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ABSTRACT
Glucose is the most abundant monosaccharide, and an essential source of energy for
most living cells. Glucose transport across the cell membrane is mediated by two types of
transporters: facilitative glucose transporters (gene name: solute carrier 2A) and sodium–
glucose cotransporters (SGLTs; gene name: solute carrier 5A). Each transporter has its own
substrate specificity, distribution, and regulatory mechanisms. Recently, SGLT1 and SGLT2
have attracted much attention as therapeutic targets for various diseases. This review
addresses the basal and functional properties of glucose transporters and SGLTs, and
describes the pharmaceutical potential of SGLT1 and SGLT2.

INTRODUCTION
In mammals, glucose movement into and out of cells is
achieved by glucose transporters (GLUTs) on the cell mem-
brane. GLUTs are divided into two structurally and functionally
distinct types: (i) GLUTs, which operate by facilitated diffu-
sion1,2; and (ii) sodium–glucose cotransporters (SGLTs), which
actively transport glucose against the concentration gradient by
coupling with sodium3,4. GLUTs are located in all body cells to
facilitate transport of glucose into the cells, and the concentra-
tions of glucose into and out of the cells become equal with
GLUTs operation1. In the SGLTs, which comprise a family of
at least six different isoforms in humans, glucose and sodium
are simultaneously cotransported into the cells using the
sodium concentration gradient5. Of these SGLTs, SGLT1 and
SGLT2 have been frequently investigated, because they play key
roles in the transport of glucose and sodium across the brush
border membrane of intestinal and renal cells3,6.
In the intestinal epithelium, glucose influx into the epithelial

cells is catalyzed by SGLT1 located in the apical membrane,
and the glucose flows into the circulation through GLUT2
located in the basolateral membrane5,7. Also, the two types of
transporter, GLUTs and SGLTs, work together in the renal
tubular cells, with the SGLTs (SGLT2 and SGLT1) transporting
glucose into the tubular cells across the apical membrane, and

the GLUTs (GLUT2 and GLUT1) transporting the glucose
across the basolateral membrane into the blood circulation7,8.
Recently, SGLT2 inhibitors have been developed, based on a

new concept of antidiabetic action by inhibiting renal glucose
reabsorption and increasing glucose excretion into urine.
SGLT2 inhibitors reduce glucotoxicity by lowering blood glu-
cose, and a decrease in cardiovascular death and the renal pro-
tective effects have been reported by large-scale clinical trials9.
Furthermore, SGLT1 is responsible for glucose absorption in
the small intestine and for reabsorption of the part of the fil-
tered glucose load in the kidney10, and might be an attractive
target for the maintenance of good glycemic control and
improvement of renal dysfunction7,11. In this review, we first
present an outline summary of glucose transporters: GLUTs
and SGLTs. We then focus on SGLT1 and SGLT2, and
describe the functional properties and the pharmacological
potential, including new insights.

BASAL PROPERTIES IN GLUTS
The facilitative glucose transporters, GLUTs, use the diffusion
gradient of glucose or other sugars across cell membranes, each
with unique substrate specificities, kinetic profile and expression
profile in tissues4. GLUTs are divided into three classes by the
similarity of amino acid sequence: class I facilitative trans-
porters, GLUT1–4; class II facilitative transporters, GLUT5, 7, 9
and 11; and class III facilitative transporters, GLUT6, 8, 10, 12
and a proton myo-inositol cotransporter/GLUT132,4,5.Received 3 January 2020; revised 6 March 2020; accepted 13 March 2020
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Among the class I facilitative transporters, GLUT1 has ubiq-
uitous expression, with abundant expression in the brain and
erythrocytes, and moderate expression in fat, muscle and the
liver4,12–14. GLUT1 is responsible for constitutive or basal glu-
cose uptake in the cells and can transport aldose, including
pentose and hexose1,15. GLUT2 is expressed in pancreatic b-
cells, the liver, kidney and small intestine. In rodent b-cells,
GLUT2 plays a key role in the glucose-sensing mechanism due
to the low affinity and high capacity16,17. In contrast, in human
b-cells, GLUT1 is primarily expressed, and GLUT2 is expressed
at an extremely low level18. In the liver, GLUT2 is expressed
on the sinusoidal membrane and enables the bidirectional
transport of glucose1. The GLUT2 in the kidney and small
intestine is responsible for the movement of glucose out of
absorptive epithelial cells into the blood circulation16. GLUT3
has a high affinity for glucose, and is known for its specific
expression in neurons, in particular the brain. GLUT3 is also
expressed in other cells having specific glucose requirements,
such as sperm cells and embryos5,19,20. Insulin-responsive glu-
cose transporter GLUT4 is expressed in skeletal muscle, adipose
tissue and the heart, and is also found in the brain1,21. When
insulin binds to the insulin receptors, the GLUT4 moves to the
cell membrane and facilitates glucose transport into the cells.
Among the class II facilitative transporters, GLUT5, which is

the specific transporter for fructose, is predominantly expressed
in the small intestine, testes and kidneys4,22. In the intestine,
GLUT5 is responsible for transport of hexose from the villus
epithelium with SGLT1. The hexose in the cell leaves the
epithelium through GLUT2 located in the basolateral mem-
brane16. GLUT7 is primarily expressed in the small intestine
and colon, and works as a facilitated hexose transporter23.
GLUT9 is highly expressed in the kidney and liver2. In the
human kidney, GLUT9 is expressed in proximal convoluted
tubules, and in rodents, it is expressed in distal connecting
tubules24,25. GLUT9 is reportedly a urate transporter, and some
mutations in its sequence induce hypouricemia26. GLUT9 is
also known as voltage-driven urate transporter 1 on the baso-
lateral membrane27,28. Two splice variants of GLUT11, long
and short forms (503 and 493 amino acid residues), are
expressed in a tissue-specific manner29,30, and hexose, glucose
or fructose is transported. The short form of GLUT11 is pre-
dominantly expressed in heart and skeletal muscle, and the
long form is detected in the liver, lung, trachea and brain29,30.
As for the class III facilitative transporters, GLUT6, which is

a hexose transporter protein, is highly expressed in the brain,
spleen and leukocytes4. GLUT8 is mainly expressed in the tes-
tis, and lower expressions of messenger ribonucleic acid
(mRNA) were detected in other organs, including insulin-sensi-
tive tissues5. GLUT8 has been identified as an insulin-respon-
sive glucose transporter, and reportedly has a role in glucose
uptake in the mammalian heart, along with GLUT431. GLUT10
plays a role in glucose homeostasis control, and in humans, it
has a higher mRNA level in the liver and pancreas32. GLUT12,
which can facilitate transport of a variety of hexose, is

expressed in the heart, small intestine, prostate and insulin-sen-
sitive tissues, including skeletal muscle and fat33. Proton myo-
inositol cotransporter/GLUT13 has been identified as a proton
myo-inositol cotransporter, and is highly expressed in glial cells
and some neurons, suggesting that proton myo-inositol cotrans-
porter/GLUT13 might be responsible for myo-inositol metabo-
lism regulation in the brain34,35.

OVERVIEW OF SGLTS
SGLTs constitute a large family of membrane proteins related
to various transports of glucose, amino acids, vitamins and
some ions across the apical membrane of the lumen side,
including in the small intestine and renal tubules. In humans,
six different isoforms have been reported, and two transporters,
SGLT1 (solute-carrier [SLC]5A1) and SGLT2 (SLC5A2) pro-
teins, have been widely studied36. SGLT1 was discovered by
expression cloning in 198737, and SGLT2 was identified by
homology screening in 199438. GLUTs equilibrate the glucose
levels on both sides of the plasma membrane, because the glu-
cose gradient across the membrane is the driving force, whereas
SGLT2 can exert differences in glucose concentration, because
the transmembrane sodium gradient is the driving force for
glucose uptake3–5.
SGLT1 is responsible for glucose absorption in the small

intestine, whereas SGLT2 is responsible for glucose reabsorption
in the kidney (Table 1)38,39. Considering the physiological func-
tions of SGLT1 and SGLT2, drug recovery research targeting
the transporters is reasonable. In 1987, phlorizin, an inhibitor
of SGLT1 and SGLT2, was reported to reverse experimental
diabetes in partially pancreatectomized rats40. SGLT inhibitors
have been developed using phlorizin as a lead compound7,41,42,
resulting in the development of SGLT2 inhibitors, which have
been successfully launched for the market42,43.
As for the other SGLTs, SGLT3 (gene name: SLC5A4), which

is expressed in the intestine, spleen, liver, kidney, skeletal mus-
cle and cholinergic neurons, is not a functional SGLT, and
seems to act as a glucose sensor in the plasma membrane of
cholinergic neurons44. There are only a few reports on the
other SGLTs: SGLT4, SGLT5 and SGLT6. SGLT4 (gene name:
SLC5A9) is expressed in the small intestine, kidneys, liver, lung,
brain, trachea, uterus and pancreas; SGLT5 (gene name:
SLC5A10) is expressed only in the kidneys; and SGLT6 (gene
name: SLC5A11) is considered to be a low-affinity D-glucose
transporter in the small intestine39,45. Physiological roles of
these SGLTs remain unknown.

Basal properties of SGLT1
The SGLT1 protein, encoded by the SLC5A gene on chromosome
22q13.1, is composed of 664 amino acids, comprising 14 trans-
membrane a-helical domains, a single glycosylation site between
transmembrane helices 5 and 6, and two phosphorylation sites,
between transmembrane helices 6 and 7, and between 8 and
939,45,46. The NH2 and COOH terminals are located in extracellu-
lar and intracellular membranes, respectively, and the glucose-
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binding domain is supposed to include amino acid residues 457–
46045,47. SGLT1 is a high-affinity transporter for glucose
(Michaelis–Menten constant [Km] = 0.4 mmol/L) and galactose,
whereas fructose is not transported39,48,49. Two sodium ions are
transported through the SGLT1 for each glucose molecule, and
this cotransporter is allowed to transport glucose into the cells
against its concentration gradient4.
SGLT1 mRNA expression has been detected by reverse tran-

scription polymerase chain reaction in the following tissues in
humans: small intestine, kidney, skeletal muscle, liver, lung, heart,
trachea, prostate, testis, cervix of the uterus, stomach, mesenteric
adipose tissue, pancreatic a-cells, colon and brain50–53. SGLT1
protein expression has been localized to the apical brush border
of the small intestine and the late proximal tubules, and has also
been detected in the following tissues in humans: salivary gland,
liver, lung, skeletal muscle, heart and pancreatic a-cells37,53–55.
SGLT1 reportedly exerts the transport activity by many

molecular regulations, including protein kinases. SGLT1 con-
tains strain-specific regulation sites by protein kinase A (PKA)
and protein kinase C (PKC): one PKA site in humans and rab-
bit, none in rat; five consensus PKC sites in humans and rats,
and four sites in rabbits56,57. PKA activation led to an increase
in the number of SGLT1 proteins in the membrane of the
small intestine in rats58, and PKA activator, 8-bromo-cyclic
adenosine monophosphate, or forskolin increased the SGLT
capacity and the SGLT1 activity in the plasma membrane56,58.
The expression and activity of SGLT1 is positively regulated by
PKA activity, and the effects on SGLT1 activation was inhibited
by PKA inhibitor, H-8959,60. PKC-mediated effects on SGLT1
are also reported, but obvious species differences are admitted
and the effects are controversial. PKC activation decreased the
SGLT1 transport capacity in rats and rabbits, but increased the
capacity in humans56.
In other reports, adenosine monophosphate-activated protein

kinase activation increased maximal sodium-dependent glucose
transport61,62, knockout of the serum- and glucocorticoid-in-
ducible kinase 3 caused a decrease of intestinal SGLT1 activ-
ity63, and Ste20p-related proline alanine-rich kinase caused a
decrease of SGLT1 abundance in the plasma membrane64.
Intestinal SGLT1 activity and expression are regulated by

dietary carbohydrate content. The SGLT1 activity and expres-
sion increased in mice, rats and sheep fed a high-sugar diet65,

and is maintained by the presence of luminal nutrients in the
human intestine66. In addition, SGLT1 activity and expression
are related to a diurnal rhythm that correlates waking hours
with the highest expression of SGLT167,68.

Basal properties of SGLT2
The SGLT2 protein, encoded by SLC5A2, is composed of 672
amino acids and its NH2 and COOH termini are extracellu-
lar46. The Km values in human SGLT2 for glucose and sodium
are 2 and 25 mmol/L, respectively, and, differently from
SGLT1, SGLT2 is a low-affinity and high-capacity glucose
transporter39,51. SGLT2 is predominantly expressed in the kid-
ney of rodents and humans, and low mRNA expressions were
detected in the mammary glands, testis, liver, lung, intestine,
skeletal muscle, spleen and cerebellum39,51,52,69,70. Also, SGLT2
is reportedly expressed in pancreatic a-cells and related to glu-
cagon secretion53. SGLT2 is localized in the luminal membrane
of the segment (S)1 and S2 segments of renal proximal tubules
in humans and rodents, whereas SGLT1 is localized in the
luminal membrane of the S3 segment39,52,70,71. SGLT2 is mainly
responsible for glucose reabsorption in nephron, and ≥80% of
the filtered glucose is reabsorbed in the S1 and S2 segments of
the proximal tubules through SGLT245,72.
Protein kinase A and PKC activation increased glucose

uptake by 225 and 150%, respectively, in human embryonic
renal cells expressing SGLT273. As for the mechanisms, the
PKA-mediated effect might be related to an increased rate of
vesicle fusion with the membrane; however, no such mecha-
nism was found on the PKC-mediated effect. Also, SGLT2
expression reportedly increased through the activation of
exchange protein directly activated by cyclic adenosine
monophosphate/PKA through extracellular signal-regulated
kinase/p38 and mitogen-activated protein kinase73,74. In the
renal pig cell line, interleukin-6 and tumor necrosis factor-a
increased SGLT2 mRNA and protein expressions75, and simi-
larly, the phosphorylation of transforming growth factor-b1
and the downstream transcription factor, smad3, increased the
SGLT2 protein level in human renal proximal tubular cells76.

Functional properties of SGLTs in the small intestine
SGLT1 in the small intestine is localized in the apical cell mem-
brane composing brush border (Figure 1)6,52,54. SGLT1 is

Table 1 | Tissue expression and biochemical characteristics of sodium–glucose cotransporter 1 and sodium–glucose cotransporter 2

Characteristics SGLT1 SGLT2

Site Mostly in small intestine some kidney, heart, brain etc. Mainly in kidney
Renal location S3 segment of proximal tubules S1 and S2 segments of proximal tubules
Sugar selectivity Glucose = galactose Glucose > galactose
Sodium/glucose stoichiometry 1:2 1:1
Affinity for glucose High (0.5 mmol/L) Low (2 mmol/L)
Glucose transport capacity Low High

SGLT, sodium–glucose cotransporter.
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responsible for the transport of glucose or galactose from the
lumen into the epithelial cells, whereas the facilitative trans-
porter, GLUT2, is subsequently responsible for the transport of
glucose from the basolateral membrane into the blood circula-
tion77,78.
The level of SGLT1 expression provides the capacity for glu-

cose absorption and undergoes short-term and long-term regu-
lations depending on the luminal nutrients65,66. A high-glucose
diet or a high-sodium diet reportedly increases the level of
SGLT1 expression in the small intestine65,66. Also, an increase
in the luminal glucose concentrations induces GLUT2 translo-
cation to the brush border membrane78,79.
The SGLT1 expression in the small intestine is reportedly

increased in diabetes, which is considered to be related to the
response to greater dietary glucose intake. Intestinal SGLT1

mRNA expression increased in diabetic animal models, such as
streptozotocin-induced diabetic models and Otsuka Long-Evans
Tokushima Fatty rats80,81. In type 2 diabetes patients, the
intestinal SGLT1 mRNA and protein expressions in the brush
border membrane were higher, and also the intestinal glucose
uptake was elevated82. The upregulation of SGLT1-mediated
glucose uptake in the small intestine is considered to induce
the rapid postprandial hyperglycemia in diabetes83,84.

Functional properties of SGLTs in the kidney
In the kidney, glucose is transported through the apical mem-
brane of the proximal convoluted tubule by SGLT2 and SGLT1,
and exits through the basolateral membrane of the proximal
tubule by the facilitative transporters GLUT2 and GLUT139,85.
SGLT2 is expressed in the upper part of the proximal tubule,
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Figure 1 | Glucose handling through sodium–glucose cotransporter (SGLT)1 and SGLT2. In the small intestine, dietary glucose is mainly absorbed
by SGLT1 on the brush border membrane. SGLT1 has a high-affinity (Michaelis–Menten constant [Km] = 0.4 mmol/L) for glucose, and transports
sodium and glucose with a 2:1 stoichiometry. In the kidney, filtered glucose by the renal glomerulus is reabsorbed by SGLT2 and SGLT1 expressed
in the luminal membrane of the segment (S)1 and S2 segments, and S3 segment of proximal tubules, respectively. The affinity of SGLT2 for
glucose is lower (Km = 2 mmol/L), and transport of sodium and glucose by SGLT2 occurs with a 1:1 stoichiometry. GLUT, glucose transporter.
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S1 and S2 segments, whereas SGLT1 is expressed in the down-
ward part of the proximal tubule, the S3 segment in humans
and rodents (Figure 1)52,71,86.
In the capacity of filtered glucose reabsorption in euglycemia,

SGLT2 exerts the main function, showing the aforementioned
≥80% glucose reabsorption, whereas SGLT1 reabsorbs the
remaining glucose or approximately 5% of the filtered glu-
cose77,86,87. As a point to be noted, the coupling ratio of glucose
and sodium is different between the two cotransporters: SGLT2
transports glucose and sodium in a 1:1 ratio, whereas SGLT1
transports glucose and sodium in a 1:2 ratio38,39. The transport
property of SGLT2 enhances the concentrating power to reab-
sorb the glucose delivered to the distal part S3 segment of the
proximal tubule49. Furthermore, it is reported that SGLT1 pre-
pares the highly reserved ability of glucose reabsorption72,87,88.
When pharmacological SGLT2 inhibition induces the glucose
flow downstream in the distal proximal tubule, SGLT1 can
compensate for the reabsorption of glucose. As a result, eug-
lycemic humans treated with SGLT2 inhibitors maintained a
fractional glucose reabsorption of 40–50%72,87, and the mean
value of fractional glucose reabsorption in euglycemic SGLT2
knockout (KO) mice was 36%86. In wild mice, SGLT2 inhibitor,
empagliflozin, dose-dependently increased the urinary glucose
excretion, whereas the dose–response curve was shifted leftward
and the maximum response doubled in SGLT1 KO mice87.
The compensatory effect of SGLT1 is also supported by studies
in SGLT1/SGLT2 double KO mice89,90 and SGLT1 KO mice
treated with SGLT2 inhibitor87. Sustained hyperglycemia, which
induces exceeding of the transport capacity of the proximal
SGLT2, increased the glucose flow to the distal proximal tubule
and enhanced the SGLT1-mediated glucose reabsorption7. The
reserved ability of glucose reabsorption and compensatory effect
of SGLT1 are notable properties in consideration of the physio-
logical function.
In type 1 and type 2 diabetes animal models, the renal

SGLT2 protein level was reportedly increased42,91, whereas the
reported results for renal SGLT1 levels are controversial. Strep-
tozotocin rats showed increased mRNA and protein expressions
of SGLT1 in the renal cortex92,93. Also, renal SGLT1 mRNA
expression in Zucker fatty rats was increased94. In ob/ob mice,
the renal membrane SGLT1 protein level was increased, but the
mRNA expression was decreased95. In contrast, it was reported
that the renal membrane SGLT1 protein level was decreased in
diabetic Akita mice96. SGLT2 and SGLT1 properties in renal
glucose reabsorption in euglycemic condition are well under-
stood; however, those properties in the diabetic state remain
poorly understood, and in particular, a better understanding of
the physiological significance in the renal SGLT1 regulation is a
pivotal subject for the future.

Functional properties of SGLTs in the heart
The localization of SGLT1 protein was found in capillaries of
the heart in humans and rats52,97, whereas the expression was
not found in capillaries of the small intestine97. Also, SGLT1

was reportedly expressed in the cell membrane of cardiomy-
ocytes in humans and mice98,99. Thus, cardiac SGLT1 might be
involved in glucose transport from capillaries into the car-
diomyocytes. In contrast, SGLT2 is not expressed in the heart.
In the heart, two facilitated glucose transporters, GLUT1 and
GLUT4, play a primary role in glucose uptake: GLUT1 for
basal glucose uptake, and GLUT4 for insulin-dependent glucose
uptake100. In consideration of the physiological roles of SGLT1
in the heart, the involvement with the facilitated glucose trans-
porters is essential and cannot be bypassed.
Cardiac SGLT1 mRNA expression is reportedly increased in

patients with type 2 diabetes and diabetic cardiomyopathy101.
In streptozotocin diabetic rats, GLUT4 mRNA and protein
expressions were decreased, whereas GLUT1 mRNA expression
was not significantly changed102,103. The reduction of cardiac
GLUT4 activity led to a decrease of glucose uptake and devel-
opment of diabetic cardiomyopathy, whereas the physiological
roles of GLUT1 in the heart remain unclear104–106.
A recent study reported that chronic cardiac overexpression

of SGLT1 in mice led to pathological cardiac hypertrophy and
left ventricular failure, and cardiac knockdown of SGLT1 atten-
uated the disease phenotype107. In contrast, a recent study also
reported that dual SGLT1/SGLT2 inhibitor exacerbated cardiac
dysfunction after experimental myocardial infarction in rats108.
Considering that SGLT2 is not expressed in the heart, this
effect might be linked to SGLT1 inhibition. Whether cardiac
SGLT1 inhibition exerts protective effects on cardiovascular dis-
ease still remains unclear. Further research is required.

Functional properties of SGLTs in the brain
SGLT1 mRNA expression was found in the brains of humans,
rabbits, pigs and rodents109–111. In rabbits and pigs, SGLT1
mRNA expression was found in neurons of the frontal cortex,
Purkinje cells of the cerebellum and neurons of the hippocam-
pus50. In rodents, SGLT1 mRNA expression was found in neu-
rons of the brain cortex, hippocampus, hypothalamus, corpus
striatum and cerebellum50,111. The SGLT1 protein was report-
edly expressed in small vessels of the rodent brain109. Also, a
radioactively labeled SGLT1 selective glucose analog could not
pass the blood–brain barrier, suggesting that SGLT1 is only
localized in the luminal membrane of endothelial cells50. In
consideration of the localization and function of SGLT1, SGLT1
in the brain might play a key role as an energy supply source
for neurons on increased glucose demand, such as in hypox-
emia and hypoglycemia.

Functional properties of SGLTs in other organs
There are some reports of SGLT1 in the lung, liver, pancreas
and T lymphocytes. SGLT1 mRNA was detected in the trachea,
bronchi and lung tissue in humans51,52, and SGLT1 protein
was detected in alveolar type 2 cells, and in the luminal mem-
brane of Clara cells in bronchioles in humans and rats52.
SGLT1-mediated glucose uptake might be responsible for fluid
absorption, and provides energy for the production of
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surfactants in alveolar type 2 cells, and for mucin and surfac-
tants in Clara cells.
SGLT1 mRNA was detected in the liver and gallbladder in

humans51, and SGLT1 protein was detected in the apical mem-
brane of bile duct epithelial cells in humans and rats52,71.
Small amounts of SGLT1 mRNA were detected in the pan-

creas of humans, and SGLT1 mRNA and protein expressions
were found in pancreatic a-cells of humans and mice51,53. Also,
SGLT1 mRNA expression was found in activated T lympho-
cytes of mice112. Physiological roles of SGLT1 in the liver, pan-
creas and T lymphocytes are not well understood.

THERAPEUTIC POTENTIAL OF SGLT1 AND SGLT2
INHIBITION
The therapeutic potential of selective SGLT2 inhibitors as an
antihyperglycemic strategy has been well established. In con-
trast, the therapeutic potential, including efficacy and safety, of
dual SGLT2/SGLT1 inhibitor or selective SGLT1 inhibitor
remains less clear (Table 2).

SGLT2 inhibitors
Selective SGLT2 inhibitors – dapagliflozin, canagliflozin, empa-
gliflozin, ipragliflozin, luseogliflozin and tofogliflozin – have
been approved for the treatment of type 2 diabetes113. These
SGLT2 inhibitors reduce plasma glucose levels by a different
mechanism than other antidiabetic drugs, involving an increase
of the renal glucose excretion through SGLT2 in the proximal
tubule leading to diminished glucose toxicity. In contrast,
mechanisms of other drugs are as for metformin: inhibition of
gluconeogenesis in the liver; sulfonylurea derivatives, glucagon-
like peptide (GLP)-1 analogs and dipeptidyl peptide-4 inhibi-
tors: increase of insulin secretion in the pancreas; and thiazo-
lidinediones: enhancement of insulin sensitivity. These SGLT2
inhibitors have different selectivity for inhibition of SGLT2 ver-
sus SGLT1. SGLT2/SGLT1 selectivity is ≥1,000-fold higher in
dapagliflozin, empagliflozin, luseogliflozin and tofogliflozin,
whereas the selectivity of canagliflozin and ipragliflozin is lower,
at 190- and 250-fold, respectively113.

In preclinical studies in diabetic animal models, the SGLT2
inhibitors decreased fasting and non-fasting glucose levels,
hemoglobin A1c levels, and blood pressure, and improved glu-
cose intolerance114–117. Furthermore, SGLT2 inhibitors have a
different mechanism from the other antidiabetic drugs, as
described above, and can be used in combination with those
drugs, as well as in monotherapy for the treatment of type 2
diabetes118–122.
Recent studies reported that SGLT2 inhibitors had a renal

protective effect in animal models of diabetic nephropathy122–
124. The renal protective effects of SGLT2 inhibitors also have
been shown in clinical trials9,125,126. The mechanism of action is
speculated as follows: SGLT2 inhibitor increases the amount of
sodium delivery to the distal tubule by suppressing sodium
absorption in the proximal tubule. As a result, the tubu-
loglomerular feedback through the macula densa is activated,
and this allows afferent arteriolar contraction and normalizes
the glomerular filtration rate127.

SGLT1 inhibitors
Postprandial hyperglycemia is a risk factor for cardiovascular
failure and diabetic microangiopathy, including retinopathy128–
130. As glucose absorption from the small intestine is mostly
mediated by SGLT1, an improvement of postprandial hyper-
glycemia with SGLT1 inhibitor would definitely be a useful
therapy. In diabetic rats, a single dose of KGA-2727, a selective
SGLT1 inhibitor, improved postprandial hyperglycemia, and its
chronic administration reduced hemoglobin A1c levels131, sug-
gesting that SGLT1 inhibition might maintain good glycemic
control for the long term. In an oral glucose tolerance test with
KGA-2727, plasma insulin levels, as well as plasma glucose
levels, were reduced, and protective effects on the pancreas are
also expected.
Recent studies reported that SGLT1 KO mice and mice trea-

ted with phloridzin had lower plasma total GLP-1 levels 5 min
after glucose challenge than wild-type mice and control mice,
respectively77,132. This result suggests that SGLT1 is required to
trigger GLP-1 secretion in the early phase after glucose stimula-
tion. In contrast, another study reported that SGLT1 KO mice
had high plasma total GLP-1 levels from 30 min to 6 h after a
glucose-containing meal89. The increase of plasma total GLP-1
in the late phase after a meal was also observed in healthy
humans treated with SGLT1 inhibitor84 and patients with
type 2 diabetes treated with SGLT1/2 inhibitor83. One possible
mechanism of delayed GLP-1 release is fermentation of glucose
to short-chain fatty acids (SCFAs). SGLT1 inhibition in the
early intestine reduces glucose absorption and thereby increases
glucose delivery to the more distal parts of the small intestine,
where glucose is used by the microbiome to form SCFAs.
SCFAs induce glucagon-like peptide-1 secretion through G pro-
tein-coupled receptors, including G protein-coupled receptor 41
and G protein-coupled receptor 43133. From the above,
although SGLT1 inhibition reduces glucose-stimulated GLP-1
release in the early phase, SCFAs generated by fermentation of

Table 2 | Preclinical and clinical sodium–glucose cotransporter 1,
sodium–glucose cotransporter 2 and dual sodium–glucose
cotransporter 1/2 inhibitors

Selective SGLT1
inhibitors

Selective SGLT2
inhibitors

Dual SGLT1/2
inhibitors

KGA-2727 Dapagliflozin Sotagliflozin
GSK-1614235 (mizagliflozin) Canagliflozin Licogliflozin
LX2761 Empagliflozin
JTT-662 Ipragliflozin

Luseogliflozin
Tofogliflozin
Ertugliflozin

SGLT, sodium–glucose cotransporter.
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glucose induce GLP-1 release in the late phase, suggesting that
SGLT1 inhibitor increases net circulating GLP-1 levels.
As a concerning point, in the small intestine, the SGLT1

inhibitor is considered to induce gastrointestinal side-effects,
including diarrhea, but no serious gastrointestinal side-effects
were observed in the treatment of selective SGLT1 inhibitors,
GSK-1614235 and KGA-2727, or a dual SGLT1/SGLT2 inhibi-
tor, sotagliflozin83,84,134.
The SGLT1 inhibitors induce a delay of absorption of

monosaccharides and thus their retention, and the SGLT1 inhi-
bitors might improve the intestinal condition in diabetes
patients through changes in gut microbiota. An increase in
colonic microbiol production of propionate with increased

glucose exposure reportedly contributed to positive intestinal
metabolic effects10.
SGLT1 is expressed in the brush border membrane of the S3

segment of proximal tubule in the kidney, and reabsorbs glu-
cose that escapes from SGLT2-mediated reabsorption in the S1
and S2 segments39,52. Studies on SGLT2 KO mice and selective
SGLT2 inhibitors described the renal transport capacity of
SGLT1, showing that the SGLT1-mediated glucose reabsorption
is maintained at 40–50% on inhibition of SGLT2 under eug-
lycemic conditions (Figure 2)87. Inhibition of SGLT2 under the
conditions of prolonged and severe hyperglycemia that exceeds
the transport capacity of SGLT2 activates the full renal trans-
port capacity of SGLT1, and SGLT1 exerts a compensatory

Wild type

Glomerulus Proximal tubule

S1/2 segment S3 Segment
Distal tubule

Henle
loopFiltered glucose

SGLT2 SGLT1

SGLT1

SGLT1

No glucose excretion
in the urine

>90%
reabsorption

~3%
reabsorption

SGLT1 KO
or inhibition

SGLT2 KO
or inhibition

SGLT1/2 DKO
or dual inhibition

Filtered glucose

SGLT2

SGLT2

SGLT1SGLT2

>90%
reabsorption

Excreted ~10% of filtered
glucose in the urine

Filtered glucose

Filtered glucose

Excreted 50~60% of filtered
glucose in the urine

Excreted 100% of filtered
glucose in the urine

40~50%
reabsorption

Figure 2 | Capacity of sodium–glucose cotransporter (SGLT)1 and SGLT2 for filtered glucose reabsorption under euglycemic conditions. Under
euglycemic conditions, most filtered glucose is reabsorbed by SGLT2 expressed in the segment (S)1 and S2 segments of proximal tubules, and the
remaining is reabsorbed by SGLT1 expressed in the S3 segment of proximal tubules, resulting in no glucose being detected in the urine. Complete
suppression of transport activity of SGLT1 (e.g., SGLT1 knockout [KO] or inhibition) only slightly increases the urinary glucose excretion, because
most filtered glucose is reabsorbed by SGLT2. If SGLT2 is absent (e.g., SGLT2 KO or inhibition), SGLT1 reabsorbs 40–50% of filtered glucose. If both
SGLT1 and SGLT2 are absent (e.g., SGLT1/2 double KO [DKO] or dual inhibition), almost all of the filtered glucose is excreted in the u-rine.
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function in renal reabsorption of glucose. Therefore, the combi-
nation therapy of an SGLT1 inhibitor and an SGLT2 inhibitor
or a dual SGLT1/SGLT2 inhibitor is expected to induce signifi-
cantly greater glucosuria and glycemic control than either an
SGLT1 or SGLT2 inhibitor alone87,89,135. Also, a stronger effect
of dual SGLT1/SGLT2 inhibition on blood glucose levels was
observed in mice with modest hyperglycemia, as well as those
with euglycemia87,89. Thus, the combined effects of dual
SGLT1/SGLT2 inhibition might induce synergistic effects on
the early and distal proximal tubules.
Although selective SGLT1 inhibitors are not on the market

yet, some compounds (e.g., LX2761 and JTT-662) are under
development for the treatment of diabetes.

CONCLUSION AND PERSPECTIVE
In this review, we described the basal properties of GLUTs and
SGLTs, and also the functional properties of SGLT1 and
SGLT2, and focused on the pharmacological potential of
SGLT1 or SGLT2 inhibition alone, and the dual inhibition of
SGLT1 and SGLT2. These glucose transporters have diverse
multiple functions, and are attractive as therapeutic targets for
metabolic diseases.
In basic studies of the kidney in SGLT2 KO mice and using

an SGLT2 inhibitor, a high reserved ability of glucose reabsorp-
tion has been disclosed. Six selective SGLT2 inhibitors have
been approved for treatment of diabetes, and the usefulness is
widely admitted.
Based on the phenotype of loss-of-function of the SGLT1

gene in humans and mice, it is clear that SGLT1 is the main
transporter of glucose absorption in the small intestine. As
described above, it is expected that SGLT1 inhibitors would
improve postprandial hyperglycemia in diabetes patients by
reducing glucose absorption in the small intestine. This mecha-
nism of action would be beneficial, particularly in diabetes
patients with declining renal function, because SGLT2 inhibitors
are less effective in such patients.
A dual SGLT1/SGLT2 inhibitor or a combination of an

SGLT1 inhibitor and SGLT2 inhibitor might be good option
for the treatment of diabetes, because dual inhibition leads to
blockade of both intestinal and renal glucose absorption, thus
lowering blood glucose levels robustly. Combined treatment of
SGLT1 inhibitor and dipeptidyl peptide-4 inhibitor might also
be a good strategy, because the combination could effectively
increase active GLP-1 levels.
Diabetes is a leading cause of end-stage kidney disease and

cardiovascular disease. Despite the emergence of a large variety
of antihyperglycemic agents, it is still difficult to maintain good
glycemic control with monotherapy over a long-term period.
These agents also have potential risks and side-effects (e.g.,
hypoglycemia, ketoacidosis and more). For these reasons, other
antihyperglycemic agents with different mechanisms of action
are required. Inhibition of SGLT1 or dual inhibition of SGLT1/
2 are novel therapeutic strategies for glycemic control in

diabetes patients. However, further studies are required to con-
firm the long-term efficiency and safety of these strategies.
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