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Abstract: The intensity of tropical cyclones (TCs) is controlled by their environmental conditions.
In addition to the sea surface temperature, tropospheric temperature lapse rate and tropopause height
are highly variable. This study investigates the sensitivity of the intensity and structure of TCs to
environmental static stability with a fixed sea surface temperature by conducting a large ensemble
of axisymmetric numerical experiments in which tropopause height and tropospheric temperature
lapse rate are systematically changed based on the observed environmental properties for TCs that
occurred in the western North Pacific. The results indicate that the intensity of the simulated TCs
changes more sharply with the increase in the temperature lapse rate than with the increase in the
tropopause height. The increases in the intensity of TCs are 1.3–1.9 m s−1 per 1% change of the lapse
rate and 0.1–0.5 m s−1 per 1% change of the tropopause height. With the increase in the intensity
of TCs, supergradient wind at low levels and double warm core structures are evident. Specifically,
the formation of the warm core at the lower levels is closely tied with the intensification of TCs,
and the temperature excess of the lower warm core becomes larger in higher lapse rate cases.
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1. Introduction

The development of tropical cyclones (TCs) is controlled by their environmental conditions.
Diagnosing and predicting the maximum intensity achievable during the lifetime of TCs are important
to forecasting severe weather and hazards due to TCs. Gray [1] statistically identified environmental
conditions favorable for the development of TCs, and indicated that TCs favorably develop under
conditions with warm SST, convective instability in the lower troposphere, positive relative vorticity
at low-levels, weak vertical wind shear, high relative humidity at middle-levels, and significant
planetary vorticity. Among these environmental factors, SST and convective instability play a key role
in determining the intensity of TCs.

There have been a number of studies of how the maximum intensity of TCs is determined
(e.g., [2–7]). Emanuel [2,3] put forth a maximum potential intensity (MPI) theory based on the
proposition that TC circulation can be regarded as a Carnot heat cycle. Based on Emanuel’s theory,
Bister and Emanuel [8] presented an equation of MPI which indicates that the maximum wind speed is
determined by SST, outflow temperature, and surface enthalpy flux. Bister and Emanuel [9] updated
the MPI equation to show that the surface enthalpy flux term can be replaced with convective available
potential energy (CAPE). In this way, the atmospheric stability conditions play a role in determining
the intensity of TCs.

The understanding of the impacts of the environmental conditions such as SST, outflow
temperature, and relative humidity, on the intensity of TCs has steadily progressed. On the other
hand, there have not been many studies on how atmospheric stability such as temperature lapse rate
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affects the development of TCs. Hendricks et al [10] examined the environmental conditions for the
intensity changes of TCs in the western North Pacific and the North Atlantic and found that the rate of
intensification of the TCs in the both basins is not critically dependent on SST. Particularly in the western
North Pacific, rapidly intensifying TCs occur when environmental instability is high. Stovern and
Ritchie [11] investigated the sensitivity of the TC structure to the temperature conditions and found
that a warmer environment with a higher CAPE is important for the rapid development of a more
intense inner-core precipitation and wind, whereas a colder environment with a lower CAPE leads to a
broader inner and outer core of convection. However, in their study [11], although the temperature in
the entire atmosphere was uniformly warmed or cooled by a 1 ◦C increment, the temperature lapse rate
was unchanged. Some studies focused on how the temperature profile in the upper troposphere and
lower stratosphere affects the intensity and structure of TCs [12–14], but these studies did not change
the temperature in the entire troposphere. There are also some studies that investigated the effects
of tropospheric stability on TCs in the context of the impacts of climate change. Shen et al. [15] and
Tuleya et al. [16] investigated the sensitivity of the TC intensity to temperature lapse rate as well as SST
and showed that the simulated TCs can intensify as the atmosphere becomes unstable under the same
SST. However, how the impacts of the lapse rate appeared on the structure of TCs were not clearly
examined in their studies. Hill and Lackmannn [17] examined the influence of the vertical structure of
future atmospheric conditions on TCs from the predictions of multiple general circulation models by
conducting sensitivity experiments with changes in resolution, physical processes and future climate
conditions. They showed that the TC intensity increases in almost all the future conditions irrespective
of the resolution and physical processes. Kanada et al. [18] examined changes in the intensity and
structure of Typhoon Vera (1959), a category-five storm that occurred in September 1959 and landed in
central Japan, under environments of future global warming, by conducting pseudo-global warming
(PGW) experiments with different non-hydrostatic models. In the PGW experiment, the background
states in a future climate are produced by adding warming increments to past analysis fields [19,20].
Kanada et al. [18] showed that Typhoon Vera in the future conditions under the RCP 8.5 scenario
intensifies mainly owing to the increase in water vapor content and SST in spite of the more-stable
troposphere and also showed that the updrafts within the eyewall of Typhoon Vera intensify and reach
higher levels under the future conditions.

One of the advantages of the studies by Hill and Lackmann [17] and Kanada et al. [18] is the
use of non-hydrostatic models that can explicitly represent TC-scale circulations. However, there are
some disadvantages of these studies: they used three-dimensional models with large computational
costs, and the grid spacings employed in their studies were not sufficient for resolving individual
convective clouds. Specifically, Hill and Lackmann [17] employed a horizontal grid spacing of 6 km for
an ensemble of experiments, and Kanada et al. [18] used a grid spacing of 5 km. Such grid spacings may
be in a cloud-permitting range and are not able to explicitly resolve individual convection. Hill and
Lackmann [17] used a 2-km grid spacing in a nested domain from the 6-km-grid domain, but the
number of the 2-km-grid experiments is greatly limited. Although the cloud-permitting resolution is
at least desirable to capture quantitatively the intensity and structure of TCs, the results may include a
number of uncertainties. Thus, how the stability quantitatively affects the intensity and structure of
TCs has not been comprehensively investigated. The understanding of the effect of stability should be
important not only from a climate projection point of view but also from a weather prediction point
of view.

In considering the effects of static stability on convection in general, the temperature lapse rate
determines the amount of CAPE and thus controls the updraft intensity, thereby affecting the degree of
the organization of mesoscale convective systems (MCSs) [21–24]. Under a lower lapse rate condition,
the buoyancy is weaker, and thus the updraft is weaker, resulting in a lower degree of MCS organization.
Another point is that, even in a lower lapse rate condition, the increase in the tropopause height will
lead to a higher level of neutral buoyancy and hence add a small amount of CAPE [25]. Furthermore,
according to the MPI theory of TCs [2,3], the increase in the tropopause height corresponds to the
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decrease in outflow temperature, potentially enhancing the maximum intensity of TCs. Therefore,
the effects of the tropospheric stability conditions are of scientific interest for the understanding of the
TC intensity.

The purpose of this study is to quantify the impacts of environmental static stability on the
intensity and structure of TCs by conducting a large number of numerical experiments with the use
of an axisymmetric, non-hydrostatic model configured in environments with stability conditions
systematically changed. In particular, we investigate the intensity and structure of TCs during
their mature stage by examining the vertical circulation and eyewall convection. By using a low-cost,
two-dimensional, axisymmetric model, we are able to perform a large number of sensitivity experiments
in which the tropospheric temperature lapse rate and the tropopause height are systematically changed,
thereby demonstrating quantitatively the sensitivity of the TC intensity to the lapse rate and the
tropopause height, and indicating high reliability to the results.

2. Numerical Model and Experimental Design

2.1. Numerical Model

The present study uses the axisymmetric version of Cloud Model version 1, release 19 (CM1)
developed by Bryan and Fritsch [26]. CM1 is a non-hydrostatic, fully compressible model and has
been utilized for the idealized simulations of TCs in a number of studies (e.g., [6,7,12,27]).

The model settings are determined with reference to the previous studies of Bryan and Rotunno [6]
and Bryan [27] who examined the TC dynamics under an axisymmetric framework. The domain
covers 1500 km in the radial and 25 km in the vertical direction, and the grid spacings are 1 km in
the radial direction and 250 m in the vertical direction. The central axis of the TC is set as a lateral
boundary having an axisymmetric condition, while at the outside lateral boundary a rigid, free slip
wall condition is imposed. The top boundary is a free slip, with a Rayleigh damping layer being
applied above the 20 km height. The surface boundary is assumed to be the ocean. To develop a TC,
a Rankine-type vortex used in Rotunno and Emanuel [4] is embedded in the domain at the initial time.
This vortex is assumed to be in a state of gradient and hydrostatic balance and has the maximum wind
speed of 12 m s−1 and the radius of the maximum wind of 100 km.

In order to simplify the interpretation of physical processes related to the TC development, we
choose the simplest physical schemes possible. A Kessler-type warm-rain scheme was selected for
cloud microphysics. For atmospheric radiation, the Newtonian cooling with the rate of 2 K day−1 was
applied to mimic radiative cooling, following the idea of Rotunno and Emanuel [4]. Turbulence mixing
was parameterized with a Smagorinsky-type scheme in which the horizontal and vertical length scales
(lh and lv, respectively) were set according to Bryan [27]. Because the SST in this study was set to a
higher value (303.5 K) than used in Bryan [27], lh was changed from 1000 m to 1500 m in order to
prevent TCs from excessive development. Note that the SST value was determined from the analysis
of the environment for Typhoon Vera (1959), which will be described in detail in the next subsection.
The surface exchange coefficients Ck and Cd for enthalpy and momentum, respectively, were set as
constant values: Ck = 1.2 × 10−3, Cd = 2.4 × 10−3. Bryan [27] showed that the intensity of simulated TCs
based on these exchange coefficients is in the best agreement with the observation, and therefore we
also used these values. The computational domain was assumed to be a f-plane with f = 5× 10−5 s−1.
All experiments were integrated in time for 250 h.

2.2. Environmental Stability Diagnosed from Reanalysis Data

The initial vertical profiles of temperature and humidity in the present experiments were generated
with reference to the environmental conditions when Typhoon Vera (1959) recorded the maximum
intensification rate during 24 h (at the time 0000 UTC, 22 September 1959). We used the best track
dataset of Joint Typhoon Warning Center (JTWC) in order to obtain information on the position and
intensity of Typhoon Vera, and used the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al. [28])
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for analyzing the environmental conditions. We took horizontal averages of temperature, relative
humidity, and geopotential height within the 10◦ by 10◦ area centered at the typhoon center and defined
these averaged fields as the horizontally uniform, initial state for the control experiment (referred to
as CTL). Note that the layer from the surface to the depth of 1.5 km is regarded as a boundary layer,
in which the temperature lapse rate was set to a constant value (i.e., 6.41 K km−1) and the relative
humidity was set to an area-average value at each level. In the CTL experiment as well as the sensitivity
experiments described in the following, we assume that the initial atmosphere is at rest.

In order to set the vertical profiles of temperature and humidity in the sensitivity experiments,
we examined the environmental conditions around TCs in the western North Pacific during the period
from 1979 to 2014. The environments for 1068 TCs occurred in the western North Pacific during this
period as well as for Typhoon Vera (1959) were chosen. The environmental conditions for these TCs
were determined by computing the horizontally averaged field as was done when creating the vertical
profiles for the CTL experiment. The relationships between the environmental variables and the
maximum intensity of TCs are shown in Figure 1. The maximum intensity of the observed TCs tends
to increase with the SST increase (Figure 1a). A tendency for the increase in the TC maximum intensity
with the decrease in the tropopause temperature is also seen (Figure 1b). The influence of static stability
on the intensity of TCs is also seen: the maximum intensity tends to increase as temperature lapse
rate or CAPE increases (Figure 1c,d). As JRA-55 has a coarse vertical resolution in the layer near the
tropopause, the values of the tropopause height are not continuous but are instead discrete; hence,
the relationship with intensity is difficult to be identify (Figure 1e). It is clear that the development of
TCs is prevented by the strengthening of the vertical wind shear in the layer between 850 and 200 hPa
(Figure 1f).
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Figure 1. Maximum intensity of tropical cyclones (TCs) in the western North Pacific and their
environmental conditions. Environmental variables are (a) sea surface temperature, (b) tropopause
temperature, (c) temperature lapse rate in the troposphere, (d) convective available potential energy
(CAPE), (e) tropopause height, and (f) vertical wind shear in the 200–850 hPa layer at the time when
each TC started the maximum rate of intensification for 24 h. The black dots represent data for the
1068 TCs that were generated in the western North Pacific during the period from 1979 to 2014, and the
red star indicates the values of Typhoon Vera (1959).
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In Figure 1, the environment when Typhoon Vera (1959) developed is also indicated.
The environmental conditions of Typhoon Vera is characterized by remarkably high SST, a large
temperature lapse rate, and medium values of tropopause temperature and CAPE. We regard this
environmental condition of Typhoon Vera as CTL.

Table 1 summarizes the statistics of some environmental properties obtained from the above
analysis of the JRA-55 data. Here, the tropopause height Ht is defined as the lowest level at which
the temperature lapse rate Γ becomes less than 3 K km−1 [29] (note here that in the original WMO
definition the threshold lapse rate is 2 K km−1, but in this study we employ a stricter threshold), and the
temperature at that level is defined as the tropopause temperature To. In setting the initial conditions
in the numerical experiments, the values indicated in Table 1 are regarded as the reference.

Table 1. The values of the environmental parameters obtained from the JRA-55 analysis. The 1st
percentile, median, and 99th percentile values are indicated.

Parameters
Observations

1% Median 99%

Γ [K km−1] 6.22 6.64 6.93
Ht [m] 15,230 16,591 16,723
To [K] 187.3 193.2 204.2

CAPE [J kg−1] 638 2927 4816
SST [K] 299.3 302.1 303.4

2.3. Experimental Design

Based on the analysis described in the previous subsection, we determined the initial stability
conditions for the sensitivity experiments in which the tropospheric temperature lapse rate and the
tropopause height are systematically varied. The procedure is described as follows.

First, the values of Ht and To in CTL are set to be 15,375 m and 197.7 K, respectively.
The vertical profiles of temperature above 1.5-km height in the sensitivity experiments with

the tropopause temperature varied were generated by multiplying a factor to the temperature at
each height in order for the tropopause temperature to be set in the increment of 1 K. In this study,
the temperature lapse rate between the 1.5-km height and the tropopause is hereinafter referred to as Γ.
The temperature lapse rates above the tropopause height were not changed from the CTL profile.

Furthermore, the tropopause height Ht was lowered or elevated at an increment of 250 m from the
height used in CTL. In elevating the tropopause, we extrapolated the temperature profile by keeping
the temperature lapse rate at the tropopause in CTL.

The values of To and Ht were varied in the ranges from the −2 K to +6 K and from −1 km to +1 km,
respectively, with respect to the values of CTL. These ranges are based on the analysis of JRA-55 as
shown in Figure 1 and Table 1. In all the experiments, the vertical distribution of relative humidity
was set to be the same as in CTL, and SST was set to the area-averaged value of 303.5 K. Table 2
summarizes the parameters set in the experiments. The temperature profiles are shown in Figure 2.
In addition, plotted in Figure 2 is the vertical profile for the PGW experiments used in Kanada et al. [18]
as a reference.

From Table 2, we can see that the Γ value of CTL is close to the median value of the observations
(see Table 1), and that SST of CTL is remarkably high and exceeds the 99th percentile value of
the observations (see Table 1). Since we set the boundary-layer temperature profile as well as the
tropospheric relative humidity to be unchanged among all the experiments, the value of CAPE should
increase in proportion to Γ; this relationship is seen in Table 2. It is noted that the tropospheric
temperature lapse rate under the PGW condition used in Kanada et al. [18] is very stable compared
with the profiles defined in the sensitivity experiments (Table 2, Figure 2). A total of 81 numerical
experiments are conducted in this study.
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One may argue that the latent heat releases from ice microphysical processes should be included
in order to give credence to the physical reality of the simulated TCs even under idealized conditions.
To respond to this concern, we also performed another set of numerical experiments with an ice-phase
processes parameterization [30]. Although the main results are presented from the experiments with
Kessler’s warm rain parameterization, the comparison of these results with those with the warm-rain
and ice-phase microphysics parameterization is discussed in Section 4.Atmosphere 2020, 11, x FOR PEER REVIEW 6 of 18 
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Figure 2. The vertical profiles of temperature used as the initial conditions for the numerical experiments
as well as some references. The black and sky-blue lines show the temperature profiles used in CTL
and sensitivity experiments, respectively. The blue dots indicate the tropopause temperatures. The red
line indicates the vertical profile used in the pseudo-global warming experiments of Kanada et al. [18].
Gray shade means the range of the 1st and 99th percentiles of the temperatures at each level obtained
from the JRA-55 data analysis. The whisker-and-box plot also indicates the range obtained from the
JRA-55 data, the width of the box shows the 25th and 75th percentiles, and the vertical line in each
box indicates the median value. The profiles of the PGW condition (red line) and the observations
(gray shade) are adjusted so that the temperature at the lowest level is the same as that of CTL.

Table 2. The values of the environmental parameters. Indicated are the values in the CTL and sensitivity
experiments, obtained from the JRA-55 analysis, and in the pseudo-global warming (PGW) experiment
of Kanada et al. [18]. For the sensitivity experiments, the minimum and maximum values are indicated.

Parameters CTL
Sensitivity Experiment PGW

MeanMin. Max.

Γ [K km−1] 6.75 6.25 6.92 6.34
Ht [m] 15,375 14,375 16,375 16,875
To [K] 197.7 188.3 210.9 197.0

CAPE [J kg−1] 3091 1611 3769 4063
SST [K] 303.5 306.4

3. Results

3.1. Responses of TC Intensity to Tropospheric Stability

Here we describe the responses of the intensity and structure of the simulated TCs to the vertical
profile of temperature. First, the overall evolution of the simulated TCs is demonstrated. Figure 3
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shows the temporal change in the intensity of TCs simulated in CTL and all the sensitivity experiments
in terms of maximum wind speed and surface central pressure. Here, the maximum wind speed Vm is
defined as the maximum tangential wind at the 10-m height. In CTL, the vortex developed rapidly after
the simulated time, t = 40 h, and finished the rapidly intensifying period at about t = 80 h, reaching the
maximum intensity at around t = 130 h. After this time, the TC weakened slightly and reached an
equilibrium state at around t = 150 h, which continues until the end of the simulation. The maximum
wind speed and the central pressure during this equilibrium state are in good agreement with the
maximum intensity of Typhoon Vera (1959) within the range of maximum intensities recorded by
both Japan Meteorological Agency (JMA) and JTWC best-track data. Thus, CTL reproduces the actual
intensity of Typhoon Vera in spite of the idealized experimental setup.
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Figure 3. Temporal change in the (a) maximum wind speed and (b) central surface pressure of the
simulated TCs. The black and sky-blue lines show the results of the CTL experiment and the sensitivity
experiments, respectively. The blue and gray dotted lines indicate the maximum intensity of Typhoon
Vera (1959) from the JMA and JTWC best track, respectively.

In the sensitivity experiments, the rate of intensification and the intensity in the equilibrium state
of the simulated TCs vary around those obtained in CTL. The intensity differences among the members
at the end of the time integration are 30 m s−1 for the maximum wind speed and 78 hPa for the central
pressure. In spite of these differences, the TCs simulated in the sensitivity experiments also reached
their equilibrium states after t = 150 h. Thus, the intensity of the simulated TCs averaged during the
equilibrium state (i.e., the time period t = 150–250 h) was used to examine the influences of the static
stability and the tropopause height. The mean maximum wind speed averaged in the equilibrium
time period was denoted as Vm*.

The sensitivity of the maximum intensity Vm* of the simulated TCs to the tropopause height
and the tropospheric temperature lapse rate obtained from all the experiments is shown in Figure 4.
The tropopause height and the temperature lapse rate on the horizontal axes of Figure 4 are indicated
by the differences from the CTL values, normalized by the CTL values and indicated as percentages.
From Figure 4a, we can see that in some Γ cases Vm* increases with the increase in Ht while in other cases
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Vm* does not correlate with the increase in Ht. The slopes of the linear-fitting lines of the relationship of
Vm* to Ht ranges from 0.1 to 0.5 m s−1 per 1% change of Ht. On the other hand, the intensity of the TCs
increases sharply with the increase in Γ in all the Ht cases (Figure 4b). In this series of the experiments,
the slope of the linearly fitted lines of the relationship of Vm* to Γ ranges between 1.3 and 1.9 m s−1 per
1% change of Γ. The results shown in Figure 4 indicate that the intensity of the TCs is more sensitive to
Γ than to Ht.
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Figure 4. Relationships between the maximum wind speed of the simulated TCs and the stability.
Stability is indicated by (a) tropopause height or (b) tropospheric temperature lapse rate. Each dot
indicates the result from each numerical experiment. Each line shows a linear-fitted line from the
results of the cases (a) when the temperature lapse rate is fixed to a specific value (color legend on the
right) and when the tropopause height is fixed to a specific value (color legend on the right). The values
of the horizontal axis are normalized by the control values.

Since the intensity of the TCs is closely tied with the structure of the TCs, the structure of the TCs
will also change in response to the differences of Γ and Ht. The radius and height cross sections during
the equilibrium states are shown in Figure 5 for CTL and selected two cases with Ht changed but Γ
unchanged at the CTL value, and are shown in Figure 6 for CTL and two cases with Γ changed but Ht

unchanged at the CTL value. In order to account for the temporal changes in the radial size of the
TC core, the radius on the horizontal axis was normalized by the radius of the maximum wind at the
2-km height (RMW2 km) at each time. In CTL (Figure 5b), the updraft in the eyewall, located around
the normalized radius of 1, has two peaks: one at the lower level (around the 2-km height) and the
other at the upper level (around the 10-km height). An inflow layer with a maximum value of 30 m s−1

develops in the boundary layer, and just above this inflow layer a concentrated region of an outflow
with the maximum value of 15 m s−1 appears. The intensity of the upper-level outflow located near
the tropopause is about 25 m s−1. The standard deviation of the updraft is higher in the upper part
of the troposphere in the eyewall region, and there are two maxima in the upper layer (Figure 5e).
This indicates that the updraft in the upper layer changes its relative location to RMW2 km; with time,
the slope of the updraft and the eyewall convection changes from upright to more slanted. On the
other hand, the variability of the updraft in the lower level is low, which suggests that the structure of
the low-level updraft is well established during the equilibrium state.

In the selected sensitivity experiments, the general structure of the secondary circulation is
basically the same as in CTL; strong low-level inflow, localized outflow just above the inflow layer,
double-peaked updraft in the eyewall, and outflow near the tropopause are seen in Figure 5a,c.
There are slight changes in the peak intensities of the radial and vertical winds, but they seem to be
minor. Two maxima in the standard deviation of the updraft are also seen, which is related to variation
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of the eyewall slope (Figure 5d,f). In the experiment in which Ht is lowered by 1 km (Figure 5a),
the updraft in the eyewall became weaker than that in CTL, but Vm* did not decrease from the CTL
case. On the other hand, in the experiment with Ht elevated by 1 km (Figure 5c), the updraft and the
upper-layer outflow appeared to be stronger than those in the CTL case, and Vm* also increased from
the CTL value. It is seen that the depth of the eyewall became deeper with the increase in Ht. It is
considered that the deeper eyewall slightly strengthens the updraft in the eyewall. From these results,
we can find that the increase in the tropopause height leads to the strengthening of the eyewall updraft
but does not necessarily lead to the increase in Vm*.
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Figure 5. Radial-height cross-sections of the mean secondary circulation and its standard deviation
in the equilibrium state. Indicated are the mean secondary circulations for (a) the case with Ht being
14.375 km, (b) control experiment (CTL), and (c) the case with Ht being 16.375 km, and the standard
deviations of the secondary circulations during the equilibrium state for (d) the case with Ht decreased
by 1 km from the CTL, (e) CTL, and (f) the case with Ht increased by 1 km from the CTL. The horizontal
axis is normalized by the radius of maximum wind at the 2-km height (see text for the details).
The shades indicate the values for the upward motion, while the contour lines show inward (dotted)
and outward (solid) flows. The blue dotted lines in (a–c) indicate Ht set for each experiment.

The impacts of the change in the temperature lapse rate on the secondary circulation of TCs
are exhibited in Figure 6. The CTL case is also reproduced in Figure 6 for comparison purposes.
The low-level inflow, the outflow just above the inflow layer, the eyewall updraft, and the upper-level
outflow of the TC, in the case with the more stable conditions, are weaker than those of the CTL
(Figure 6a). This structural change is consistent with the reduced intensity of the TC in this stable
condition case in terms of Vm*. In contrast, the inflow, the updraft, and the outflows become intensified
in the case with the unstable condition (Figure 6c) relative to those in CTL. As far as the standard
deviation of the updraft is concerned, there is a single maximum within the eyewall region in the
stable conditions case (Figure 6d). In addition, the slope of the updraft in this case seems to be more
upright than that of the CTL (compare Figure 6a,c). This indicates that the structure of the updraft in
the stable conditions case does not change much in time. On the other hand, the standard deviation of
the updraft in the unstable condition case becomes larger than that in CTL especially in the lower layer,
in conjunction with intensified inflow-outflow couplet in the lower layer. In this way, the temperature
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lapse rate seems to have a significant impact on the strength and structure of the secondary circulation
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Figure 6. The same cross sections as Figure 5, except for (a) and (d) the cases with Γ being 6.32 K km−1,
(b) and (e) CTL, and (c) and (f) the case with Γ being 6.89 K km−1.

Table 3 summarizes the statistics of the maximum wind (Vm*), the minimum central pressure
(Pmin), and the radius of maximum wind (RMW) in the equilibrium states of the simulated TCs shown
in Figures 5 and 6. Among the series of the experiments with Ht changed, both Pmin and Vm* become
stronger when Ht is elevated more than in CTL but do not change consistently when Ht lowered.
The value of RMW decreases with the increase in Ht. On the other hand, the results obtained in
the experiments with Γ changed demonstrate that the TC intensity becomes stronger and the RMW
becomes smaller with increase in Γ; thus, a consistent change in the intensity and size of the TCs
appears against the increase in the instability. Among the cases shown, the standard deviations seem
not to vary in a consistent manner with the change in Ht or Γ, but overall the values are not significant
as compared with the mean values.

Table 3. The mean and standard deviation (std) of maximum winds Vm, central pressure Pmin,
and radius of maximum winds (RMW) during the equilibrium states. Experiments shown in Figures 5
and 6 are chosen here.

Exp
Vm (m s−1) Pmin (hPa) RMW (km)

Mean Std Mean std Mean std

CTL 73.55 2.0 886.4 4.5 23.93 2.32

Ht ctl—To +6K 59.11 4.6 925.1 9.2 20.89 1.17

Ht ctl—To −2K 76.70 2.8 875.8 6.7 25.88 2.89

Ht −1km—To ctl 74.32 2.4 883.2 5.7 24.42 1.74

Ht +1km—To ctl 76.94 2.0 875.4 5.7 22.86 2.22



Atmosphere 2020, 11, 411 11 of 17

3.2. Warm Core Structure and TC Intensity

In this subsection, we examine the influences of Γ and Ht on the warm core of TCs. Figure 7
shows the temporal change of the warm core structure simulated in CTL from t = 75 h to 200 h.
Note that the simulated fields were averaged in time for 6 h centered at each specified time, in order
to focus on the robust temporal evolution by filtering out the short-time-scale variability around the
TC core. At t = 75 h (Figure 7a), the TC forms double warm cores with peaks around the heights
of 5 km and 17 km. The intensity of the lower and the upper warm cores gradually increases with
time from t = 75 h (when the TC is in developing stage) to t = 125 h (when the TC is at its peak
intensity, Figure 7c). After t = 150 h (Figure 7d) until t = 200 h (Figure 7f), the structure of these warm
cores seems to be unchanged, suggesting that the TC attains its steady state. During this time period,
the tilt of the eyewall toward the outside becomes enhanced, as can be seen from the radius of the
maximum wind speed at each height level, the outward wind vectors, and the diabatic heating from
the microphysical processes.
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Figure 7. Radial and height cross-sections of the warm core structure in the CTL experiment. Times are
at (a) t = 75 h, (b) t = 100 h, (c) t = 125 h, (d) t = 150 h, (e) t = 175 h, and (f) t = 200 h. The color shading
indicates the temperature anomaly and the vectors shows wind. The blue contours, the black contours,
and the gray lines show, respectively, the diabatic heating rate (>20 K h−1) from microphysical processes,
the degree of supergradient wind, and the radius of maximum winds at each height. The temperature
anomaly here is defined as the deviation from the average temperature from the radii of 550 km to
650 km at each height.

The tilt of the eyewall convection is known to be related to the degree of supergradient winds within
the TC core. In order to quantify the degree of supergradient winds in this study, we used the difference
of the tangential wind (V) and the gradient wind (Vg) derived from the radial pressure gradient.

The temporal evolution of the degree of the supergradient wind (V −Vg), as well as the vertical
structure of the warm temperature anomalies, is shown in Figure 8 for the CTL case. The wind speeds
V and Vg are defined here as those calculated at the radius of the maximum wind speed at the height
of 2 km, while the warm temperature anomalies are averaged from the center to the radius of 10 km.
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The degree of the supergradient wind varies largely with time from around t = 50 h to t = 100 h,
gradually increases from t = 100 h to 150 h, and becomes quite large after about t = 150 h, varying
around 13–15 m s−1 during the equilibrium state. The comparison of the temporal evolutions shown in
Figures 7 and 8 indicates that the tilt of the eyewall convection becomes more enhanced as the degree
of the supergradient wind is increased with time.

In Figure 8, it is shown that the upper and lower warm cores are initially generated at around
t = 50 h. Note that the height of the upper (lower) warm core is defined as the level above (below) the
10-km height at which the maximum temperature anomaly appears. The upper warm core continuously
intensifies after the generation and reaches the peak intensity (40 K excess) during the equilibrium
state. The height of the upper warm core, after attaining a significant amount of temperature excess,
changes little with time. On the other hand, the lower warm core also intensifies with time and stays
around the 13-K excess during the equilibrium state. The intensification of the lower warm core seems
to be linked with the enhancement of the supergradient wind: as the degree of supergradient wind
increases from t = 100 h to 150 h, the temperature excess of the warm core increases. Furthermore,
the height of the lower warm core gradually descends during the equilibrium state, which corresponds
to the temporal change in the tilt of the eyewall as seen in Figure 7.
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Figure 8. The temporal evolution of the vertical structure of the warm core structure in the CTL
experiment. The color shading indicates the temperature anomaly as computed in Figure 7. The blue,
the gray, and the black lines show the time series of the degree of supergradient wind, the height of the
lower-level warm core, and the height of upper-level warm core, respectively.

The characteristics of the upper and lower warm cores during the equilibrium state are examined
here. The changes in the temperature excess of the warm cores against the changes in Ht and Γ are
shown in Figure 9. The relationship with the degree of supergradient wind is also indicated. As for the
change to Ht (Figure 9a,b), the temperature excess of the lower warm core indicates a large variability
and does not indicate a clear tendency, whereas that of the upper warm core shows a slightly declining
tendency with the increase in Ht. A notable response is the increase in the temperature excess with
the increasing degree of supergradient wind at each Ht value for both the lower and upper warm
cores. On the other hand, the temperature excesses of the warm cores indicate clearly an increasing
tendency with a larger Γ value (Figure 9c,d). In addition, the temperature excesses of the warm cores
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become large with the increase in the degree of supergradient wind. With a larger Γ value, the degree
of supergradient wind becomes higher, resulting in the larger temperature excess of the warm cores.

Figure 10 shows the heights of the lower and upper warm cores in terms of Ht and Γ. For the
relationship with Ht, the variability of the heights of the both warm cores is very high, and the heights
of the warm cores do not seem to have a significant relationship with the change in Ht (Figure 10a,b).
In contrast, the relationship with Γ (Figure 10c,d) indicates that the height of the lower warm core
becomes lowered with the increase in Γ (Figure 10c), while that of the upper warm core tends to be
higher with the increase in Γ (Figure 10d). It is also seen that the lower (upper) warm core is lowered
(elevated) as the degree of supergradient wind becomes higher. As in the case of the temperature
excess (Figure 9), because the TC intensity responds more clearly to Γ than to Ht, the heights of the
lower and upper warm cores are more sensitive to Γ than to Ht. In this way, the intensity and height of
the warm cores are considered to be controlled more by Γ than by Ht.
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Figure 9. The relationships of the temperature anomalies of warm cores to the stability conditions.
The relationships between the lower-core temperature anomaly and (a) Ht and (c) Γ and between the
upper-core temperature anomaly and (b) Ht and (d) Γ, obtained from the result at each time step during
the equilibrium state in all the experiments. The color indicates the degree of supergradient wind.
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4. Summary and Discussion

Motivated by the study of Kanada et al. [18] who investigated the impacts of global warming on a
category-five storm, Typhoon Vera (1959), by conducting PGW experiments with non-hydrostatic cloud
models, we examined how the tropospheric stability condition affected the intensity and structure of
TCs. In order to conduct a large number of experiments in which the environmental conditions were
systematically changed, we used an axisymmetric, non-hydrostatic model to reduce the computational
cost. In addition, the physics processes and experimental settings employed here were chosen to be
as simple as possible. The base-state conditions were set by changing the temperature lapse rate Γ
and the tropopause height Ht from those of the environment at the time of the rapid intensification of
Typhoon Vera. The ranges of Γ and Ht varied in the experiments were determined from the analysis of
the environments of TCs in the western North Pacific with the JRA55 dataset and also by referring to
the PGW condition for Typhoon Vera in Kanada et al. [18].

From the set of the numerical experiments, it was demonstrated that the maximum intensity of
the simulated TCs at their equilibrium states changes more sharply with Γ than with Ht. In other
words, the change in Γ with the same Ht more effectively controls the intensity of TCs than the change
in Ht with the same Γ.

Bryan and Rotunno [6] showed that the gradient-wind imbalance plays a key role in determining
the TC intensity. Thus, to consider the response of the TC intensity to Ht and Γ in the present
experiments, we focused on supergradient wind. The analysis of the degree of supergradient wind
indicated that a high degree of supergradient wind appears in the layer of the low-level inflow and
the overlying outflow. This supergradient wind intensifies with the more enhanced warming of the
lower-level warm core. Besides, it was shown that the intensity of TCs is closely related to the height of
the lower-level warm core as well as the degree of supergradient wind. Furthermore, the relationships
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were found to be strongly controlled by the temperature lapse rate: with the increase in Γ, the lower
warm core has a larger temperature excess and becomes lowered. This property of the lower warm
core leads to lowered central pressure and hence intensified low-level inflow, which in turn enhanced
ascent in the core and thus outflow. During this process, the degree of supergradient wind becomes
higher. In this way, the gradient-wind balance becomes less applicable in cases of a more intensified
lower warm core under larger temperature lapse rate.

On the other hand, the change in the tropopause height did not affect the property of the lower
warm core but did affect the upper-level warm core. Thus, the process that is identified in the sensitivity
to Γ does not appear with the increase or decrease in Ht. From these sensitivities to the temperature
lapse rate and the tropopause height, it is suggested that the existence of enhanced supergradient wind
(which is closely tied to the intensified low-level warm core), seen more clearly in larger Γ cases than in
higher Ht cases, results in a sharper response of the intensity of the simulated TCs to the temperature
lapse rate than to the tropopause height.

As mentioned in Section 2.3, how the inclusion of ice-phase processes in the numerical experiments
influences the above results obtained from the experiments with warm-rain processes only is discussed
here. We have done numerical experiments with exactly the same settings described in Section 2.3
except for changing the cloud microphysics scheme to a scheme including ice-phase processes [30].
From the experiments with the ice-phase processes, it was found that the increases in the TC intensity
are 0.7–1.0 m s−1 per 1% change of the lapse rate and 0.1–0.3 m s−1 per 1% change of the tropopause
height. These rates of the change are smaller than the magnitudes obtained from the experiments with
the warm-rain microphysics parameterization. Thus, quantitatively, those rates of the intensity changes
to the temperature lapse rate and the tropopause height should be carefully investigated in a further
study. However, it is emphasized here that the change in the lapse rate has a stronger impact on the TC
intensity than the change in the tropopause height. Further analyses will be made in a future study.

An implication for TC forecasts is gained from the insight into the important role of the temperature
lapse rate in controlling the maximum intensity of TCs. In general, the temperature lapse rate in the
large-scale environment depends not only on the activity of synoptic-scale disturbances but also on the
seasonal airmass characteristics. Under a similar SST condition, the temperature lapse rate should be a
useful parameter to diagnose the maximum intensity of TCs. Even with a similar outflow temperature,
the temperature lapse rate and tropopause height will be different. From the present results, it is
suggested that the temperature lapse rate plays a major role. If the temperature lapse rate is different,
the amount of CAPE will also be different: in a higher (lower) lapse rate case the CAPE value is larger
(smaller) [23–25]. Because the amount of CAPE consists of one of the parameters included in the
MPI equation [9], the present results seem to be consistent with the MPI theory. An important point
revealed in this study is that the temperature lapse rate is quantitatively more important than the height
of the tropopause in controlling the maximum intensity of TCs. Furthermore, the accumulation of
CAPE in and around the inner core of TCs is essential in initiating the rapid intensification of TCs [31],
the amount of CAPE and hence the temperature lapse rate will affect the magnitude of the rate of
intensification of TCs. Therefore, the present results may also be taken into account to understand how
the environmental stability conditions affect the temporal evolution and mature-stage intensity of TCs.

Another implication from the present results is for the impacts of warmed climate on TC intensity.
Figure 2 also indicates the vertical profile of temperature in the PGW condition for Typhoon Vera (1959)
investigated by Kanada et al. [18], demonstrating that the temperature lapse rate is very unstable among
the cases examined in the numerical experiments. Considering that the lapse rate has a significant
impact on the TC intensity, more-stable conditions in the PGW climate for Typhoon Vera (see also
Table 3) will contribute significantly to the reduction of the TC intensity. Therefore, the intensification of
the intensity of Vera in the PGW climate shown in Kanada et al. [18] and Takemi et al. [32] is considered
to be due to the significant increase in SST and also moisture content. In other words, the more stable
conditions found in a warmed climate will serve as a limiting factor to prevent extreme intensification
of TCs under global warming.
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5. Conclusions

By taking advantage of a low-computational-cost, axisymmetric framework of a numerical
model for simulating TCs, we conducted a large ensemble of numerical experiments to investigate the
dependence of TCs on the tropospheric static stability. The environmental conditions were systematically
changed with the tropospheric temperature lapse rate and the tropopause height being varied.

The maximum intensity of the simulated TCs is regulated more effectively by the tropospheric
temperature lapse rate than by the tropopause height. With the same tropopause height, the cases
with higher temperature lapse rate (unstable condition) resulted in stronger TCs, whereas at the
same temperature lapse rate the cases with higher tropopause height have minor influences on the
intensity of TCs. Overall, the increases in the intensity of TCs in terms of the maximum wind speed
are 1.3–1.9 m s−1 for 1% change of the lapse rate from the CTL (in K km−1) and 0.1–0.5 m s−1 for 1%
change of the tropopause height from the CTL (in km).

With an increase in the intensity of TCs, supergradient wind at the low-levels and double warm
core structures are evident. Specifically, the formation of the warm core at the lower levels is closely
tied with the intensification of TCs, and the temperature excess of the lower warm core becomes
larger in higher lapse rate cases. The enhanced warm core at low-levels results in a high degree of
supergradient wind in the layer of the low-level inflow and the overlying outflow. During this process,
a departure from the gradient-wind balance would become significant.
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