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Abstract 63 

Wild Japanese macaques (Macaca fuscata Blyth) living in the highland and 64 

lowland areas of Yakushima are known to have different diets, with highland 65 

individuals consuming more leaves. We aim to clarify whether and how these 66 

differences in diet are also reflected by gut microbial composition and 67 

fermentation ability. Therefore, we conduct an in vitro fermentation assay using 68 

fresh feces from macaques as inoculum and dry leaf powder of Eurya japonica 69 

Thunb. as a substrate. Fermentation activity was higher for feces collected in the 70 

highland, as evidenced by higher gas and butyric acid production and lower pH. 71 

Genetic analysis indicated separation of highland and lowland in terms of both 72 

community structure and function of the gut microbiota. Comparison of feces and 73 

suspension after fermentation indicated that the community structure changed 74 

during fermentation, and the change was larger for lowland samples. Analysis of 75 

the 16S rRNA V3-V4 barcoding region of the gut microbiota showed that 76 

community structure was clearly clustered between the two areas. Furthermore, 77 

metagenomic analysis indicated separation by gene and pathway abundance 78 

patterns. Two pathways (glycogen biosynthesis I and D-galacturonate 79 

degradation I) were enriched in lowland samples, possibly related to the 80 

fruit-eating lifestyle in the lowland. Overall, we demonstrated that the more 81 

leaf-eating highland Japanese macaques harbor gut microbiota with higher leaf 82 

fermentation ability compared to the more fruit-eating lowland ones. Broad, 83 

non-specific taxonomic and functional gut microbiome differences suggest that 84 

this pattern may be driven by a complex interplay between many taxa and 85 

pathways rather than single functional traits. 86 
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 89 

Introduction 90 

There are three steps in feeding—searching, processing and digestion—and 91 

animals adapt in various ways to maximize nutritional intake and/or minimize 92 

intake of toxic compounds at each step. Many animal traits, including locomotion 93 

[1], morphology [2], vision [3], gustation [4], and digestion enzymes [5] are, at 94 

least partly, a result of this adaptation process, and some of these traits are 95 

genetically fixed. While specialization to a particular food type opens up normally 96 

inaccessible resources [6], such specialization may, on the other hand, limit 97 

overall resource range [7]. Since environmental fluctuations can occur at much 98 

shorter time scales compared to adaptive evolution, a generalist strategy may 99 

require sufficient flexibility to respond to rapidly changing food conditions [8]. 100 

Flexibility can, for instance, be achieved by behavioral adaptation, including 101 

changes in activity budget [9], ranging [10], and feeding techniques [11], which 102 

have been intensively studied among large-brained, behaviorally flexible 103 

generalist animals such as primates [12]. These studies mainly focused on the 104 

question of how such behavioral adjustments can increase net food intake. 105 

Recently, as another class of feeding-related flexible adaptations, much 106 

attention has been given to the role of the gut microbiome. A typical human 107 

individual harbors 10-100 trillion symbiotic microorganisms, the majority of which 108 

are gut microbes [13]. Human gut microorganisms are estimated to possess 3.3 109 

million non-redundant genes [14], compared to only around 22,000 genes found 110 

in the human genome [15]. Host and microbial symbiont genomes often have 111 
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complementary roles in digestion [16]. Cellulose, xylan, and many other 112 

polysaccharides are fermented by gut microbes to produce short-chain fatty 113 

acids (SCFA), an important energy source for vertebrates [17]. In fact, energy 114 

gain through SCFAs is estimated to reach as high as 10% in humans [18] and 115 

31% in a non-human primate species [19]. Furthermore, the genomic diversity of 116 

gut microbes among different hosts is much larger than that for the hosts 117 

themselves [13], which allows gut microbiota to respond more quickly to 118 

environmental fluctuations than their hosts. Another function of the gut microbe 119 

is detoxification, i.e. degradation of a plant’s toxic and anti-nutritional compounds 120 

[20, 21]. 121 

Enabled by the development of next-generation sequencing techniques, 122 

a rapidly increasing number of studies on the flexibility of the gut microbiome 123 

have been published [22]. Many of these studies sequence hypervariable 124 

regions of the microbial 16S rRNA gene to assess the taxonomic composition of 125 

any given gut community. Community composition can change flexibly with 126 

regard to habitat [23-25], age and sex of the host [26, 27], social contact with 127 

other animals [28], and season [29-31]. Observational studies of wild 128 

populations [32] as well as feeding experiments on captive animals [33] show 129 

that the gut microbiome composition adjusts flexibly in response to changes in 130 

diet. However, data on community composition is often difficult to link directly to 131 

function because many functional genes, including those involved in digestion, 132 

are shared across diverse microbial groups [34]. As a result, even though the 133 

feeding behavior of non-human primates has been studied in detail, there are 134 

few studies, as described below, that clarified the digestive effectiveness of the 135 

gut microbiota of wild animals in a direct, straightforward experimental setting. 136 
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One way to reveal the specific gut microbiome adaptations is to study 137 

the presence and/or expression patterns of functional genes through 138 

metagenomic and metatranscriptomic analyses [16, 35]. Combined with 139 

metabolomic analysis [36], this approach can enable researchers to track the 140 

metabolic pathways involved in digesting specific foods into absorbable nutrients, 141 

thus providing a deeper understanding of the role of gut microbes in these 142 

processes at the molecular level. However, each food contains various nutrients 143 

and toxins, and numerous microbial species with large numbers of genes are 144 

involved in their digestion. Data obtained by these omics approaches are thus 145 

immense and complex; consequently, extracting system-level insights on the 146 

interplay between hosts and their microbial symbionts can be a considerable 147 

challenge [34]. 148 

Another way to answer an ecologically important, simple question on 149 

the effectiveness of the gut microbe in food digestion is in vitro fermentation 150 

assay [37]. In such assays, live gut microbes contained in fresh feces of animals 151 

are used as inoculum with a specific food as a substrate, which is subsequently 152 

fermented under in vitro conditions (e.g. anaerobic and 37˚C). If one type of 153 

microbial community is more efficient at fermenting the substrate than others, 154 

the overall fermentation activity, such as gas or SCFA production, is expected to 155 

be larger. While this method is an established practice in the area of animal 156 

husbandry, it is rarely used in wildlife studies. Indeed, previous work on 157 

non-human primates has so far been mostly limited to zoo animals [38-41], with 158 

the exception of a single study revealing the fermentation ability of plant gum by 159 

the gut microbiota of wild chimpanzees [42]. These studies on captive animals 160 

found that the relationship between diet and fermentation ability was complex 161 
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and non-specific. However, gut microbiome composition can be significantly 162 

modified under captivity [43, 44], and recent studies also highlighted the 163 

importance of study in natura, or in natural environments [45]. Thus, applying in 164 

vitro fermentation to wild animals in natura provides a unique opportunity to 165 

study microbiome-related fermentation responses under natural conditions. 166 

The subject of this study, the Japanese macaque (Macaca fuscata 167 

Blyth), is an ideal species for studying the digestive role of the gut microbiome in 168 

a fluctuating environment, since they modify their diet in response to regional 169 

and seasonal variations in food availability [46, 47]. In our study site, Yakushima, 170 

there is an elevational gradient in fruit production [48]: while the main foods in 171 

the fruit-poor highland are fiber-rich foods, such as mature leaves [49], diet in the 172 

fruit-rich lowland features more fruits and seeds [50]. These two areas are only 173 

about 7 km apart and genetic variation between macaque populations is 174 

generally low [51]. Therefore, non-genetic, flexible adjustments are required to 175 

survive under the differing food conditions provided by these two contrasting 176 

habitats. Since macaques are habituated to human presence in many places in 177 

Yakushima [52], the collection of fresh feces is feasible. To further minimize 178 

disturbance of the fecal microbiota, in vitro fermentation assays can be 179 

performed directly on-site at a research station of Kyoto University. 180 

In this study, we examined the hypothesis that the gut microbiome of a 181 

generalist host is shaped by the host’s flexible feeding behavior and contributes 182 

to digestion in a food-type-specific manner. In particular, we tested the prediction 183 

that the gut microbiome of the more leaf-eating highland macaques is more 184 

capable of fermenting leaves than that of the more fruit-eating lowland 185 

macaques. We evaluated the fermentation ability by quantifying gas and SCFA 186 



Fermentation by gut microbe of Japanese macaques 
Hanya et al. 

9 

  

production in an in vitro fermentation assay. Furthermore, we conducted genetic 187 

analyses of the fecal samples used in the fermentation assay to better 188 

understand which microbial taxa and genes might be responsible for the 189 

observed differences in fermentation ability. To this end, we first conducted a 190 

meta-16S rRNA gene analysis to determine gut microbiome community profiles 191 

in both the highland and lowland, which allowed us to examine whether 192 

community composition significantly differs between regions and to identify 193 

differentially abundant taxa for each region. We also compared between feces 194 

and corresponding suspension samples after fermentation to reveal the changes 195 

in the community structure during the assay. Subsequently, we conducted a 196 

complementary whole-genome shotgun analysis of the fecal samples to 197 

additionally examine functional differences (i.e. in terms of gene and pathway 198 

composition). Apart from investigating broad functional differences, we also 199 

specifically compared the abundance of 37 genes known to be involved in 200 

fermentation. These genes participate in most upstream and downstream stages 201 

of the synthesis of SCFAs from polysaccharides. 202 

 203 

Methods 204 

Study sites 205 

Yakushima is an island in southern Japan (30 ˚N, 131 ˚E) with an area of 503 206 

km2, with the highest peak being 1936 m in elevation. In the lowland, warm 207 

temperate evergreen broad-leaved trees, such as Castanopsis cuspidata, 208 

Quercus salicina, and Distylium racemosum, mix with subtropical plants. In the 209 

highland, warm-temperate evergreen broad-leaved trees, such as Q. acuta, Q. 210 

salicina, and D. racemosum, are interspersed with conifers (including 211 
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Cryptomeria japonica, Abies firma, and Tsuga sieboldii). Further details of the 212 

study site are described in Hanya et al. [48]. 213 

 214 

Study subjects 215 

The subjects of this study, Japanese macaques, have a home range of ca 0.5–1 216 

km2 [53] and their daily path length is 2.2–2.6 km [54]. The collection sites in the 217 

highland and lowland were more than 3 km apart from each other, so the two 218 

sites were used by different groups. In May, when we collected samples for this 219 

study, the main foods were reported to be sapfruits of Myrica rubra in the lowland 220 

and mature leaves of Symplocos myrtacea and Eurya japonica in the highland 221 

[49, 50], which was consistent with our ad libitum observation at the time of 222 

collection. Neutral detergent fiber content is higher for leaves of S. myrtaceae 223 

(34.1%) and E. japonica (50.8%) than the pulp of M. rubra (22.4%) [55]. 224 

 225 

Sample collection 226 

On May 22-24, 2016, we collected fresh feces of wild Japanese macaques in the 227 

eastern and western highland (730-1330 m a.s.l.; N=12), as well as the western 228 

lowland (150-190 m a.s.l.; N=15), of Yakushima (Fig. 1). Defecation was directly 229 

observed for the majority of samples, and in all other cases, feces were judged 230 

to be fresh (<1 h defecation) because a monkey group was still in the proximity 231 

and the surface of the feces showed moistness. During sampling, we first 232 

collected a small amount of fecal materials with a cotton swab and kept it in a 2 233 

mL tube filled with RNAlater [56]. To avoid environmental contamination, these 234 

genetic samples were collected only from the inner part of the feces, which did 235 

not touch the soil. One sample was collected for genetic analysis but could not 236 
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be included as an inoculum of the subsequent fermentation assay. We then put 237 

all remaining fecal material in a sealed plastic bag, which was semi-vacuumized 238 

using a kitchen vacuumizer. The plastic bags were labelled and kept in a jar filled 239 

with blue ice. We recorded the sampling locations with a GPS device (GPSMAP 240 

60CSx ®Garmin) and brought the samples to the field station of the Wildlife 241 

Research Center of Kyoto University in Nagata village within four hours of 242 

sample collection. 243 

 244 

In vitro fermentation assay 245 

In the laboratory, one part of the fecal samples was mixed with four parts of 246 

McDougall's buffer (ingredients (g/L): NaHCO3 (9.8), Na2HPO4·2H2O (2.44), KCl 247 

(0.57), NaCl (0.47), MgSO4·7H2O (0.12), CaCl2·2H2O (0.16)) which was 248 

pre-heated at 39˚C and saturated with CO2 gas. We confirmed the pH of the 249 

buffer before use as 6.8. We squeezed the mixture through two layers of sterile 250 

gauzes to remove large particles in the feces. We subsampled 5 mL of the filtrate, 251 

then centrifuged it at 2,600 x g for 5 min at 4˚C. The supernatant was stored at 252 

-30°C for subsequent measurement of SCFA at time “zero” of the incubation. 253 

However, we mistakenly neglected to collect two samples from highland and 254 

those seven from lowland, which were therefore excluded from the SCFA 255 

measurement. As a substrate, leaves of Eurya japonica Thunb. were previously 256 

collected in Inuyama city, central Japan. We chose this species because the 257 

macaques in both highland and lowland eat this [49]. The leaves were dried at 258 

40˚C and then ground by a mill (Wonder Blender WB-1 ®Osaka Chemical) 259 

before use. A portion of the filtrate (100 ml) and one gram dry weight of 260 

powdered E. japonica leaves were poured into a serum bottle. Then, the bottles 261 
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were closed with butyl rubber stoppers and aluminum seals after replacing the 262 

head-space gas with 100% CO2. Bottles were placed in a water bath at 37˚C 263 

with continuous shaking for 24 h. Gas production, an indicator of fermentation 264 

activity, was measured at 6 h, 12 h, 18 h and 24 h of incubation by displacing a 265 

plunger of a 10-ml glass syringe in a manner similar to the method established 266 

by Blümmel and Ørskov [57]. After 24 h, the pH of inoculum was measured and 267 

additional samples were collected for DNA analysis of the suspension after 268 

fermentation (SAF, hereafter). Then, it was centrifuged at 2,600 x g for 5 min at 269 

room temperature, and the supernatant was collected for SCFA analysis. 270 

 271 

SCFA analysis 272 

Analysis of SCFA was conducted by TechnoPro R&D, Inc., Nagoya, Japan. The 273 

samples were centrifuged at 10,000 rpm for 5 min at 4°C, and the supernatant 274 

was filtered with 0.45 μm PVDFfilter (Millex-HV filter, Merk Millipore). The 275 

filtrates were diluted with the same volume of ethanol. Carboxylic acids were 276 

pre-labelled with 2-nitrophenylhydrazine using the Short- and Long-Chain Fatty 277 

Acid Analysis Kit (YMC, Co. Ltd, Kyoto, Japan). The SCFA derivatives were 278 

subsequently extracted by n-hexane and diethyl ether and finally evaporated to 279 

a dry state. The residue was dissolved in methanol and filtered through a 280 

0.45-µm membrane filter. A portion (10 µl) of filtrate was injected into an HPLC 281 

system with YMC-Pack FA column (250 × 6.0 mm; YMC Co., Ltd.). We applied 282 

the isocratic elution mode with the acetonitrile/methanol/water mobile phase 283 

(30:16:54, v/v) at 50°C. Six SCFAs (acetic, propionic, butyric, isobutyric, valeric 284 

and isovaleric acids) were measured for absorbance at 400 nm. The sum of 285 

individual SCFA concentrations was regarded as total SCFA. 286 



Fermentation by gut microbe of Japanese macaques 
Hanya et al. 

13 

  

 287 

Genetic analysis 288 

Approximately one week after collecting the samples, we centrifuged the sample 289 

tubes at 14000 rpm for 10 min and discarded the supernatant (RNAlater 290 

solution). This was carried at Primate Research Institute, Kyoto University, 291 

Japan. The pelleted samples were then frozen at -80°C until extraction, except 292 

at the time of export to Switzerland on September 29 (31 hours, temperature <= 293 

4∘C at all times). Further analysis was conducted at the Department of 294 

Evolutionary Biology and Environmental Studies, University of Zurich, and the 295 

Functional Genomics Center Zurich. We added four zirconia beads (3 mm in 296 

diameter), 0.1 mg zirconia/silica beads (0.1 mm in diameter), and 500 μL of 297 

Inhibit Ex buffer of QIAamp Fast DNA Stool Mini Kit ® QIAGEN into the tubes 298 

and crushed the sample substrate with a bead crusher at 1800 rpm for 5 min. 299 

DNA was extracted by QIAamp Fast DNA Stool Mini Kit following the 300 

manufacturer’s protocol. We quantified the DNA concentration with Qubit dsDNA 301 

HS Assay Kit and a Qubit fluorometer ®Thermo Fisher Scientific. 302 

We conducted meta-16S analysis for both feces and SAF samples. We 303 

amplified the V3-V4 region of the 16S rRNA gene with the following primer set: 304 

S-D-Bact-0341-b-S-17 (forward) CCT ACG GGN GGC WGC AG and 305 

S-D-Bact-0785-a-A-21 (reverse) GAC TAC HVG GGT ATC TAA TCC [58]. We 306 

chose this region because it has already been used for a previous study of 307 

Japanese macaques and it can represent the composition of gut microbe 308 

community as well as other regions, such as V1-V2 [56]. We purified the PCR 309 

amplicons using Agencourt AMPure XP beads ®Beckman Coulter, Inc. and then 310 

performed a second PCR (using the Illumina Nextera XT Index Kit) to attach 311 



Fermentation by gut microbe of Japanese macaques 
Hanya et al. 

14 

  

specific dual indices and sequencing adapters to each amplicon. DNA 312 

concentration of the 2nd PCR products were quantified and pooled so that the 313 

molarities of all samples were equalized. We evaluated the fragment size 314 

distribution with TapeStation ®Agilent Technologies, Inc. After Phi X spike-in, the 315 

library was sequenced on the Illumina Miseq platform (2 x 300 bp). Further 316 

details of the protocol are described in Hayakawa et al. [56]. 317 

We conducted the shotgun metagenomics analysis for only feces 318 

samples. We fragmented the DNA with Covaris E220 ®M&S Instruments, Inc., 319 

following the manufacturer’s recommended setting to make the average DNA 320 

size 200 bp (http://covarisinc.com/wp-content/uploads/pn_010308.pdf). After 321 

confirming the fragment size by TapeStation, we prepared a library using Ultra™ 322 

II DNA Library Prep for Illumina ®New England Biolabs Inc. and sequenced it 323 

with the Illumina Hiseq 4000 platform (2 x 150 bp). 324 

 325 

Data analysis 326 

The difference in gas and SCFA production between the highland and lowland 327 

were tested by t-test using R 3.2.2. 328 

For the 16S rRNA gene analysis, demultiplexing yielded 7,424,940 329 

paired-end reads for downstream analysis (median/minimum per sample: 330 

244,875/78,467). Reads were denoised with dada2 (version 1.12.1, [59]) using 331 

read truncation lengths of ‘280, 250’, maximum expected errors of 8, pooling 332 

option ‘pseudo,’ maximum allowed mismatches when merging pairs of 3, and 333 

default values for all other options. Denoising resulted in 25,518 Amplicon 334 

Sequencing Variants (ASVs), which were subsequently aligned using 335 

INFERNAL (version 1.1.2, [60]) with the microbial secondary structure model 336 
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SSU-ALIGN. Based on this alignment, ASVs were further clustered into 2,541 de 337 

novo OTUs (97% sequence identity) using HPC-CLUST (version 1.2.1, [61]) with 338 

the average linkage option. Taxonomic classification was performed by mapping 339 

all ASVs with MAPseq (version 1.2.1, [62]) against its default reference database 340 

(MAPref 2.2b, see [63] for details on how it was generated). ASV-specific 341 

classifications were then summarized into consensus classifications per OTU by 342 

retaining only classifications with >90% assigned representatives (MAPseq 343 

confidence cutoff >= 0.5). 344 

For phylogenetic tree construction, representative ASVs with the 345 

highest abundance were chosen for each OTU. Representatives were aligned 346 

using INFERNAL (see above), and the resulting alignment was subsequently 347 

used to construct a phylogenetic tree with FastTree (version 2.1.9, [64]) using 348 

the GTR substitution model and otherwise default options. Alpha- and 349 

Beta-diversity indices were computed using the python package scikit-bio 350 

(version 0.5.1, http://scikit-bio.org/), and standard statistical tests (Student’s 351 

t-test for independent samples, Mann-Whitney U test) were performed with the 352 

python package scipy (version 0.19.1; https://www.scipy.org/). Differential 353 

abundance analysis on all OTUs and taxa found in at least five samples was 354 

conducted using edgeR (version 3.24.3, [65]) with robust dispersion (function 355 

estimate GLMRobustDisp) and normalization factor option TMM.  356 

For the shotgun metagenomics analysis, de-multiplexing yielded 357 

395,051,334 paired-end reads for downstream analysis. Read pairs were joined 358 

and filtered using mothur (version 1.38.1, [66]) using the “make.contigs” and 359 

“screen.seqs” methods (the latter with options maxambig 10, maxhomop 10, 360 

maxlength 480), which resulted in 373,262,340 filtered reads (5.5% removed). 361 



Fermentation by gut microbe of Japanese macaques 
Hanya et al. 

16 

  

To remove putative eukaryotic sequences, all filtered reads were mapped 362 

against KEGG (release 59, [67]) with the DIAMOND tool (version 0.8.38, [68], 363 

options “sensitive” and “-b 20”) and all reads with a eukaryotic best hit were 364 

discarded (16,091,001, or 4.3%). 365 

Based on all remaining reads, gene and pathway abundances were 366 

generated with HUMAnN2 (version 0.11.1, [69]) using the recommended 367 

UniRef90 database [70] for gene definitions and the MetaCyc database [71] for 368 

pathway definitions (both databases downloaded in February 2018), as well as 369 

relative abundance normalization (option “relab”). Level 4 EC identifiers were 370 

assigned based on HUMAnN2 utility mapping files. Standard statistical tests 371 

were performed using the python package scipy (see above). 372 

 373 

Compliance with Ethical Standards 374 

During the fieldwork, we adhered to the “Guideline for field research of 375 

non-human primates” of the Primate Research Institute, Kyoto University. 376 

Furthermore, our procedure complied with ARRIVE guidelines for the use of 377 

animals in research (http://www.nc3rs.org.uk/ARRIVE), as well as the legal 378 

requirements of Japan. No prior consent from the Japanese government is 379 

required to export biological samples from Japan in the context of Convention on 380 

Biological Diversity (http://www.env.go.jp/en/nature/biodiv/abs/index.html). 381 

 382 

Results 383 

In vitro fermentation assay 384 

We found the overall fermentation activity to be higher for fecal samples from the 385 

highland compared to the lowland, as evident from both significantly higher gas 386 
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production (6 h, 12 h, 18 h, and 24 h; Fig. 2a) and significantly lower pH (Fig. 2b). 387 

There was no significant difference in total SCFA production between the 388 

highland and lowland (Fig. 2c). Among the four SCFAs (acetic acid, propionic 389 

acid, butyric+isobutyric acids, and valeric+iso valeric acids), only the production 390 

of butyric acid (including isobutyric acid) was significantly higher for highland 391 

samples compared to lowland (Fig. 3). Prior to fermentation (time point 0 h), we 392 

found no significant difference in total SCFA concentration or for any of the four 393 

SCFA classes. 394 

 395 

Comparisons of community structure of the fecal microbiota 396 

We obtained 7,424,940 reads (median/minimum per sample: 244,875/78,467) 397 

which were successfully demultiplexed, filtered and de novo clustered into 2541 398 

operational taxonomic units (OTUs) using a 97% sequence identity cutoff (see 399 

Methods). Out of these OTUs, 1311 (51.6%) were classifiable at the phylum 400 

level or deeper. A summary of the phylogenetic assignment of the OTUs in each 401 

sample is shown in Supplemental Material 3. 402 

The differences in relative abundance of major taxa (>1% at the phylum, 403 

class, order, family and genus levels) were all insignificant, except for significant 404 

enrichment of Anaeroplasmataceae in the highland (Supplemental Material 3, 4). 405 

Differential abundance analysis revealed 130 OTUs that were significantly 406 

enriched in highland (54) or lowland (76) samples. Enriched bacterial OTUs in 407 

the highlands were 12 OTUs of phylum Firmicutes, class Clostridia, order 408 

Clostridiales, one OUT of Bacteroides uniformis in the phylum Bacteroidetes, 409 

family Bacteroidaceae and the remaining 39 OTUs could not be mapped to any 410 

taxa. Enriched OTUs in the lowland included 16 OTUs of Bacteroidetes (all were 411 
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class Bacteroidia, order Bacteroidales), eight OTUs of Firmicutes (order 412 

Clostridia and Negativicutes), two OTU of Proteobacteria, 23 OTUs of 413 

Proteobacteria (all were Treponema berlinense) and 27 unmapped OTUs. 414 

Average alpha diversity did not differ between the lowland and highland 415 

as differences in observed OTUs: Chao1, Shannon and Faith’s Phylogenetic 416 

Diversity indices were all insignificant (Supplemental Material 1). 417 

Community structure clearly differed between the highland and lowland, 418 

based on pairwise Bray-Curtis dissimilarity (PERMANOVA, P = 0.001). In 419 

addition to clustering separately from lowland samples, highland samples 420 

furthermore showed increased variability and sub-structure (Fig. 4). This 421 

sub-structure could not be explained by longitudinal differences, since eastern 422 

and western samples did not cluster separately. 423 

 424 

Comparisons of community structure between the feces and suspension after 425 

fermentation (SAF) 426 

Community structure of the SAF was significantly different from the 427 

corresponding fecal samples (Fig. 4, PERMANOVA, highland: pseudo-F=1.86, 428 

P=0.022; lowland: pseudo-F=3.06, P=0.001). Judging from the F and P values, 429 

the difference in community structure between SAF and feces in the lowland was 430 

larger than that in the highland. 431 

The number of taxa showing significant changes in abundance 432 

between SAF and feces was larger in the lowland (three phyla, four classes, six 433 

orders, eight families, two genera and 104 OTUs) than in the highland (one 434 

phylum, no class, one order, two families, one genus and 47 OTUs) (Table 1). 435 

Among the major taxa (>1% of relative abundance in feces or SAF), significantly 436 
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more enrichment in SAF than in feces was detected for Proteobacteria (highland 437 

and lowland) and Spirochaetes at the phylum level and Streptococcaceae 438 

(highland and lowland), Succinivibrionaceae (lowland), and Pasteurellaceae 439 

(lowland) at the family level and Streptococcus (highland and lowland) at the 440 

genus level. 441 

None of the alpha diversity indices differed significantly between feces 442 

and SAF in either the highland or the lowland (Supplemental Material 1). 443 

 444 

Metagenomic analysis of the fecal microbiota 445 

After having assessed the community composition, we next focused on 446 

systematic and specific functional (gene and pathway) differences between 447 

highland and lowland microbiota. To this end, we conducted whole-genome 448 

shotgun sequencing on all fecal samples, which yielded 373,262,340 reads, or 449 

14,356,243 reads/sample, after de-multiplexing and filtering. PERMANOVA 450 

analysis (based on pairwise Bray-Curtis dissimilarity) showed a statistically 451 

significant separation between lowland and highland samples in terms of both 452 

gene abundance (P = 0.001; Fig. 5a) and pathway abundance (P = 0.034; Fig. 453 

5b). In contrast to abundance, pathway coverage showed no significant 454 

lowland-highland separation (P = 0.11; Fig. 5c). 455 

Among 37 selected genes involved in the metabolism of 456 

polysaccharides and the synthesis of SCFAs from pyruvate, the abundance was 457 

not significantly different for any of the genes. 458 

When mapping the presence and abs243ence of the selected genes on 459 

polysaccharide metabolism and SCFA synthesis pathways, most genes were 460 

uniformly present or uniformly absent in both the lowland and highland samples 461 
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(Supplemental Material 2). Regarding polysaccharide metabolism, most gut 462 

microbiota possessed genes to catalyze cellulose, xylan, mannan, and pectin 463 

degradation, all of which are lacking in the genome of rhesus macaques (the 464 

most closely related species of Japanese macaques with a published genome). 465 

Pathways for the synthesis of acetate, butyrate, and propionate from pyruvate 466 

were all inter-connected for most fecal metagenomes, both in the lowland and 467 

highland, and also within the macaque reference genome. 468 

Out of 263 tested MetaCyc [71] pathways (present in > 10 samples), 469 

two showed a significant difference in abundance between highland and lowland 470 

samples: GLYCOGENSYNTH-PWY (glycogen biosynthesis I, from 471 

ADP-D-Glucose); Mann-Whitney U test, P = 0.041, Benjamini-Hochberg 472 

adjusted) and GALACTUROCAT-PWY (D-galacturonate degradation I; 473 

Mann-Whitney U test, P = 0.044, Benjamini-Hochberg adjusted), both of which 474 

were more abundant in lowland. 475 

 476 

Discussion 477 

Difference in fermentation ability between highland and lowland 478 

The in vitro fermentation assay clearly indicated that the fermentation ability of 479 

leaves was higher for highland gut microbiota compared to lowland communities. 480 

In the highland, where the macaque diet is leaf-based, the corresponding 481 

communities produced significantly more gas and induced a significantly larger 482 

decrease in pH during fermentation. While they also showed a trend toward 483 

increased SCFA production, this difference was not significant. We note, 484 

however, that this may be caused by power issues due to decreased sample 485 

size compared to the gas and pH measurements (nine samples were not 486 



Fermentation by gut microbe of Japanese macaques 
Hanya et al. 

21 

  

included, see Methods). SCFAs are utilized as an energy source by the host, 487 

and they constitutes a considerable portion in both human and non-human 488 

primates’ energy intake [18, 19]. Taken together, our results indicate that the 489 

higher leaf-fermentation potential of highland gut communities may facilitate 490 

digestion of the leaf-based diet of highland macaques, compared to the lowland 491 

animals. While more research is necessary, this finding highlights the potential 492 

importance of the gut microbiome for generalist hosts (such as the macaques 493 

studied here) to flexibly respond to and benefit from changing food conditions. 494 

Interference experiments on humans show that dietary changes can modify the 495 

gut microbiome within only a few days (2-5) [72], so the gut microbiota of 496 

macaques in the highland and lowland, living separately for years (in the case of 497 

philopatric females) or months (in the case of immigrant males), likely have 498 

sufficient transition time to respond to different dietary regimes. 499 

The assay also suggested that the fermentation system was different 500 

between the two areas. When investigating individual classes of SCFAs, we 501 

found butyric acid production to be significantly increased in highland compared 502 

to lowland samples. Many bacteria are capable of acetic acid production, but 503 

propionic or butyric acid producers are generally less common [34]. Furthermore, 504 

biosynthesis pathways for butyric acid are highly diverse and can often vary 505 

even within a single bacterial family [34]. Some butyrate producers can produce 506 

butyrate with the aid of other bacteria. For example, lactate is produced by other 507 

species, and the resultant lactate is converted to butyrate by lactate users, such 508 

as Megasphaera [73]. Increased butyric acid production has been reported in 509 

many different contexts: for example, butyric acid in feces has been reported to 510 

be higher when energy intake decreased in howler monkeys [31], while butyric 511 
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acid production increased with higher fruit consumption in gorillas [74]. For 512 

human hosts, the situation is generally mixed, since some interference 513 

experiments in which additional fiber was added to the normal diet led to 514 

increased fecal butyrate concentration, while other studies did not report such 515 

increases [75]. Our finding of increased butyric acid production in highland 516 

microbiota (exposed to leaf-based diets) contributes to this growing body of 517 

research and, while the overall picture is still complex, provides additional 518 

evidence for a link between high-fiber diets and the production of this SCFA. 519 

 520 

Meta-16S analysis: Gut microbiota community structure 521 

Gut community structure was clearly clustered between the highland and 522 

lowland populations in Yakushima. A previous study using the meta-16S analysis 523 

of wild and captive Japanese macaques included samples collected in the 524 

highland and lowland Yakushima (N=18), which also indicated clear 525 

differentiation of gut microbe community structure between the two areas [44] 526 

(Supplemental Materials 5). We did not directly compare those results with the 527 

current study because the methods of that previous study were not the same as 528 

the method used in the current work, nevertheless that study provided further 529 

confirmation of the validity of our findings. While we observed higher OTU profile 530 

variation and considerable sub-structure within highland samples compared to 531 

lowland ones, this sub-clustering did not correspond to longitudinal differences in 532 

sampling locations (i.e. east vs. west). This is interesting because western 533 

highland macaques live in the immediate geographical vicinity of the lowland 534 

population (in contrast to the eastern highland population), but this co-locality is 535 

not reflected by a higher similarity in the gut microbe community. It thus seems 536 
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that habitat similarity, rather than physical contact between hosts (typically via 537 

male immigration and emigration) [76], is responsible for shaping the gut 538 

communities. Unmeasured factors related to group identity may provide an 539 

alternative explanation for the sub-structure within highland samples, but more 540 

data would be needed for definite conclusions. 541 

Comparisons between feces and suspension after fermentation (SAF) 542 

indicated that the community structure of the microbiota was significantly altered 543 

during fermentation than it used to be in the gut. This alteration seems to be 544 

larger for lowland than highland, evidenced by the F and P statistics and the 545 

larger number of taxa showing changes in abundance. This suggests that the 546 

difference between the experimental and original conditions in the gut was larger 547 

for lowland than for highland microbiota, which is consistent with the fruit-based 548 

diet in the lowland. 549 

The comparisons of differential abundance between the feces and SAF 550 

may give us a clue to the bacterial taxa that are responsible for the fermentation 551 

activity. For example, Succinivibrionaceae (phylum Proteobacteria, class 552 

Gammaproteobacteria, order Aeromonadales) increased during fermentation. 553 

This family is reported to increase in the feces of wild Tibetan macaques during 554 

winter, when they eat more leaves [29]. Interestingly, however, in the rumen of 555 

cows, this family increased when the animals are supplied with low-fiber diet [77]. 556 

Another example is Streptococcus (phylum Firmicutes, class Bacilli, order 557 

Lactobacillales, family Streptococcaceae). This genus includes the species with 558 

tanning-binding ability [20, 21], which may be useful for digesting leaves. Feces 559 

of feral pigs with high feed efficiency, and thus with a higher ability to degrade 560 

cellulose, contain more Streptococcus [78]. These studies are consistent with 561 
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our results that this genus increased during the assay using mature leaves as a 562 

substrate. However, in wild howler monkeys, this genus increased when they ate 563 

low-fiber foods (fruits) [31]. The Succinivibrionaceae and Streptococcus 564 

examples show that the same taxa may exhibit a different function in 565 

fermentation in different hosts. We note, however, that even one species of 566 

microorganisms has a wide variety of genes and thus metabolic potential [79] 567 

and, therefore, we can expect the deviations at the higher taxonomic levels. 568 

Furthermore, it has been shown for different environments that stable community 569 

function can be retained even under high species turnover [80, 81]. For the same 570 

trait—especially if it features many species and pathways, such as in fiber 571 

digestion—taxonomic composition may therefore differ widely. Our results 572 

further underscore this notion and caution against generalized assumptions on 573 

community function that are based solely on taxonomy. 574 

In contrast to a recent study on fecal microbiota of the same host 575 

species [56], a large fraction of OTUs (48.4%) could not be taxonomically 576 

classified even at the phylum level in our analysis. This difference is due to the 577 

more precise mapping approach we used here (MAPseq; [62]), which assigns 578 

low confidence to a read if multiple taxa have similar alignment scores and can 579 

thus not be confidently distinguished. In various benchmarks, this approach was 580 

shown to yield better classifications than the commonly used less conservative 581 

alternatives [62, 82]. The high fraction of largely unclassified OTUs may be an 582 

indication that much is still to be learned about the macaque gut microbiome. 583 

 584 

Metagenomic analysis: Difference with respect to the genes and pathway 585 

composition 586 
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Metagenomic analysis indicated that highland and lowland populations also 587 

differed on the level of genes and pathways. This shows that the function of the 588 

gut microbe varies between the two areas, in which macaques experience 589 

different food and thermal conditions [46, 83]. 590 

For example, we found two pathways that differed in abundance 591 

between highland and lowland samples, which may be related to the lifestyle of 592 

the host animals. For example, the glycogen biosynthesis I pathway was more 593 

abundant in the lowland samples. Glycogen is synthesized to store excess 594 

glucose temporarily in the liver [84]. The main food in the sampled season in the 595 

lowland of Yakushima is the sapfruit of Myrica rubra [85], which is considered 596 

one of the most sugar-rich fruits available in Yakushima [86]. Therefore, lowland 597 

macaques may experience situations of having excess glucose more often than 598 

leaf-eating highland macaques. Genes in this pathway could thus be beneficial 599 

for storing excess glucose and using it as an energy source in the subsequent 600 

food-scarce season. In contrast, in the highland, saving the function of the 601 

pathway may be advantageous when the macaques do not eat fruits. The 602 

D-galacturonate degradation I pathway was also enriched in the lowland; 603 

D-galacturonate is an oxidized form of galactose, and it is included in many 604 

polysaccharides in plants, including pectin [87]. This pathway may also be 605 

related to the fruit-dominated diet in the lowland, but this remains unknown 606 

without detailed knowledge of the metabolomics profile of their foods. 607 

We did not find a genetic difference which can directly account for the 608 

observed differences in fermentation ability between highland and lowland. 609 

Among the 37 genes encoding enzymes that catalyze the majority of upstream 610 

and downstream reactions in the degradation of polysaccharides to SCFAs, we 611 
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found no difference in enrichment patterns for any of the genes. It was evident 612 

that the gut microbiota in both regions possess genes necessary for the 613 

synthesis of SCFAs from polysaccharides but are lacking in the host genome 614 

(assuming it is the same as that of rhesus macaques). Although not as important 615 

as in the highland, leaves are also one of the main foods in the lowland [50], and 616 

all of these genes may be necessary for survival in both areas.  617 

 618 

Implications of the flexibility in digestive ability 619 

In this study, we demonstrated that the gut microbiome of macaques is shaped 620 

according to habitat and diet, in terms of both community structure (taxa, OTUs) 621 

and the function (genes, pathways). Furthermore, we showed that these 622 

differences affect the ability to digest leaves and thus may play an important 623 

adaptive role in this generalist host. Since similar alterations in the gut microbial 624 

community composition in response to dietary changes are a well-known fact in 625 

many hosts [22], we predict similar microbiome-mediated increases in digestive 626 

ability for commonly consumed foods in many other generalist animals. 627 

We can point out a number of limitations in the interpretations of the 628 

current study. The inoculum of this assay is feces, not gut contents. Even though 629 

fecal samples are usually used as a representative of ‘gut’ (colon) microbiota, 630 

these microbiota are subject to changes immediately after defecation due to 631 

biotic and abiotic factors [88]. We found no difference in the fecal SCFA, or 0 h 632 

concentrations between the highland and lowland. It is possible that this was 633 

simply due to the smaller sample size than gas production reduced by mistake, 634 

but it is also possible that the difference was a real one. Fecal SCFA 635 

concentration is determined not only by the microbiota but also by the digesta, 636 
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which are derived from many different kinds of foods in the case of wild animals. 637 

Some bacteria in feces in the lowland may have worked to produce as much 638 

SCFAs in vivo as in the highland in the presence of natural foods, but not when 639 

supplied with only leaves of E. japonica. Therefore, different substrates should 640 

be tested in the future to confirm our conclusion. 641 

The above limitations of the current in vitro fermentation assay suggest 642 

that further improvement of this method is possible as a way to reveal the 643 

fermentation ability of the gut microbe. In this study, we examined only one type 644 

of substrate, but it is possible to divide the fecal samples into multiple portions 645 

and use these as an inoculum for different substrate types. Similarly, we 646 

investigated leaf-fermentation ability only for one plant species eaten frequently 647 

in the highland but only rarely in the lowland; consequently, it would also be 648 

interesting to test the fermentation of substrates commonly eaten in the lowland, 649 

since these may be processed more efficiently by microbial communities from 650 

lowland hosts. In our assay, the fermentation time was set to 24 h, which 651 

approximates the typical retention time in the hindgut of Japanese macaques 652 

(total gut retention time can be up to 35 h when feeding on high-fiber foods; [89]). 653 

However, retention time can vary based on different factors, including the body 654 

size of the animal, and this should be taken into consideration in future studies. 655 

Furthermore, our time-series data on gas production suggest that the 656 

fermentation process is time-dependent, so it may be possible to mimic the in 657 

vivo digestion process much better via a more dynamic and flexible experimental 658 

setup, including substrate preparation and the duration of fermentation. In future 659 

studies, it will also be necessary to evaluate the relative contribution of the 660 

fermentation by the gut microbiome compared to the enzymatic digestion by the 661 
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host. This is necessary to better understand how gut microbial shifts can affect 662 

the digestion and survival of the host. Another interesting avenue of study would 663 

be to complement the metagenomics data used here with approaches based on 664 

metabolomics [36, 74] and metatranscriptomics [16, 90] approaches, which 665 

could provide deeper insights into the molecular basis and mechanisms affecting 666 

the fermentation potential. It would also be interesting to isolate bacteria species 667 

from the feces and to explore its function, for example, by sequencing the whole 668 

genome. We have already isolated and sequenced the genome of Sarcina 669 

ventriculi from the feces of Japanese macaques in the highland [91]. The 670 

genome includes potentially important genes for the digestion of leaves, such as 671 

cyanate metabolism. Interestingly, this bacteria cannot be isolated from feces 672 

collected in the lowland. Using combinations of these multi-level approaches 673 

would clarify the mechanism that produces different fermentation abilities among 674 

the host animals living in different environments. 675 

 676 

In conclusion, we demonstrated that gut microbe community structure differed 677 

considerably between the two investigated habitats, which may in part be 678 

explained by habitat-specific diets. In support of this, via an in vitro fermentation 679 

assay, we showed that gut microbiota of the more leaf-eating highland Japanese 680 

macaques have a higher fermentation ability for leaves than those of the more 681 

fruit-eating lowland animals. Taken together, our results indicate that gut 682 

microbiota may help generalist hosts to improve their digestive ability in 683 

response to the variations on food availability. 684 
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Legends for figures 1043 

Fig. 1. Map of the study site and location of sample collection. Open squares are 1044 

highland samples and filled squares are lowland samples. Note that several 1045 

locations are too close to be distinguished on the map. Contours are drawn 1046 

every 300 m. 1047 

Fig. 2. Difference in fermentation activity between the highland and lowland. (a) 1048 

Gas production, (b) pH values after fermentation, and (c) total short-chained 1049 

fatty acid (SCFA) production. 1050 

Fig. 3. Profile of short-chained fatty acids produced during fermentation. 1051 

Fig. 4. Beta-diversity of the community composition of the feces and suspension 1052 

after fermentation (SAF) samples in the highland and lowland based on 1053 

Bray-Curtis similarity index. 1054 

Fig. 5. Beta-diversity of (a) abundance patterns of genes, (b) abundance 1055 

patterns of pathway, and (c) coverage patterns of pathway between the 1056 

highland and lowland. 1057 

1058 
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Table 1. Significantly enriched taxa in feces or suspension after fermentation (SAF) samples

(a) Highland (b) Lowland

Feces SAF Feces SAF
Phylum Proteobacteria SAF 0.0059 0.0686 0.2958 Phylum Proteobacteria SAF 0.0004 0.0412 0.1643

Tenericutes Feces 0.0159 0.0183 0.0052
Spirochaetes SAF 0.0159 0.0625 0.1453

Class Bacilli SAF <0.0001 0 0.0086
Gammaproteobacteria SAF <0.0001 0.0231 0.1552

Spirochaetia SAF <0.0001 0.0625 0.1453
Negativicutes SAF 0.0319 0.0104 0.0254

Order Lactobacillales SAF 0.0106 0.001 0.0324 Order Pasteurellales SAF <0.0001 3E-05 0.0336
Aeromonadales SAF <0.0001 0.0168 0.1008
Lactobacillales SAF <0.0001 0 0.0086
Spirochaetales SAF 0.0022 0.0624 0.1453

Acholeplasmatales Feces 0.006 0.0067 0.0031
Selenomonadales SAF 0.0396 0.0025 0.0118

Family Streptococcaceae SAF 0.0105 0.0009 0.0323 Family Pasteurellaceae SAF <0.0001 3E-05 0.0336
Comamonadaceae SAF 0.0112 2E-07 0.0041 Streptococcaceae SAF <0.0001 0 0.0086

Oscillospiraceae SAF <0.0001 0 0.0029
Ruminococcaceae Feces 0.0008 0.0191 0.0073

Succinivibrionaceae SAF 0.0015 0.0136 0.0969
Lachnospiraceae Feces 0.007 0.0469 0.0167

Clostridiaceae Feces 0.0205 0.0016 4E-05
Anaeroplasmataceae Feces 0.0308 0.01 0.0017

Genus Streptococcus SAF <0.0001 0.0009 0.0317 Genus Streptococcus SAF <0.0001 0 0.0086
Holdemanella SAF 0.004 1E-05 0.0011

Taxa Enrich
ed in

P (after
FDR)

Relative abundanceTaxonomi
c level Taxa Enrich

ed in
P (after
FDR)

Relative abundance Taxonomi
c level
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