𝑅.

Proof. The proof is done by the induction on the given derivation. The axiom cases follows by
the reflexivity of the mult-step reduction. Other cases can be shown by using the transitivity
of the mult-step reduction, Lemma 4.3.7, and proper reduction rules. For instance, in the
case (N-Pred), we have𝑀

Δ
⟶∗ succ ( ̄𝑛) by the induction hypothesis. Using transitivity

and (R-Pred), we can have the goal as𝑀
Δ
⟶∗ succ ( ̄𝑛)

Δ
⟶ ̄𝑛.
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4 Nondeterministic Manifest Contracts

Lemma 4.3.11. If Δ is normal,𝑀
Δ
⟶∗ 𝑅, and Δ ⊧ 𝑅, then𝑀 ⇓Δ 𝑅.

Proof. The proof is done by the length of the mult-step reduction. If the length is zero, we
can assume𝑀 = 𝑅. Therfore, the goal 𝑅 ⇓Δ 𝑅 follows by Lemma 4.3.6. The length is more
than zero, otherwise. We can assume𝑀

Δ
⟶ 𝑁 and 𝑁

Δ
⟶∗ 𝑅 for some 𝑁. Applying the

induction hypothesis, we have 𝑁 ⇓Δ 𝑅. Now the goal follows by Lemma 4.3.9.

Now, Lemma 4.3.3 follows from the following properties.

Lemma 4.3.12 (Co-termination). Suppose 𝑁
Δ
⟶ 𝑁′ or 𝑁′ Δ

⟶ 𝑁, and Δ is normal. If
𝑀[x ≔ 𝑁] ⇓Δ 𝑅, then there exists 𝑅′ such that

• Δ ⊧ 𝑅′;

• 𝑅 = 𝑅′[x ≔ 𝑁]; and

• 𝑀[x ≔ 𝑁′] ⇓Δ 𝑅′[x ≔ 𝑁′].

Proof. The proof is done by the induction on the given derivation of 𝑀[x ≔ 𝑁] ⇓Δ 𝑅. In
each case, if 𝑀 = x , the goal can be shown by choosing 𝑅′ = 𝑅 and using Lemma 4.3.8
and Lemma 4.3.9. In the following, we assume 𝑀 ≠ x . The axiom cases can be shown by
choosing 𝑅′ = 𝑀 since𝑀[x ≔ 𝑁] = 𝑅 in the cases. Inductive cases follows by the induction
hypothesis. We just show the proof for the case (N-Choice) because other cases can be
shown in a similar manner. In the case, the last step of the derivation is as follows.

𝑀1 ⇓Δ⊎{Φ+} 𝑅1 𝑀2 ⇓Δ⊎{Φ−} 𝑅2

(𝑀1 ∥Φ 𝑀2) ⇓Δ (𝑅1 ∥Φ 𝑅2)

Observing 𝑀[x ≔ 𝑁] = (𝑀1 ∥Φ 𝑀2), 𝑀 must be (𝑀′
1 ∥Φ 𝑀′

2) for some 𝑀′
1,𝑀′

2 such that
𝑀′

1[x ≔ 𝑁],𝑀′
2[x ≔ 𝑁]. Δ ⊎ {Φ+}, Δ ⊎ {Φ−} are normal by the disjunctivity. Now we can

have 𝑅′1, 𝑅′2 satisfying the following by the induction hypothesis.

Δ ⊎ {Φ+} ⊧ 𝑅′1
𝑅1 = 𝑅′1[x ≔ 𝑁]

𝑀′
1[x ≔ 𝑁′] ⇓Δ⊎{Φ+} 𝑅′1[x ≔ 𝑁′]

Δ ⊎ {Φ−} ⊧ 𝑅′2
𝑅2 = 𝑅′2[x ≔ 𝑁]

𝑀′
2[x ≔ 𝑁′] ⇓Δ⊎{Φ−} 𝑅′2[x ≔ 𝑁′]

Now we choose 𝑅′ = (𝑅′1 ∥Φ 𝑅′2), and then the goal becomes

Δ ⊧ (𝑅′1 ∥Φ 𝑅′2)
(𝑅1 ∥Φ 𝑅2) = (𝑅′1 ∥Φ 𝑅′2)[x ≔ 𝑁]

(𝑀′
1 ∥Φ 𝑀′

2)[x ≔ 𝑁′] ⇓Δ (𝑅′1 ∥Φ 𝑅′2)[x ≔ 𝑁].

Those easily follows from the definitions.

Corollary 4.3.13 (Co-termination for true). Suppose Δ is normal and 𝑁
Δ
⟶ 𝑁′. Then

𝑀[x ≔ 𝑁]
Δ
⟶∗ True ⟺ 𝑀[x ≔ 𝑁′]

Δ
⟶∗ True.
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Proof. We only show one direction—if 𝑀[x ≔ 𝑁]
Δ
⟶∗ True, then 𝑀[x ≔ 𝑁′]

Δ
⟶∗

True because the opposite is similar. 𝑀[x ≔ 𝑁] ⇓Δ True by Lemma 4.3.11. We can have
𝑅′ such that True = 𝑅′[x ≔ 𝑁],𝑀[x ≔ 𝑁′] ⇓Δ 𝑅′[x ≔ 𝑁′] by Lemma 4.3.12. By the
former condition, 𝑅′ must be True. Now the goal 𝑀[x ≔ 𝑁′]

Δ
⟶∗ True follows by

Lemma 4.3.10.

4.3.2 Type Soundness

We start from miscellaneous lemmas to show type soundness.

Lemma 4.3.14 (Common sub-expression reduction). If 𝑁
Δ
⟶ 𝑁′, then 𝜏[x ≔ 𝑁]

Δ
≡ 𝜏[x ≔

𝑁′].

Proof. The proof is routine by structural induction on 𝜏.

Lemma 4.3.15 (Typing is closed).

1. If Γ ⊩Δ 𝜏, then fv (𝜏) ⊆ dom (Γ) and fsv (𝜏) ⊆ sdom (Γ).

2. If Γ ⊢Δ 𝑀 ∶ 𝜏, thenfv (𝑀)∪fv (𝜏) ⊆ dom (Γ) andfsv (𝑀)∪fsv (𝜏) ⊆ sdom (Γ).

Lemma 4.3.16 (Generalized weakening). Suppose Γ ⊩Δ 𝜎 and x ∉ dom (Γ) ∪ dom (Γ′).

1. If Γ, Γ′ ⊩Δ 𝜏, then Γ, x∶𝜎, Γ′ ⊩Δ 𝜏.

2. If Γ, Γ′ ⊢Δ 𝑀 ∶ 𝜏, then Γ, x∶𝜎, Γ′ ⊢Δ 𝑀 ∶ 𝜏.

Lemma 4.3.17 (Generalized string weakening). Suppose 𝛼 ∉ sdom (Γ) ∪ sdom (Γ′).

1. If Γ, Γ′ ⊩Δ 𝜏, then Γ, 𝛼, Γ′ ⊩Δ 𝜏.

2. If Γ, Γ′ ⊢Δ 𝑀 ∶ 𝜏, then Γ, 𝛼, Γ′ ⊢Δ 𝑀 ∶ 𝜏.

Lemma 4.3.18 (Orthant substitution).

1. If𝑀
Δ
⟶ 𝑁, then𝑀

Δ[𝛼≔Φ]
⟶ 𝑁.

2. If𝑀
Δ
⟶∗ 𝑁, then𝑀

Δ[𝛼≔Φ]
⟶ 𝑁.

3. If 𝜎
Δ
≡ 𝜏, then 𝜎

Δ[𝛼≔Φ]
≡ 𝜏.

4. If Γ ⊩Δ 𝜏 and 𝛼 ∉ sdom (Γ), then Γ ⊩Δ[𝛼≔Φ] 𝜏.

5. If Γ ⊢Δ 𝑀 ∶ 𝜏 and 𝛼 ∉ sdom (Γ), then Γ ⊢Δ[𝛼≔Φ] 𝑀 ∶ 𝜏.

Proof of (1). The proof is by induction on the given derivation.

Proof of (2) and (3). These are corollary of (1).

Proof of (4) and (5).

Lemma 4.3.19 (Substitution).
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1. If 𝜎
Δ
≡ 𝜏, then 𝜎[x ≔ 𝑁]

Δ
≡ 𝜏[x ≔ 𝑁].

2. If 𝜎 ∼ 𝜏, then 𝜎[x ≔ 𝑁] ∼ 𝜏[x ≔ 𝑁].

3. If Γ, x∶𝜎, Γ′ ⊩Δ 𝜏 and Γ ⊢Δ 𝑁 ∶ 𝜎, then Γ, Γ′[x ≔ 𝑁] ⊩Δ 𝜏[x ≔ 𝑁].

4. If Γ, x∶𝜎, Γ′ ⊢Δ 𝑀 ∶ 𝜏 and Γ ⊢Δ 𝑁 ∶ 𝜎, then Γ, Γ′[x ≔ 𝑁] ⊢Δ 𝑀[x ≔ 𝑁] ∶ 𝜏[x ≔ 𝑁].

Lemma 4.3.20 (String substitution).

1. If 𝜎
Δ
≡ 𝜏, then 𝜎[𝛼 ≔ Φ]

Δ
≡ 𝜏[𝛼 ≔ Φ].

2. If 𝜎 ∼ 𝜏, then 𝜎[𝛼 ≔ Φ] ∼ 𝜏[𝛼 ≔ Φ].

3. If Γ, 𝛼, Γ′ ⊩Δ 𝜏 and fsv (Φ) ⊆ sdom (Γ), then Γ, Γ′[𝛼 ≔ Φ] ⊩Δ[𝛼≔Φ] 𝜏[𝛼 ≔ Φ].

4. If Γ, 𝛼, Γ′ ⊢Δ 𝑀 ∶ 𝜏 and fsv (Φ) ⊆ sdom (Γ), then Γ, Γ′[𝛼 ≔ Φ] ⊢Δ 𝑀[𝛼 ≔ Φ] ∶
𝜏[𝛼 ≔ Φ].

Definition 4.3.21 (Well-formed environments). The following rules define well-formedness
of environments in explicit style like PCFH.

Γ okΔ
Γ okΔ Γ ⊩Δ 𝜏 (x ∉ dom (Γ))

Γ, x∶𝜏 okΔ
Γ okΔ (𝛼 ∉ sdom (Γ))

Γ, 𝛼 okΔ

Lemma 4.3.22 (Presupposition).

1. If Γ ⊩Δ 𝜏, then Γ okΔ.

2. If Γ ⊢Δ 𝑀 ∶ 𝜏, then Γ okΔ.

3. If Γ ⊢Δ 𝑀 ∶ 𝜏, then Γ ⊩Δ 𝜏.

Now we can show subject reduction property.

Lemma 4.3.23 (Subject reduction). If ⊢Δ 𝑀 ∶ 𝜏 and𝑀
Δ
⟶ 𝑁, then ⊢Δ 𝑁 ∶ 𝜏.

Next, we show a value inversion lemma and then the contract satisfaction lemma by lifting
the former result pointwise.

Definition 4.3.24 (Refinements). The set of expressions refining 𝜏, written refines(𝜏),
is defined as follows.

refines(bool) = refines(nat) = refines((x∶𝜎) → 𝜏) = { }
refines({x∶𝜏 ∣ 𝑀}) = {(x)𝑀} ∪ refines(𝜏)

Lemma 4.3.25 (Value inversion). If ⊢Δ 𝑉 ∶ 𝜏 and Δ is normal, then𝑀[x ≔ 𝑉]
Δ
⟶∗ True

for all (x)𝑀 ∈ refines(𝜏).

Definition 4.3.26. Result 𝑅 satisfies refinement type {x∶𝜏 ∣ 𝑀} in orthant Δ, written 𝑅 ⊧Δ
{x∶𝜏 ∣ 𝑀}, if the judgment is derived by the following rules.

𝑀[x ≔ 𝑉]
Δ
⟶∗ True

𝑉 ⊧Δ {x∶𝜏 ∣ 𝑀}
blame ⊧Δ {x∶𝜏 ∣ 𝑀}

𝑅1 ⊧Δ∪{Φ+} {x∶𝜏 ∣ 𝑀} 𝑅2 ⊧Δ∪{Φ−} {x∶𝜏 ∣ 𝑀}
(𝑅1 ∥Φ 𝑅2) ⊧Δ {x∶𝜏 ∣ 𝑀}
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Lemma 4.3.27 (Contract satisfaction). If Δ is normal and ⊢Δ 𝑅 ∶ {x∶𝜏 ∣ 𝑀}, then 𝑅 ⊧Δ
{x∶𝜏 ∣ 𝑀}.

Lastly, we show the usual progress property. The proof depends on Lemma 4.3.27 since
our pred (𝑀) is a partial operation.

Lemma 4.3.28 (Progress). If Δ is normal and ⊢Δ 𝑀 ∶ 𝜏, then 𝑀 is a result in Δ; or there
exists 𝑁 such that𝑀

Δ
⟶ 𝑁.

We close the section by combining the results above into the following theorem.

Theorem 4.3.29 (Soundness). If ⊢{ } 𝑀 ∶ 𝜏, then (1)𝑀
{ }
⟶∗ 𝑅 and { } ⊧ 𝑅; or (2)𝑀 diverges.

Moreover, if 𝜏 is a refinement type {x∶𝜎 ∣ 𝑁} and (1) holds, 𝑅 ⊧{ } {x∶𝜎 ∣ 𝑁}.

4.4 Summary

We develop 𝜆𝐻∥Φ , a nondeterministic manifest contract calculus. By introducing a new kind of
choice called coordinated choice, the calculus is free from restriction in the kind of programs
used in predicates in refinements types. Coordinated choice can share nondeterministic
decisions by using names and the semantics is given in such a way that a program reduces
to the set (expressed by ∥) of all possible results. The semantics makes a choice copyable by
substitution and solves problems that occur when we introduce dependent function types.
The semantics and type system of 𝜆𝐻∥Φ are given by using the characteristic concept called
orthant. Orthant gives the view for a choice. Since the view does not change the meaning of
expressions except choices, we expect that coordinated choice is quite easily integrated into
other manifest contract systems. By the observation, we hope this approach is easily applied
to any other languages.
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In the previous chapters, we have seen two manifest contract systems: PCFvΔH with inter-
section types but no dependent function types because of nondeterministic semantics; and
𝜆𝐻∥Φ with nondeterminism, but careful programming is required to use coordinated choice.

In this chapter, we consider how to simulate usual choices with coordinated choices. For
the purpose, we give a compilation algorithm from a simply typed lambda calculus with
(usual) nondeterministic choice into one with coordinated choice; and show an evaluation in
the former calculus is simulated by the latter calculus, and vice versa. The idea of compilation
has been seen in Section 4.1.3—give different names to each choice; abstract names in lambda
abstractions; and instantiate the abstracted names by fresh names at applications.

5.1 Compilation

In this section, we introduce the compilation rules and discuss the correctness of the given
rules. First of all, we recall how a coordinated choice is synchronized. The following is an
example of an evaluation in which synchronization happens (reprint of Example 4.1.2).

(1 ∥Φ 2) + (3 ∥Φ 4)
∅

⟶∗ (1 + (3 ∥Φ 4) ∥Φ 2 + (3 ∥Φ 4))
∅

⟶∗ (1 + 3 ∥Φ 2 + 4)
∅

⟶∗ (4 ∥Φ 6)

The devices that enable synchronization are the following rules, which are used in the
evaluation from the first line to the second line.

𝑀1
Δ∪{Φ+}⟶ 𝑀′

1

(𝑀1 ∥Φ 𝑀2)
Δ
⟶(𝑀′

1 ∥Φ 𝑀2) (𝑀1 ∥Φ 𝑀2)
Δ∪{Φ+}⟶ 𝑀1

Concentrating on one step of an evaluation, we can easily find that a sufficient condition to
prevent synchronization is that every name of choices in an expression before the evaluation
is distinct. However, this condition is easily broken by evaluation since some reduction rules,
e.g., (𝜆𝑥.𝑀)𝑉

Δ
⟶𝑀[𝑥 ≔ 𝑉], duplicate an expression. In other words, it is easy to prevent

synchronization in the first step of an evaluation, but it is hard to prevent synchronization in
every step after the first step of an evaluation.

Fortunately, thanks to call-by-value semantics, names that will be duplicated and become
a cause of synchronization only occur in the body of lambda abstractions. So we abstract
names (giving a name containing variables) occurring in the body of lambda abstractions
and instantiate the names as distinct ones where the lambda abstractions are called. The
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⟦𝑥⟧𝛼Φ̄ = 𝑥
⟦𝑒1 𝑒2⟧𝛼Φ̄ = ⟦𝑒1⟧𝛼Φ̄⚪⚪ ⟦𝑒2⟧

𝛼
Φ̄⚪⚫ 𝛼Φ̄⚫

⟦𝜆𝑥.𝑒⟧𝛼Φ̄ = 𝜆𝑥.Λ𝛽.⟦𝑒⟧𝛽Φ̄
⟦𝜇𝑓.𝑒⟧𝛼Φ̄ = 𝜇𝑓.⟦𝑒⟧𝛼Φ̄

⟦(𝑒1 ∥ 𝑒2)⟧𝛼Φ̄ = (⟦𝑒1⟧𝛼Φ̄⚪ ∥𝛼Φ̄⚫ ⟦𝑒2⟧𝛼Φ̄⚪)

Figure 5.1: Compilation of expressions

following two evaluation sequences show the effect of this idea.

(𝜇𝑓.𝜆𝑥.(𝑓 𝑥 ∥Φ 𝑓𝑥)) 0
∅

⟶∗ (𝑓′ 0 ∥Φ 𝑓′ 0)
∅

⟶∗ ((𝑓′ 0 ∥Φ 𝑓′ 0) ∥Φ (𝑓′ 0 ∥Φ 𝑓′ 0)),
where 𝑓′ = 𝜇𝑓.𝜆𝑥.(𝑓 𝑥 ∥Φ 𝑓𝑥).

(𝜇𝑓.𝜆𝑥.Λ𝛼.(𝑓 𝑥 𝛼⚪ ∥𝛼 𝑓𝑥𝛼⚫)) 0⚪
∅

⟶∗(𝑓′ 0⚪⚪ ∥⚪ 𝑓′⚪⚫)
∅

⟶∗((𝑓′ 0⚪⚪⚪ ∥⚪⚪ 𝑓′ 0⚪⚪⚫) ∥⚪ (𝑓′ 0⚪⚫⚪ ∥⚪⚫ 𝑓′ 0⚪⚫⚫)),
where 𝑓′ = 𝜇𝑓.𝜆𝑥.Λ𝛼.(𝑓 𝑥 𝛼⚪ ∥𝛼 𝑓𝑥𝛼⚫).

In the first sequence, the duplicated name Φ causes synchronization. In the second sequence,
on the other hand, the name of a coordinated choice becomes different one at every time
that a lambda abstraction is applied (so synchronization does not happen).

Summing up the discussion, concrete compilation rules become the ones in Figure 5.1.
The function ⟦⋅⟧𝛼𝜔 gives the compilation, where 𝛼 and 𝜔 are seeds generating distinct names
during a compilation. Note that the seeds given for the sub-expressions of a choice are used
the same ones. It does not cause a problem because the left and right sides of a choice are
completely separated, i.e., the sub-expressions never collaborate.

5.1.1 Correctness of compilation

The main contribution of this chapter is that we have formally shown that the compilation
is correct. Informally, correctness of a compilation is stated as—a compiled expression
behaves the same as the original expression does. This behavioral correspondence between
compiled expressions and original expressions is formally defined as a binary relation, called
bisimulation [40], between them. For instance, if we use the compilation rules as the relation,
what we need to show is stated as the following two propositions.

Proposition 5.1.1. If ⟦𝑒⟧𝛼Φ̄ = 𝑀 and 𝑒⟶ 𝑒′, then𝑀
Δ

⟶∗ 𝑀′ and ⟦𝑒′⟧𝛼Φ̄ = 𝑀′.

Proposition 5.1.2. If ⟦𝑒⟧𝛼Φ̄ = 𝑀 and𝑀
Δ
⟶𝑀′, then 𝑒⟶∗ 𝑒′ and ⟦𝑒′⟧𝛼Φ̄ = 𝑀′.
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5.2 Formal System

𝑇 ⩴ nat | 𝑇1 → 𝑇2
𝑒 ⩴ 𝑥 | 𝑒1 𝑒2 | 𝜆𝑥.𝑒 | 𝜇𝑓.𝑒 | (𝑒1 ∥ 𝑒2)
Γ ⩴ ∅ | Γ, 𝑥∶𝑇
𝑣 ⩴ 𝜆𝑥.𝑒

Figure 5.2: Syntax of 𝜆∥

However, we can easily find a counter-example for the reduction (𝜆𝑥.𝑥) 𝜆𝑥.𝑥⟶ 𝜆𝑥.𝑥 as
follows.

⟦(𝜆𝑥.𝑥) 𝜆𝑥.𝑥⟧𝛼Φ̄ = ⟦𝜆𝑥.𝑥⟧𝛼Φ̄⚪⚪ ⟦𝜆𝑥.𝑥⟧
𝛼
Φ̄⚪⚫ 𝛼Φ̄⚫

= (𝜆𝑥.Λ𝛽.𝑥) ⟦𝜆𝑥.𝑥⟧𝛼Φ̄⚪⚫ 𝛼Φ̄⚫
Δ
⟶⟦𝜆𝑥.𝑥⟧𝛼Φ̄⚪⚫

A seed is alternated by the reduction. Unfortunately, weakening the proposition as follows
does not help us, because, if a sub-expression (for example, the argument part of an appli-
cation) is evaluated, only the seed for the sub-expression part is alternated and the whole
expression after the evaluation does not follow the compilation rule.

Proposition 5.1.3. If ⟦𝑒⟧𝛼Φ̄ = 𝑀 and 𝑒 ⟶ 𝑒′, then 𝑀
Δ
⟶ 𝑀′ and ⟦𝑒′⟧𝛼Φ̄′ = 𝑀′ for some

Φ̄′.

Ultimately, we believe that the relation cannot be obtained directly by a compilation
algorithm. That means it is not because of how the compilation rules are defined. To prevent
coordination of coordinated choice, we need to give distinct names for each coordinated
choice, which is a sub-expression, but as we have seen in the counter-example, a sub-
expression could pop-up to the top level, which leads us to an inconsistency.

Summarizing the discussion, we could see that coordination does not happen in the first
step of the evaluation for a complied expression; but we cannot guarantee the property
after the first step because an expression can have no relation to the compilation rules. So,
we take another indirect strategy. Firstly, we define a relation characterizing expressions
that do not cause coordination and is preserved by an evaluation, and then we show the
image of the compilation is included in the relation. After accomplishing this, we can
easily obtain a bisimulation relation since the compilation just inserts name abstractions
and applications—an evaluation after compilation just involves (R-Sigma) reduction in some
points.

5.2 Formal System

We formalize the idea as 𝜆∥, a simply typed lambda calculus with a fix-point operator and
non-collapse choices, and 𝜆∥𝜔, a simply typed lambda calculus with a fix-point operator and
coordinated choice; and give a compilation rule from the former to the latter.

5.2.1 Source Language: 𝜆∥

The syntax, semantics, and type system of 𝜆∥𝜔 are defined as Figure 5.2, Figure 5.3, and
Figure 5.4, respectively. Those are standard ones for a simply typed lambda calculus and with
straightforward extensions for a fix-point operator 𝜇𝑓.𝑒 and non-collapse choices (𝑒1 ∥ 𝑒2).
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5 Compilation of Coordinated Choice

(𝜆𝑥.𝑒) 𝑣⟶ 𝑒[𝑥 ≔ 𝑣]
(SR-Beta)

𝜇𝑓.𝜆𝑥.𝑒⟶ (𝜆𝑥.𝑒)[𝑓 ≔ 𝜇𝑓.𝜆𝑥.𝑒]
(SR-Fix)

(𝑒11 ∥ 𝑒12) 𝑒2 ⟶(𝑒11 𝑒2 ∥ 𝑒12 𝑒2)
(SR-DistAppL)

𝑣 (𝑒21 ∥ 𝑒22)⟶ (𝑣 𝑒21 ∥ 𝑣 𝑒22)
(SR-DistAppR)

𝑒1 ⟶𝑒′1
𝑒1 𝑒2 ⟶𝑒′1 𝑒2

(SR-AppL)

𝑒2 ⟶𝑒′2
𝑣 𝑒2 ⟶𝑣𝑒′2

(SR-AppR)

𝑒1 ⟶𝑒′1
(𝑒1 ∥ 𝑒2)⟶ (𝑒′1 ∥ 𝑒2)

(SR-ChoiceL)

𝑒2 ⟶𝑒′2
(𝑒1 ∥ 𝑒2)⟶ (𝑒1 ∥ 𝑒′2)

(SR-ChoiceR)

Figure 5.3: Operational semantics of 𝜆∥

∅ ok
(SW-Empty)

Γ ok (𝑥 ∉ dom(Γ))
Γ, 𝑥∶𝑇 ok

(SW-Push)

Γ ok (𝑥∶𝑇 ∈ Γ)
Γ ⊢ 𝑥 ∶ 𝑇

(ST-Var)

Γ ⊢ 𝑒1 ∶ 𝑇1 → 𝑇2 Γ ⊢ 𝑒2 ∶ 𝑇1
Γ ⊢ 𝑒1 𝑒2 ∶ 𝑇2

(ST-App)

Γ, 𝑥∶𝑇1 ⊢ 𝑒 ∶ 𝑇2
Γ ⊢ 𝜆𝑥.𝑒 ∶ 𝑇1 → 𝑇2

(ST-Abs)

Γ, 𝑓∶𝑇1 → 𝑇2 ⊢ 𝜆𝑥.𝑒 ∶ 𝑇1 → 𝑇2
Γ ⊢ 𝜇𝑓.𝜆𝑥.𝑒 ∶ 𝑇1 → 𝑇2

(ST-Fix)

Γ ⊢ 𝑒1 ∶ 𝑇 Γ ⊢ 𝑒2 ∶ 𝑇
Γ ⊢ (𝑒1 ∥ 𝑒2) ∶ 𝑇

(ST-Choice)

Figure 5.4: Typing rules for 𝜆∥
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5.2 Formal System

Φ ⩴ 𝛼 | 𝜖 | ⚪ | ⚫ | Φ1Φ2
𝜑 ⩴ ∅ | Φ | 𝜑1𝜑2 | 𝜑1 + 𝜑2 | 𝜑∗

𝜏 ⩴ nat | 𝜏1
𝜑
→ 𝜏2 | ∀𝛼.𝜑𝜏

𝑀 ⩴ 𝑥 | 𝑀1𝑀2 | 𝜆𝑥.𝑀 | 𝑀Φ | Λ𝛼.𝑀 | 𝜇𝑓.𝑀 | (𝑀1 ∥Φ 𝑀2)
Ξ ⩴ ∅ | Ξ, 𝑥∶𝜏 | Ξ, 𝛼
𝑉 ⩴ 𝜆𝑥.𝑀 | Λ𝛼.𝑀

Figure 5.5: Syntax of 𝜆∥𝜔

“Non-collapse” means that a choice dose not really choose an alternative (like (𝑒1 ∥ 𝑒2)⟶ 𝑒1)
as coordinated choice does not, but also it never coordinate alternatives.

5.2.2 Target Language: 𝜆∥𝜔

The syntax and semantics of 𝜆∥𝜔 are shown in Figure 5.5 and Figure 5.6, respectively. As
far as the semantics, 𝜆∥𝜔 is just a simply typed lambda calculus with coordinated choice, c.f.
𝜆𝐻∥Φ . An interesting part of 𝜆∥𝜔 is an effect system [42], which is a kind of type system. The
effect system of 𝜆∥𝜔 estimates names happening during execution and rejects an expression
which will causes synchronization, and so this is the relation that we have mentioned at the
last of Section 5.1.

We range over effects with a meta-variable 𝜑. Effects of 𝜆∥𝜔 are denoted by regular
expressions: the empty set ∅; literal strings Φ including the empty string 𝜖; concatenations
𝜑1𝜑2; alternations 𝜑1 + 𝜑2; and Kleene star 𝜑∗.

Function types and forall types are annotated by effects, which express the effect happening
when a function is used. Forall types ∀𝛼.𝜑𝜏 bind 𝛼 in 𝜑 and 𝜏.

Definition 5.2.1. A closed term is one in which both free variables and free name variables
are empty. We denote closed terms with over-barred meta-variables, e.g., Φ̄, ̄𝜑.

Definition 5.2.2. We denote the language, a set of names, represented by an effect 𝜑 as
𝕃(𝜑).

5.2.3 Effect System

The effect system for 𝜆∥𝜔 consists of the subtyping relation 𝜏1 <∶ 𝜏2; the well-formedness
relations Ξ ok, Ξ ⊩ Φ, Ξ ⊩ 𝜑, and Ξ ⊩ 𝜏; and typing relation Ξ ⊢ 𝑀 ∶ 𝜏 & 𝜑.

Well-formedness rules just check a closedness of types by (TW-NVar) and (TW-Forall).
Typing rules are the heart of the effect system. The judgment Ξ ⊢ 𝑀 ∶ 𝜏 & 𝜑 denotes an

usual typing relation by the left side of & and what names will occur during an evaluation of
𝑀 by the right side of &. So, ignoring the right side of &, rules are already familiar. For the
effect part, the rules becomes complicated because of showing meta-properties.

(TT-Var), (TT-Abs), (TT-SAbs), and (TT-Fix) are rather easy. Corresponding expressions
for those are never evaluated (fix-point operator is evaluated but soon reaches a value);
and therefore, those produce no names examined. This is why the effect part of those rules
becomes empty. Note that functions’ body is evaluated when an argument is given; so the
effect of the body is recorded on types and added at an application point, c.f. (TT-Abs) and
(TT-App).
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5 Compilation of Coordinated Choice

(𝜆𝑥.𝑀)𝑉
Δ
⟶𝑀[𝑥 ≔ 𝑉]

(TR-Beta)

(Λ𝛼.𝑀)Φ
Δ
⟶𝑀[𝛼 ≔ Φ]

(TR-Sigma)

𝜇𝑓.𝜆𝑥.𝑀
Δ
⟶(𝜆𝑥.𝑀)[𝑓 ≔ 𝜇𝑓.𝜆𝑥.𝑀]

(TR-Fix)

(𝑀1 ∥Φ 𝑀2)𝑀3
Δ
⟶(𝑀1𝑀3 ∥Φ 𝑀2𝑀3)

(TR-DistAppL)

𝑉 (𝑀1 ∥Φ 𝑀2)
Δ
⟶(𝑉𝑀1 ∥Φ 𝑉𝑀2)

(TR-DistAppR)

(𝑀1 ∥Φ1 𝑀2) Φ2
Δ
⟶(𝑀1Φ2 ∥Φ1 𝑀2Φ2)

(TR-DistSApp)

𝑀1
Δ
⟶𝑀′

1

𝑀1𝑀2
Δ
⟶𝑀′

1𝑀2

(TR-AppL)

𝑀
Δ
⟶𝑀′

𝑉𝑀
Δ
⟶𝑉𝑀′

(TR-AppR)

𝑀
Δ
⟶𝑀′

𝑀Φ
Δ
⟶𝑀′Φ

(TR-SApp)

𝑀1
Δ∪{Φ+}⟶ 𝑀′

1

(𝑀1 ∥Φ 𝑀2)
Δ
⟶(𝑀′

1 ∥Φ 𝑀2)
(TR-ChoiceL)

𝑀2
Δ∪{Φ−}⟶ 𝑀′

2

(𝑀1 ∥Φ 𝑀2)
Δ
⟶(𝑀1 ∥Φ 𝑀′

2)
(TR-ChoiceR)

(𝑀1 ∥Φ 𝑀2)
Δ∪{Φ+}⟶ 𝑀1

(TR-WorldL)

(𝑀1 ∥Φ 𝑀2)
Δ∪{Φ−}⟶ 𝑀2

(TR-WorldR)

Figure 5.6: Operational semantics of 𝜆∥𝜔

nat <∶ nat
(TS-Nat)

𝜏21 <∶ 𝜏11 𝜏12 <∶ 𝜏22 (𝕃(𝜑1) ⊆ 𝕃(𝜑2))

𝜏11
𝜑1→ 𝜏12 <∶ 𝜏21

𝜑2→ 𝜏22
(TS-Arrow)

𝜏1 <∶ 𝜏2 (𝕃(𝜑1) ⊆ 𝕃(𝜑2))
∀𝛼.𝜑1𝜏1 <∶ ∀𝛼.𝜑2𝜏2

(TS-Forall)

Figure 5.7: Effect system of 𝜆∥𝜔 (1): subtyping rules
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5.2 Formal System

∅ ok
(TW-Empty)

Ξ ok Ξ ⊩ 𝜏 (𝑥 ∉ dom(Ξ))
Ξ, 𝑥∶𝜏 ok

(TW-Push)

Ξ ok (𝛼 ∉ ndom(Ξ))
Ξ, 𝛼 ok

(TW-PushS)

Ξ ok (𝛼 ∈ Ξ)
Ξ ⊩ 𝛼

(TW-NVar)

Ξ ok
Ξ ⊩ 𝜖

(TW-Eps)

Ξ ok
Ξ ⊩ ⚪

(TW-On)

Ξ ok
Ξ ⊩ ⚫

(TW-Off)

Ξ ⊩ Φ1 Ξ ⊩ Φ2

Ξ ⊩ Φ1Φ2
(TW-Append)

Ξ ok
Ξ ⊩ ∅

(TW-Empty)

Ξ ⊩ 𝜑1 Ξ ⊩ 𝜑2

Ξ ⊩ 𝜑1𝜑2
(TW-Dot)

Ξ ⊩ 𝜑1 Ξ ⊩ 𝜑2

Ξ ⊩ 𝜑1 + 𝜑2
(TW-Plus)

Ξ ⊩ 𝜑
Ξ ⊩ 𝜑∗

(TW-Star)

Ξ ok
Ξ ⊩ nat

(TW-Nat)

Ξ ⊩ 𝜏1 Ξ ⊩ 𝜏2 Ξ ⊩ 𝜑

Ξ ⊩ 𝜏1
𝜑
→ 𝜏2

(TW-Arrow)

Ξ, 𝛼 ⊩ 𝜏 Ξ, 𝛼 ⊩ 𝜑
Ξ ⊩ ∀𝛼.𝜑𝜏

(TW-Forall)

Figure 5.8: Effect system of 𝜆∥𝜔 (2): well-formedness rules
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5 Compilation of Coordinated Choice

Ξ ok (𝑥∶𝜏 ∈ Ξ)
Ξ ⊢ 𝑥 ∶ 𝜏 & ∅

(TT-Var)

Ξ ⊢ 𝑀1 ∶ 𝜏1
Φ�̄�1→ 𝜏2 & Φ ̄𝜑2 Ξ ⊢ 𝑀2 ∶ 𝜏1 & Φ ̄𝜑3 (⨄𝑘∈{1,2,3} 𝕃( ̄𝜑𝑘))

Ξ ⊢ 𝑀1𝑀2 ∶ 𝜏 & Φ( ̄𝜑1 + ̄𝜑2 + ̄𝜑3)
(TT-App)

Ξ, 𝑥∶𝜏1 ⊢ 𝑀 ∶ 𝜏2 & 𝜑

Ξ ⊢ 𝜆𝑥.𝑀 ∶ 𝜏1
𝜑
→ 𝜏2 & ∅

(TT-Abs)

Ξ ⊢ 𝑀 ∶ ∀𝛼.𝜑1𝜏 & Φ′ ̄𝜑2 Ξ ⊩ Φ (𝕃(𝜑1[𝛼 ≔ Φ]) ⊆ 𝕃(Φ′ ̄𝜑3)) (𝕃( ̄𝜑2) ⊎ 𝕃( ̄𝜑3))
Ξ ⊢ 𝑀Φ ∶ 𝜏[𝛼 ≔ Φ] & Φ′( ̄𝜑2 + ̄𝜑3)

(TT-SApp)
Ξ, 𝛼 ⊢ 𝑀 ∶ 𝜏 & 𝜑

Ξ ⊢ Λ𝛼.𝑀 ∶ ∀𝛼.𝜑𝜏 & ∅
(TT-SAbs)

Ξ, 𝑓∶𝜏1
𝜑
→ 𝜏2 ⊢ 𝜆𝑥.𝑀 ∶ 𝜏1

𝜑
→ 𝜏2 & ∅

Ξ ⊢ 𝜇𝑓.𝜆𝑥.𝑀 ∶ 𝜏1
𝜑
→ 𝜏2 & ∅

(TT-Fix)

Ξ ⊢ 𝑀1 ∶ 𝜏 & Φ′ ̄𝜑1 Ξ ⊢ 𝑀2 ∶ 𝜏 & Φ′ ̄𝜑1 Ξ ⊩ Φ (𝕃(Φ) ⊆ 𝕃(Φ′ ̄𝜑2)) (𝕃( ̄𝜑1) ⊎ 𝕃( ̄𝜑2))
Ξ ⊢ (𝑀1 ∥Φ 𝑀2) ∶ 𝜏 & Φ′( ̄𝜑1 + ̄𝜑2)

(TT-Choice)
Ξ ⊢ 𝑀 ∶ 𝜏1 & 𝜑1 Ξ ⊩ 𝜏2 Ξ ⊩ 𝜑2 𝜏1 <∶ 𝜏2 (𝕃(𝜑1) ⊆ 𝕃(𝜑2))

Ξ ⊢ 𝑀 ∶ 𝜏2 & 𝜑2
(TT-Sub)

Figure 5.9: Effect system of 𝜆∥𝜔 (3): typing rules
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5.3 Property

(TT-App), (TT-SApp), and (TT-Choice) have complicated side-conditions. To explain the
rules, we will starts from the following rather ideal and simple rule for coordinate choices.

Ξ ⊢ 𝑀1 ∶ 𝜏 & 𝜑1 Ξ ⊢ 𝑀2 ∶ 𝜏 & 𝜑2 Ξ ⊩ Φ
Ξ ⊢ (𝑀1 ∥Φ 𝑀2) ∶ 𝜏 & 𝜑1 + 𝜑2 + Φ

This rule just estimate the names which occur along an evaluation and impose no restriction.
𝑀1 will cause names represented by the regular expression 𝜑1,𝑀2 will cause names repre-
sented by the regular expression 𝜑2, and the choice itself already causes the name Φ. So the
whole effect is the alternation of those.

The next step is to introduce a restriction to the rule. The idea of restriction is so simple—
coordination never happens if names of sub-expressions do not overlap. So the rule will
become the following.

Ξ ⊢ 𝑀1 ∶ 𝜏 & 𝜑1 Ξ ⊢ 𝑀2 ∶ 𝜏 & 𝜑2 Ξ ⊩ Φ (𝕃(𝜑1) ⊎ 𝕃(𝜑2) ⊎ 𝕃(Φ))
Ξ ⊢ (𝑀1 ∥Φ 𝑀2) ∶ 𝜏 & 𝜑1 + 𝜑2 + Φ

The last step comes from a technical reason. The naive side-condition breaks subject
reduction lemma. We need the following property for the subject reduction lemma.

Proposition 5.2.3. If Ξ, 𝛼 ⊢ 𝑀 ∶ 𝜏 & 𝜑 and fnv(Φ) ⊆ ndom(Ξ), then Ξ ⊢ 𝑀[𝛼 ≔ Φ] ∶
𝜏[𝛼 ≔ Φ] & 𝜑[𝛼 ≔ Φ].

However, the name substitution for the effect breaks the disjunctivity. (For instance, 𝕃(𝛼)
and 𝕃(⚪) are disjunctive, but 𝕃(𝛼[𝛼 ≔ ⚪]) and 𝕃(⚪[𝛼 ≔ ⚪]) are not.)

To amend the problem we adopt more specific side-condition as follows and make the
effect in the conclusion as Φ′( ̄𝜑1 + ̄𝜑2 + ̄𝜑3).

𝕃(𝜑1) ⊆ 𝕃(Φ′ ̄𝜑1)
𝕃(𝜑2) ⊆ 𝕃(Φ′ ̄𝜑2)
𝕃(Φ) ⊆ 𝕃(Φ′ ̄𝜑3)

𝕃( ̄𝜑1) ⊎ 𝕃( ̄𝜑2) ⊎ 𝕃( ̄𝜑3)

The point is that string variables are gathered into the prefix and name disjunctivity is
guaranteed by the closed effects, which are not altered by a substitution. Indeed, this side-
condition quite respects the compilation rules, which create a fresh name by appending the
constants ⚪,⚫ to the tail of seed and a string variable is pushed to the head of the seed.

The (TT-Choice) is almost obtained. We can drive away the first two subset relation into
(TT-Sub). Additionally, it can be seen that the effects from left and right side of a choice,
namely 𝜑1 and 𝜑2, need not be distinct since both sides never collaborate. So, we can take
one large effect ̄𝜑 which subsume 𝜑1 and 𝜑2 instead of ̄𝜑1 and ̄𝜑2, i.e., 𝕃(𝜑1) ⊆ 𝕃(Φ′ ̄𝜑) and
𝕃(𝜑2) ⊆ 𝕃(Φ′ ̄𝜑).

(TT-App) and (TT-SApp) is constructed in a similar manner.

5.3 Property

In the proof of this section, we implicitly use well-known properties about regular expressions,
e.g., 𝕃(𝜖𝜑) = 𝕃(𝜑), 𝕃(𝜑1(𝜑2 + 𝜑3)) = 𝕃(𝜑1𝜑2 + 𝜑1𝜑3), etc. This is one reason we have not
fully mechanized the proofs yet.
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5 Compilation of Coordinated Choice

5.3.1 Type Soundness of 𝜆∥𝜔

We start from investigation for the effect system: the effect system prevents coordination by
Corollary 5.3.6 and the property is preserved by the reduction by Lemma 5.3.3.

Lemma 5.3.1 (Substitution). If Ξ, 𝑥∶𝜏′ ⊢ 𝑀 ∶ 𝜏 & 𝜑 and Ξ ⊢ 𝑀′ ∶ 𝜏′ & ∅, then
Ξ ⊢ 𝑀[𝑥 ≔ 𝑀′] ∶ 𝜏 & 𝜑.

Lemma 5.3.2 (Name substitution). If Ξ, 𝛼 ⊢ 𝑀 ∶ 𝜏 & 𝜑 and fnv(Φ) ⊆ ndom(Ξ), then
Ξ ⊢ 𝑀[𝛼 ≔ Φ] ∶ 𝜏[𝛼 ≔ Φ] & 𝜑[𝛼 ≔ Φ].

Lemma 5.3.3 (Subject reduction). If ∅ ⊢ 𝑀 ∶ 𝜏 & 𝜑 and𝑀
Δ
⟶𝑀′, then ∅ ⊢ 𝑀′ ∶ 𝜏 & 𝜑.

Definition 5.3.4. Non-coordinated reduction relation, denoted as 𝑀 ⟹ 𝑀′, is derived
from the rules in Figure 5.6 by replacing

Δ
⟶ with ⟹ and removing (TR-WorldL) and

(TR-WorldR).

Lemma 5.3.5. If ∅ ⊢ 𝑀 ∶ 𝜏 & 𝜑, 𝑀
Δ
⟶ 𝑀′, and 𝕃(𝜑) ⊎ {𝜔 ∣ 𝜔+ ∈ Δ ∨ 𝜔− ∈ Δ}; then

𝑀 ⟹𝑀′.

Corollary 5.3.6 (Non-coordination). If ∅ ⊢ 𝑀 ∶ 𝜏 & 𝜑 and𝑀
∅
⟶𝑀′, then𝑀 ⟹𝑀′.

5.3.2 Soundness of Compilation

Towards the goal we show a well-typed expression in 𝜆∥ is mapped into a well-typed expres-
sion in 𝜆∥𝜔 by the compilation.

Definition 5.3.7 (Compilation for types). Compilation for types is given as follows.

⟦nat⟧ = nat

⟦𝑇1 → 𝑇2⟧ = ⟦𝑇1⟧
∅
→ ∀𝛼.𝛼(⚪+⚫)∗⟦𝑇2⟧

Definition 5.3.8 (Compilation for typing environment). Compilation for typing environment
is given by the following obvious way.

⟦∅⟧ = ∅
⟦Γ, 𝑥∶𝑇⟧ = ⟦Γ⟧, 𝑥∶⟦𝑇⟧

Lemma 5.3.9. ∅ ⊩ ⟦𝑇⟧.

Lemma 5.3.10. ⟦Γ⟧ ok.

Lemma 5.3.11. If Γ ⊢ 𝑒 ∶ 𝑇, then ⟦Γ⟧, 𝛼 ⊢ ⟦𝑒⟧𝛼Φ̄ ∶ ⟦𝑇⟧ & 𝛼Φ̄(⚪ + ⚫)∗.

Proof. The proof is by induction on the given derivation.
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5.3 Property

⌊𝑥⌋ = 𝑥
⌊𝑀1𝑀2⌋ = ⌊𝑀1⌋ ⌊𝑀2⌋
⌊𝜆𝑥.𝑀⌋ = 𝜆𝑥.⌊𝑀⌋
⌊𝑀Φ⌋ = ⌊𝑀⌋ 𝜆𝑥.𝑥

⌊Λ𝛼.𝑀⌋ = 𝜆𝑥.⌊𝑀⌋ where 𝑥 is fresh
⌊𝜇𝑓.𝑀⌋ = 𝜇𝑓.⌊𝑀⌋

⌊(𝑀1 ∥Φ 𝑀2)⌋ = (⌊𝑀1⌋ ∥ ⌊𝑀2⌋)

Figure 5.10: Name erasure function

5.3.3 Bisimulation

Next we show a well-typed expression in 𝜆∥𝜔 behaves as same as the expression of 𝜆∥ which
is obtained by erasing the name related parts.

Definition 5.3.12 (strong bisimulation between 𝜆∥ and 𝜆∥𝜔). A binary relation 𝑅 between
𝜆∥ and 𝜆∥𝜔 expressions is called strong bisimulation iff the following conditions hold.

• If 𝑒 𝑅 𝑀 and 𝑒⟶ 𝑒′, then𝑀
∅
⟶𝑀′ and 𝑒′ 𝑅 𝑀′.

• If 𝑒 𝑅 𝑀 and𝑀
∅
⟶𝑀′, then 𝑒⟶ 𝑒′ and 𝑒′ 𝑅 𝑀′.

Definition 5.3.13 (weak bisimulation between 𝜆∥ and 𝜆∥𝜔). A binary relation 𝑅 between 𝜆∥
and 𝜆∥𝜔 expressions is called weak bisimulation iff the following conditions hold.

• If 𝑒 𝑅 𝑀 and 𝑒⟶ 𝑒′, then𝑀
∅

⟶∗ 𝑀′ and 𝑒′ 𝑅 𝑀′.

• If 𝑒 𝑅 𝑀 and𝑀
∅
⟶𝑀′, then 𝑒⟶∗ 𝑒′ and 𝑒′ 𝑅 𝑀′.

Definition 5.3.14 (weak bisimulation for 𝜆∥). We also call a binary relation 𝑅 between 𝜆∥
expressions weak bisimulation iff the following conditions hold.

• If 𝑒1 𝑅 𝑒2 and 𝑒1 ⟶𝑒′1, then 𝑒2 ⟶∗ 𝑒′2 and 𝑒′1 𝑅 𝑒′2.

• If 𝑒1 𝑅 𝑒2 and 𝑒2 ⟶𝑒′2, then 𝑒1 ⟶∗ 𝑒′1 and 𝑒′1 𝑅 𝑒′2.

Definition 5.3.15. We define the name erasure function ⌊⋅⌋ from 𝜆∥𝜔 expressions into 𝜆∥
expressions as in Figure 5.10. The important point of the definition is that name abstractions
and applications are replaced by dummy lambda abstractions and applications. If we do not
do that, i.e., just erase the name abstractions and applications, it will happens that a value of
𝜆∥𝜔, which cannot be evaluated, is evaluated in 𝜆∥ after applying the name erasure function.
(Consider Λ𝛼.(𝜆𝑥.𝑥) 𝜆𝑥.𝑥 and name erased expression (𝜆𝑥.𝑥) 𝜆𝑥.𝑥.)

Lemma 5.3.16. ⌊𝑀[𝑥 ≔ 𝑀′]⌋ = ⌊𝑀⌋[𝑥 ≔ ⌊𝑀′⌋].

Proof. The proof is routine by structural induction on𝑀.
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5 Compilation of Coordinated Choice

⌈𝑥⌉ = 𝑥
⌈𝑒1 𝑒2⌉ = ⌈𝑒1⌉ ⌈𝑒2⌉ 𝜆𝑥.𝑥
⌈𝜆𝑥.𝑒⌉ = 𝜆𝑥.𝜆𝑦.⌈𝑒⌉ where 𝑦 is fresh
⌈𝜇𝑓.𝑒⌉ = 𝜇𝑓.⌈𝑒⌉

⌈(𝑒1 ∥ 𝑒2)⌉ = (⌈𝑒1⌉ ∥ ⌈𝑒2⌉)

Figure 5.11: Pseudo compilation

Lemma 5.3.17. ⌊𝑀[𝛼 ≔ Φ]⌋ = ⌊𝑀⌋.

Proof. The proof is routine by structural induction on𝑀.

Lemma 5.3.18. If ∅ ⊢ 𝑀 ∶ 𝜏 & 𝜑 and ⌊𝑀⌋⟶ 𝑒′, then𝑀
∅
⟶𝑀′ and ⌊𝑀′⌋ = 𝑒′.

Proof. The proof is by induction on the given derivation of ∅ ⊢ 𝑀 ∶ 𝜏 & 𝜑. Note that
well-typedness of𝑀 is necessary because function applications and name applications are
collapsed by name erasing.

Lemma 5.3.19. If𝑀 ⟹𝑀′, then ⌊𝑀⌋⟶ ⌊𝑀′⌋.

Proof. The proof is by induction on the given derivation.

Corollary 5.3.20. If ∅ ⊢ 𝑀 ∶ 𝜏 & 𝜑 and𝑀
∅
⟶𝑀′, then ⌊𝑀⌋⟶ ⌊𝑀′⌋.

Proof. This is a corollary of Corollary 5.3.6 and Lemma 5.3.19.

Definition 5.3.21. We give the binary relation between source expressions and target
expressions, written 𝑒 ∼ 𝑀 as follows.

𝑒 ∼ 𝑀 ⟺ ∅ ⊢ 𝑀 ∶ 𝜏 & 𝜑 ∧ ⌊𝑀⌋ = 𝑒

Corollary 5.3.22. ∼ is a strong bisimulation.

Proof. This is a corollary of Lemma 5.3.3, Lemma 5.3.18, and Corollary 5.3.20.

Corollary 5.3.23. If ∅ ⊢ 𝑒 ∶ 𝑇, then ⌊⟦𝑒⟧𝛼Φ̄[𝛼 ≔ 𝜖]⌋ ∼ ⟦𝑒⟧𝛼Φ̄[𝛼 ≔ 𝜖].

Proof. This is a corollary of Lemma 5.3.2 and Lemma 5.3.11.

Definition 5.3.24. We define the pseudo compilation from/to 𝜆∥ expressions as shown in
Figure 5.11. This function is not essential for our discussion, but we use the function for
convenience writing in the following.

Lemma 5.3.25. ⌊⟦𝑒⟧𝛼Φ̄⌋ = ⌈𝑒⌉.

Lemma 5.3.26. ⌈𝑒[𝑥 ≔ 𝑒′]⌉ = ⌈𝑒⌉[𝑥 ≔ ⌈𝑒′⌉].

Lemma 5.3.27. If ⌈𝑒⌉⟶ 𝑒′, then 𝑒⟶∗ 𝑒″ and ⌈𝑒″⌉ = 𝑒′.
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5.4 Summary

Lemma 5.3.28. If 𝑒⟶ 𝑒′, then ⌈𝑒⌉⟶∗ 𝑒″ and ⌈𝑒′⌉ = 𝑒″.

Definition 5.3.29. We give the binary relation between 𝜆∥ expressions, denoted by ≈, as
𝑒 ≈ ⌈𝑒⌉.

Corollary 5.3.30. The binary relation 𝑒 ≈ ⌈𝑒⌉ is a weak bisimulation.

Theorem 5.3.31. If ∅ ⊢ 𝑒 ∶ 𝑇, then 𝑒 ≈ ∘ ∼ ⟦𝑒⟧𝛼𝜖 [𝛼 ≔ 𝜖].

The result is a bit blurred since expressions before and after compilation are related by
two relations. More directly, the correspondence can be shown as follows.

𝑒⟶∗ 𝑒′

⟦𝑒⟧𝛼𝜖 [𝛼 ≔ 𝜖]
∅

⟶∗ 𝑀′
and ⌈𝑒′⌉ = ⌊𝑀′⌋

5.4 Summary

We give a compilation algorithm from 𝜆∥, a simply typed lambda calculus with nondetermin-
istic choice, into 𝜆∥𝜔, a simply typed lambda calculus with coordinated choice; and show the
compilation is sound and correct. The discussion is based not on a manifest contract system,
but we believe that the result can be applied to PCFvΔH and 𝜆𝐻∥Φ , and we could implement
dependent function types in PCFvΔH since the facility of coordinate choices and manifest
contract systems are orthogonal.
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6 Related Work

Manifest contract calculi. Since the beginning of manifest contracts for hybrid type
checking [19], several extended calculi have been proposed: onewith algebraic data types [54];
onewith stateful computation [52]; oneswith parametric polymorphism [1, 53]; and Sage [22],
a manifest contract calculus with recursive types, dynamic types, and the Type:Type disci-
pline [4]. We think that nondeterminism is an orthogonal issue and our approach is easy to
integrate to those calculi.

One remark is that some studies [29, 54] use nondeterminism, but One [54] force to make
their operational semantics deterministic by assuming an oracle machine which chooses cor-
rect alternatives deterministically. Another [29] use actual nondeterminism. However, they
use nondeterministic expressions only for a type reconstruction, which includes predicate
synthesis; and thus it is not intended that they appear in source code.

Static verification by using a dependent refinement type system. Although we give
only dynamic checking in this paper, there are broad studies on static verification of higher-
order functional programs [51, 58, 31, 57, 66, 61, 59, 11]. The main difference from a manifest
contract calculus is that predicates of their refinement types are written in logical formulae.
Thus, the decidability of their verification methods rely on that of the logic they adopt. It
carries the trade-off: if logic is decidable, predicates are less expressive than the manifest
way; or otherwise, predicates are indeed more expressive, but a verifier (compiler) makes
false positives. A manifest contract system stays in the middle with paying run-time cost in
exchange for no false positives. Note that hybrid type checking [19]—the origin of manifest
contract systems—combines static checking via subsumption rules; and some studies [1, 53]
conjectured that up-casts, e.g., (0 ∶ {𝑥∶int ∣ 𝑥 = 0} ⇒ {𝑥∶int ∣ 𝑥 ≥ 0}), can be eliminated
as optimization by defining a subtyping relation as an afterthought. So we would pay back
some run-time cost even in a manifest contract system.

We should relate [59] in more detail. They proposed a verification method for a nonde-
terministic functional programming language. They avoid the difficulties discussed in this
paper by restricting predicates in refinement types to be pure—actually, those are formulae
of second-order arithmetic. The novelty in their type system is that it can expresses safety,
non-safety, termination, and non-termination properties by using extended refinement types.
A safety property means that the property holds in every possibility; and a non-safety property
means that there exists a possibility in which the property holds. What we study in this paper
can be viewed as a technique of dynamic verification of a non-safety property. It requires
further work to see how static verification of casts (to see if each cast is successful) is related
to Unno, Satake, and Terauchi’s static verification technique. Due to the nature of dynamic
verification, termination verification is out of our scope.

Nondeterministic lambda calculi. Semantics of nondeterministic choice is studied from
a long time ago [36]. Well known semantics of nondeterministic choice is summarized
by Søndergaard and Sestoft [55]. Dezani-Ciancaglini et al. studied a calculus equipped
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6 Related Work

with two of those semantics together, as parallelism and internal choice, and gave a fully
abstract semantics to justify their operational semantics [13]. Set-based reduction for choice
was proposed by Kutzner and Schmidt-Schauß in order to guarantee confluence with non-
deterministic choice [32]. They also demonstrated that their language has the unfolding
property [55]—a function application can be unfolded into a function body where actual
arguments are substituted for formal (so the argument might be duplicated) without changing
the meaning of the program; but what they actually proved is that an application to a “pure”
expression can be unfolded, and they gave the method to discriminate pure and impure
expressions. Therefore, their semantics does not suffice for our setting—we need semantics
in which arbitrary expressions could duplicate.

There are few studies on dependent type systems for nondeterministic languages. In his
manuscript [63], Warrell proposed a probabilistic dependent type system. His motivation
is an investigation of Curry-Howard isomorphism for Markov logic network. As far as we
understand, the type system has a (probabilistic) branching operator for types, as well as
terms, and it appears that typechecking requires computation of normal forms. So, it is not
clear how his method can be applied to Turing-complete languages.

Variational programming. Apart from nondeterminism, software product line (SPL)
community develops a type system [25] which deal with variation of code. They try to type
check all variants of a single code—like C code switching features by #ifdef macro—
without generating each variant code (because, in SPL engineering, the number of variants
tends to be a quite large and it is hard to type check all variants separately). Their system
has some similarity to our type system in the sense that a type of code varies according to
the context it inhabits.

For a more theoretical aspect, Erwig study the choice calculus [16], a primitive model
handling software variation. Since their work targets code variation, it has no operational
semantics; but one extension [7] gave an operational semantics in order to manipulate
variants at runtime. The semantics is quite similar in the point of synchronization of choice
which is a one for code variants in their work (and not for nondeterminism); but other
parts are fairly different and specialized for a specific purpose, e.g., their calculus has no
mechanism to generate fresh choice points.

Intersection types. Intersection types were introduced in Curry-style type assignment
systems by Coppo et al. [10] and Pottinger [48] independently. In the early days, intersection
types are motivated by improving a type system to make more lambda terms typeable; one
important result towards this direction is that: a lambda term has a type iff it can be strongly
normalized [48, 60]. Then, intersection types are introduced to programming languages to
enrich the descriptive power of types [50, 2, 15].

Intersection Contracts for Untyped Languages. One of the first attempts at imple-
menting intersection-like contracts is found in DrRacket [18]. It is, however, a naive im-
plementation, which just enforces all contracts even for functional values, and thus the
semantics of higher-order intersection contracts is rather different from ours.

Keil and Thiemann [26] have proposed an untyped calculus of blame assignment for a
higher-order contract system with intersection and union. As we have mentioned, our
run-time checking semantics is strongly influenced by their work, but there are two essential
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differences. On the one hand, they do not have the problem of varying run-time checking
according to a typing context; they can freely put contract monitors1 where they want since
it is an untyped language. On the other hand, their operational semantics is made rather
complicated due to blame assignment.

More recently, Williams et al. [64] have proposed more sorted out semantics for a higher-
order contract system with intersection and union. They have mainly reformed contract
checking for intersection and union “in a uniform way”; that is, each is handled by only one
similar and simpler rule. As a result, their presentation becomes closer to our semantics,
though complication due to blame assignment still remains. A similar level of complication
will be expected if we extend our calculus with blame assignment.

It would be interesting to investigate the relationship between their calculi and PCFvΔH
extended with blame labels, following Greenberg et al. [21].

Gradual Typing with Intersection Types. Castagna and Lanvin [5] have proposed grad-
ual typing for set-theoretic types, which contain intersection types, as well as union and
negation. A framework of gradual typing is so close to manifest contract systems that there
is even a study unifying them [62]. A gradual typing system translates a program into an
intermediate language that is statically typed and uses casts. Hence, they have the same
problem—how casts should be inserted when intersection types are used. They solve the
problem by type-case expressions, which dynamically dispatch behavior according to the
type of a value. However, it is not clear how type-case expressions scale to a larger language.
In fact, the following work [6], an extension to parametric polymorphism and type inference,
removes (necessity of) type-case expressions but imposes instead a restriction on functions
not to have an intersection type. Furthermore, the solution using type-case expressions relies
on strong properties of set-theoretic types. So, it is an open problem if their solution can
be adopted to manifest contract systems because there is not set-theoretic type theory for
refinement types and, even worse, dependent function types.

1A kind of casts in their language.
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7 Conclusion

In this thesis, we develop a typed software contracts. Especially we focus on the way to
write conjunctive contracts. Technically we give two manifest contract systems and give the
idea which could be used to combine two systems.

In Chapter 3, we have designed and formalized a manifest contract system PCFvΔH with
refinement intersection types. As a result of our formal development, PCFvΔH guarantees not
only ordinary preservation and progress but also the property that a value of an intersection
type, which can be seen as an enumeration of small contracts, satisfies all the contracts. The
characteristic point of our formalization is that we regard a manifest contract system as an
extension of a more basic calculus, which has no software contract system, and investigate the
relationship between the basic calculus and the manifest contract system. More specifically,
essential computation and dynamic checking are separated. We believe this investigation
is important for modern manifest contract systems because those become more and more
complicated and the separation is no longer admissible at a glance.

In Chapter 4, we have developed 𝜆𝐻∥Φ , a nondeterministic manifest contract calculus.
By introducing a new kind of choice called coordinated choice, the calculus is free from
restriction in the kind of programs used in predicates in refinements types. Coordinated
choice can share nondeterministic decisions by using names and the semantics is given in
such a way that a program reduces to the set (expressed by ∥) of all possible results. The
semantics makes a choice copyable by substitution and solves problems that occur when we
introduce dependent function types. The semantics and type system of 𝜆𝐻∥Φ are given by
using the characteristic concept called orthant. Orthant gives the view for a choice. Since the
view does not change the meaning of expressions except choices, we expect that coordinated
choice is quite easily integrated into other manifest contract systems. By the observation,
we hope this approach is easily applied to any other languages.

In Chapter 5, we give a compilation algorithm from 𝜆∥, a simply typed lambda calculus
with nondeterministic choice, into 𝜆∥𝜔, a simply typed lambda calculus with coordinated
choice; and show the compilation is sound and complete. The discuss is based not on a
manifest contract system, but we believe that the result can be applied to PCFvΔH and 𝜆𝐻∥Φ ,
and we could implement dependent function types in PCFvΔH since the facility of coordinate
choices and manifest contract systems are orthogonal.

Future Work. Obvious future work is to complete the integration of PCFvΔH and 𝜆𝐻∥Φ .
We show the compilation method on a simply typed system. So, it is still unknown how
we re-organize the discussion on a dependently typed system. Actually, we predict some
coordination is unavoidable in a dependently typed system. It arises another interesting
question—what nondeterministic choices in a dependently typed system actually are?

Another future work is a specific one for manifest contract systems. A property called up-
cast elimination [1]—a cast from subtype into supertype can be safely removed at compile-time.
This property is quite important not only because of efficiency but also to show a cast raises
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7 Conclusion

unintentional blame. Some one noticed that a type soundness holds even if a cast always
fails because soundness only tell us an information about succeeded computation. In spite of
the importance, the property is shown in few manifest contract systems because the proof
tends to too complicated.

Towards a practical language, cast semantics we adopt in this thesis is too naive and
inefficient, which duplicate code frequently. For instance, it will be quite inefficient to
evaluate both sides of a strong pair independently since its essence part just computes
the same thing. The inefficiency might be reduced by a kind of sharing structures. For
the nondeterminism, our theoretical result gives us useful information only for successful
evaluation paths; but we have not given a way to pick up a successful one. One obvious way
is computing every evaluation path, but of course, it is quite inefficient.
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