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1. Introduction

We start with some standard concepts and notations. The elements of an alphabet
X are called letters (X is supposed to be finite and nonempty). A word over an
alphabet X is a finite string consisting of letters of X. The string consisting of zero
letters is called the empty word, written by A. The length of a word w, in symbols
|w|, means the number of letters in w when each letter is counted as many times it
occurs. By definition, |A| = 0. At the same time, for any set H, |H| denotes the
cardinality of H. If v and v are words over an alphabet X, then their catenation uv
is also a word over X. Catenation is an associative operation and the empty word A
is the identity with respect to catenation: wA = Aw = w for any word w. For a word
w and positive integer n, the notation w™ means the word obtained by catenating n
copies of the word w. w® equals the empty word A. w™ is called the m-th power of w
for any non-negative integer m.

Let X™* be the set of all words over X, moreover, let X+ = X*\ {A\}. X* and
X+ are the free monoid and the free semigroup, respectively, generated by X under
catenation.

A (finite) directed graph (or, in short, a digraph) D = (V, E) (of order |V| > 0) is
a pair consisting of sets of vertices V and edges ECV x V. A walkin D = (V,E) isa
sequence of vertices vq,...,v,,n > 1 such that (v;,vi11) € E,i=1,...,n—1. A walk
is closed if v; = v,. By a (directed) path from a vertex a to a vertex b # a we shall
mean a sequence v ...up,n > 1 of pairwise distinct vertices such that a = v;,b = v,
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and (v;,v;41) € E for every i = 1,...,n — 1. The positive integer n — 1 is called the
length of the path. Thus a path is a walk with all n vertices distinct. A closed walk
with all vertices distinct except v; = v, is a cycle of length n — 1.

By an automaton we mean a finite automaton without outputs. Given an au-
tomaton A = (A, X, ) with set of states A, set of input letters X, and transition
6 : Ax X — A, it is understood that ¢ is extended to 6* : A x X* — A with
0*(a,A) = a, 6*(a,zq) = 6*(6(a, ), q). In the sequel, we will consider the transition
of an automaton in this extended form and thus we will denote it by the same Greek
letter 4. Let A = (A, X, 6) be an automaton. It is said that a state a € A generates a
state b € A if 6(a,p) = b holds for some p € X*. For every state a € A define the state
subautomaton B = (B, X, ") generated by a such that B = {b| b = é(a,p),p € X*},
moreover, (b, z) = 8(b, z) for every pair b € B,z € X. A is called strongly connected
if for every pair a,b € A there exists p € X* such that §(a,p) = b.

We say that A satisfies Letichevsky’s criterion if there are a state a € A, input
letters z,y € X, input words p,q € X* such that §(a,z) # é(a,y) and é(a,zp) =
6(a,yq) = a. It is said that A satisfies the semi-Letichevsky criterion if it does not
satisfy Letichevsky’s criterion but there are a state a € A, input letters z,y € X, an
input word p € X* such that §(a,z) # d(a,y),6(a,zp) = a and for every ¢ € X*,
8(a,yq) # a. If A do not satisfy either Letichevsky’s criterion or the semi-Letichevsky
criterion then we say that A does not satisfy any Letichevsky criteria or is without
any Letichevsky criteria.

The Letichevsky criterion has a central role in the investigations of products of au-
tomata (see [1],[2],[3],[4]). Automata having semi-Letichevsky criterion and automata
without any Letichevsky criteria are also important in the classical result of Z. Esik
and Gy. Horvéath (see [2],[3]). In this paper we investigate automata without any
Letichevsky criteria.

2. Results

First we observe

Proposition 1 Given an automaton A = (A, X, §), a state ag € A, four input words
u,v,p,q € X* with |up|, |vg| > 0 under which §(ao,u) # 6(ao,v), and 6(ao,up) =
8(ao, vq) = ap. Then A satisfies Letichevsky’s criterion.

Proof: First we suppose |ul,|v| > 0. Then there exist input words w,w’, w;, ws €
X* and input letters z,y € X such that u = wzw;,v = w'yw, and &(ag, wz) #
d(ao, wy) = 8(ap, w'y). Therefore, we can reach Letichevsky’s criterion substituting
ao, 4, v, p, q for §(ap, w), T, y, wrpw, waqw.

Now we assume, say, |v| = 0. Then, by our assumptions, |g| > 0 with §(ao, g) = ao.
On the other hand, §(ag, u) # 8(ag,v) = ap implies |u| > 0. In addition, then we have
(a0 = d(ap,v) =)d(ao,q) # 6(ap, u). Therefore, there are input words w, w’,w;,wp €
X* and input letters z,y € X such that u = wrw;,q = w'yw, and &(ap, wz) #
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d(ag, wy) = 6(ap, w'y). We obtain again Letichevsky’s criterion substituting ag, u, v, p, ¢
for §(ag, w), z, y, wipw, waw. O

Now we study automata having no Letichevsky’s criteria. The following statement
is obvious.

Proposition 2 A = (A, X, ) is a automaton without any Letichevsky criteria if and
only if for every state ag € A, input letters x,y € X and an input word p € X* having
d(ao, Zp) = ao, it holds that §(ap, z) = 8(ao, y). a

Obviously, if A = (A, X, ) has the above properties then there exists a nonneg-
ative integer n such that for every p € X* with |p| > n, each d(a,p) generates an
autonomous state-subautomaton of .A. Denote by n4(< n) the minimal nonnegative
integer having this property.

Proposition 3 n4 < max(|4| - 2,0).

Proof: Take out of consideration the trivial cases. Thus we may assume |A| > 2.
Consider a € A,zy,...,Zmsa € X having 6(a,Z1 -  TmZm+1) 7 6(a, T1+ T Trmaga)-
If a,6(a,z1),6(a, 122),...,0(a, 21+ Tm),6(a, T1 * * * TZm+1), 0(a, Ty * + - TTmi2) ATE
not distinct states then .A satisfies either Letichevsky’s criterion or the semi-Letichevsky
criterion, a contradiction. Hence, m < |A| — 3. Thus ny < |A| — 2. a

We also note the next direct consequence of Proposition 2.

Proposition 4 If A is a strongly connected automaton without any Letichevsky cri-
teria then A is autonomous. O

By this observation, we get immediately the following

Proposition 5 Suppose that A = (A, X, d) is a strongly connected automaton without
any Letichevsky criteria. There exists a k > 0 such that for every a,b € A, a = b if
and only if there exists a pair p,q € X* with |p| = |q|(mod k) and é(a,p) = d(b,¢).0

Lemma 6 Given an automaton A = (A, X,0) be without any Letichevsky criteria,
a € A is a state of a strongly connected state-subautomaton of A if and only if there
erists a nonempty word p € X* with 6(a,p) = a.

Proof: Let a € A be a state of a strongly connected state-subautomaton of A. By
definition, for every nonempty word ¢ € X*, there exists a word r € X* with é(a, gr) =
a. Conversely, suppose that §(a,p) = a for some a € A and p € X*,p # A. Then for
every prefix p’ of p and input letters z,y € X, §(a,p'z) = 8(a,p'y). Therefore, for
every ¢ € X*, 6(a,q) = &(a,7), where r is a prefix of p with |g| = |r|(mod |p|). But
then a generates a strongly connected state-subautomaton of A. O

We shall use the following consequence of the above statement.



Proposition 7 Let A = (A, X,6) be an automaton without any Letichevsky crite-
ria. Moreover, suppose that a € A is not a state of any strongly connected state-
subautomaton of A. If §(b,p) = a for some b € A and nonempty p € X* then
8(a,q) # b,q € X*. Conversely, if 6(a,r) = c for some c € A and nonempty r € X*
then 6(c,q) # a,q € X*.

Lemma 8 Let A = (A, X,0) be a automaton without any Letichevsky’s criteria. If
there are a € A,q,q' € X*,lq| = |¢'| > |A] — 1,6(a, q) # é(a,q’) then for every pair of
words r,7' € X*,|r| = || we have 8(a, gr) # 6(a,q'r").

Proof: Suppose that our statement does not hold, i.e., there are a € A,q,¢'r,7" €
X*lgl = |¢| = |Al = 1,|r| = |r'| having 6(a,q) # 6(a,¢') and 6(a,qr) = &(a,q'r).
Then, of course, |r| = |r'| > 0. We distuinguish the following three cases.

Case 1. There are qi,71,q2,72,4},7],45, T2 With ¢ = qir1 = @ara, ¢ = @7y =
& |l < laellgl] < lgs| such that 6(a,q1) = 6(a,q2),(a,q1) = 6(a,qz). * But
then, by Proposition 2, §(a,q1w) = 8(a,quw’) and §(a, qyw) = &(a, qjw’) for every
w,w’ € X*, |w| = |w|. Thus, because of 6(a,q1) = (e, ¢2) and d(a, q;) = &(a, ¢3), we
obtain that, for every w,w’ € X* there are 2,2’ € X* with &(a, qwz) = §(a,q:) and
§(a, qw'?) = &(a,q;). Thus qiry = g¢,qjr; = ¢’ imply that &(a,qrz) = 8(a,q) and
8(a,¢'r'2') = &(a,q;) hold for some z,2' € X*. This means that §(a,grzr1) = é(a,q)
and 6(a,¢'r'2'r}) = 8(a,¢'). Put b = 8(a,qr)(= é(a,d'r")),c = &(a,q),c = &(a,q’).
Then (b, 2r1) = ¢ # ¢ = §(b, 2'r}) and d(c,r) = 8(c/,r’) = b. But then |r| = || >
0 implies |zr;7|,|2'r;r’| > 0. Therefore, by Proposition 1, A satisfies Letichevsky’s
criterion, a contradiction.

Case 2. There are q1, 71, g2, 72 With ¢ = 171 = @a72, |q1] < |g2/, such that é(a,q1) =
8(a,q2), but 8(a,q)) # 8(a,q,) holds for every distinct prefixes gi,q; of ¢’. Then,
because of |g| = |¢'| > |A| — 1, we necessarily have |¢| = |¢'| = |A| — 1, moreover,
we also have that for every d € A there exists a prefix ¢; of ¢ with é(a,qy) = d.
(Indeed, we assumed d(a,q}) # &(a, ¢3) for every distinct prefixes qi, q; of ¢/, where
l¢'| = |A] - 1.)

And then for every d € A there exists an 7}, € X* having d(d,}) = 6(a,¢). On
the other hand, we may assume 6(a, grzr;) = d(a, q) as in the previous case.

Now we suppose again 6(a, gr) = &(a, ¢'r’) as before. Substituting d for 6(a, grzr1),
there exists an 7, € X* holding é(a,grzrir}) = 6(a,q}). Put b = &(a,qr),c =
(a,q),c = 6(a,q). But then |r| = || > 0 implies |zri7|, |2ririr’| > 0. Therefore, by
Proposition 1 we obtain again that A satisfies Letichevsky’s criterion contrary of our
assumptions.

Case 8. Let 6(a,q1) # 6(a,q3) and 8(a,q}) # d(a,qj) for every distinct prefixes
q1,¢2 of g and ¢}, ¢ of ¢', respectively. Then for every d € A there are ry,r; € X* hav-
ing 6(d, 1) = &(a,q) and &(d, ;) = 6(a,¢'). Therefore, assuming d(a, gr) = 6(a,¢'r’)
for some 7,7 € X*, and substituting d for 6(a, gr) = 6(a, ¢'r'), we obtain d(a, grr) =
5(a,q),8(a,qrr}) = 8(a,q') (with &(a,qr) = §(a,¢'r")). Put ¢ = &(a,q),d = §(a,¢)-

2This holds automatically if |q| = |¢'| = |A].
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Then §(d,m1) = ¢,6(d,r}) = ¢,8(c,7) = 8(c/,r") = d such that, by |r| = |r'| > 0,
|ri7r], |rir'| > 0. By Proposition 1, this implies that A satisfies Letichevsky’s criterion,
a contradiction again. a

Theorem 9 Let A = (A, X,6) be a automaton without any Letichevsky’s criteria.
For every state a € A we have one of the following two possibilities:

(i) there ezist q,¢' € X*,|q| = |¢'| = |A| -1 such that §(a, qr) # 6(a,g'r") for every
rr € X* |r| = ||,

(i) 8(a, q) = d(a,¢') for every q,¢' € X*,|q| = |¢'| 2 |A| - 1.

Proof: Suppose that (i) does not hold. Then for every q,¢' € X*,|q| = |¢| > |A] -1
there exist r, 7’ € X*,|r| = |r'| having 6(a, qr) = 8(a, ¢'r’). Using Lemma 8, 6(a, gr) =
8(a,q'r’),|r| = |r'| and |g| = |¢'| = |A| — 1 implies 6(a,q) = d(a,q’). Thus (ii) holds
whenever (i) does not hold. o

The following statement is obvious.

Lemma 10 Given a digraph D = (V,E), let v € V,py, 2,15, p3,p4 € V* such that
P1P2p3UPsv and p1pypaupsv are walks and vpgav is a cycle. |pa| = |py|(mod |psv|) if and
only if there are positive integers k, £ having |p1p:psv(pav)*| = |piphpsv(pav)f|. O

We finish the paper studying both types of states given in Theorem 9.

Proposition 11 Let A = (A, X, 6) be an automaton without any Letichevsky’s crite-
ria. Consider a state a € A and suppose that there are q,¢' € X*,|q| = |¢'| 2 |A] -1,
8(a,q) # 8(a,q). Then there are q,q’ having this property for which ¢ = uwv and
g = uv' for some u,v,v' € X* such that for every prefizes r of v and r' of V'
with |r] = |r'| > 0 we have §(a,ur) # 6(a,ur’), and simultaneously, for every
w, 21, 22, W', 2}, 2, |w|, |w'| > 0 with v = wz,20,v' = w'2 2y we obtain z; = 2, whenever
é(a, vw) = §(a,uw’), and |z1| = |2].

Proof: Consider a € A and suppose that our conditions hold, i.e., there are q,¢' € X*
having |q| = |¢'| > |A| — 1,6(a,q) # 6(a,q’). Then Proposition 3 implies that §(a, q)
and d(a,q’) generate autonomous state subautomata of A. We will distinguish the
following cases (omitting some of the analogous cases):

Case 1. There are u, v, v,v', € X* such that ¢ = uv, ¢ = u'v/, 8(a,u) = §(a, u’) and
for every nonempty prefixes r of v and ' of v/, 6(a, u) # 8(a,u'r’), 8(a,u’) # é(a,ur),
and &(a, ur) # 6(a, w'r’).3 Let, say, |u| > |u| and let v" be a prefix of v/ with [v"| = |v].
Change ¢’ for uv” and then we will have our requirements.

Case 2. There exist a prefix u of ¢ having d(a,u) = d(a,q’). Let t € X* be a
nonempty word with minimal length having é(a,q’t1ts) = é(a,q’t;) for some word

3u = o/ = X is possible.



t; € X* and assume that f, is minimal in the sense that for every nonempty p €
X*, 6(a,q't1p) = 6(a,q't;) implies |tz| < |p|.* Then, using that 6(a,q’) generates an
autonomous state subautomaton of A, we have ¢ = uv, where v is a nonempty prefix
of t,tX for a suitable k > 0.

Prove that in this case u = |¢’|(mod |t2|) is impossible. Assume the contrary.
Recall again that 6(a, ¢') generates an autonomous state subautomaton of A. But then,
applying Lemma 10, there are words r,7’ € X*,|r| = |r'| having é(a, qr) = é(a, ¢'r').
By Lemma 8, then |g| = |¢/| < |A| — 1 contrary of our assumptions. Thus we have
the following cases. ;

Case 2.1. Suppose u # |¢'|(mod |t5|) such that for every prefixes u; of u and ] of
q with uu}] # A, d(a, ;) = 8(a, ) implies u; = u and u; = ¢’. Then we obtain our
requirements again (having ¢ = uv, where v is a nonempty prefix of t;t& for a suitable
k > 0).

Case 2.2. Assume u # |¢'|(mod |t5|), and simultaneously, let for some prefixes
u; of v and ) of ¢, 8(a,u;) = 8(a,u}) such that u = wyvy, ¢ = ujv], furthermore,
A € {uy,v;} implies X ¢ {ul,v{} and X € {u},v}} implies A & {uy,v1}. If v; = A and
v} # A then 8(a,u}) = 8(a, ujv}) # 6(a, uiviv)(= d(a, wv)) such that v is a nonempty
suffix of g. But then A has either Letichevsky’s criterion or the semi-Letichevsky
criterion, a contradiction. Similarly, it also lead to a contradiction is we assume
v # X and v; = A\ Thus A\ ¢ {v;,v{} can be assumed and we may also assume
A & {u1,u}} analogously.

By u # |¢'|(mod |t[), either |us] # |uj|(mod |ta]), or [v1] # [vy|(mod |2s]).

Case 2.2.1. Suppose |u;| # |u}|(mod |t;|) and let, say, |v1]| > |v}|. Take a prefix v/
of ¢tk for a suitable k > 0 with |u)v1v'| = |g| and let us consider ujv;7’ instead of ¢'.

Case 2.2.2. Suppose |u;| = |u}|(mod |ts]). Then |vi| # |v}|(mod |tz]). Let, say,
|ug| > |u}]. Take a prefix v of ¢;t¥ for a suitable k£ > 0 with |u;v1v'| = |g| and change
wvjv’ for ¢'.

In both of the above Case 2.2.1 and Case 2.2.2, we have words® w, w;, wq, W}, wh €
X* X ¢ {wy,wi}, wy # |wi|(mod |to]), wh is a prefix of w, (or, in the opposite case, w;
is a prefix of w}), ¢ = ww,wy, ¢ = wwjw}, such that §(a, ww,) = 6(a, ww}). Then let
w, Wy, wg, w), wh € X* be arbitrary having these properties for which min(|wi|, jws|)
is minimal.

If for every nonempty proper prefixes z; of w, and 2} of w} we have 6(a, w) ¢
{6(a,wz}), 8(a, wzl)} and 6(a wzl) # 6(a, wz}) then we are ready having our proper-
ties for ¢ = wwyws, ¢ = wwjws.

Now we assume |w;| # |w}|(mod |t2]) such that for some preﬁxes 2z of w; and 2 of
w), 8(a, 21) = 6(a, 2;) such that wy = 225, W} = 2} 2}, furthermore, A € {21, 22} implies
A ¢ {2,,2} and ) € {2}, 25} implies A & {z1,2;}. We can prove A ¢ {21, 2, 23, 2}
similarly as before. Then either |2;| # |2{|(mod |t2|) or |22| # |23|(mod |tz]). It remains
to prove that these cases are impossible.

4The finiteness of the state set of .A implies the existence of ¢; and t2.
5in Case 2a, of course, w = A,.
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If |2] # |2}|(mod |to|) and, say, |22] > |2}] then considering the prefix wy of wj
having |zjw)| = |z1wa|, we can take w, 21, 20ws, 21, ZoWq 88 W, Wi, We, W), Wy contrary
of the the minimality of min(|w;|, |ws)).

If |21| = |2}|(mod |t|) with |z| # |25|(mod |¢2|) and, say, |21| > |#}| then consid-

ering the prefix wj of w) having |zjw)| = |zw2|, we can take wz, 2y, 23, wo, Wy as
w, wy, W), we, wh contradicting the minimality of min(|w;|, |wel).
The proof is complete. |

Proposition 12 Let A = (A, X, 4) be an automaton without any Letichevsky’s crite-
ria. Consider a,ag € A,p € X* with 8(ap,p) = a and suppose that §(a,r) = 6(a,r’)
holds for every r,r' € X*,|pr| = |pr'| > |A| — 1. Assume that 6(a,q) # 6(a,q’) holds
for some q,¢' € X*, |pq| = Ipd'|(< |A| = 1) and let q,q' be words of mazimal length
having this property. Then there are q,q’ with this property having

(i) ¢ = wv and ¢ = wv' for some u,v,v' € X* such that for every prefizes r of
v and ' of v' with |r| = |r'| > 0 we have 6(a,ur) # d(a,ur’), and simultaneously,
for every w, z1, 29, W', 2, 2h with v = w2129,V = w'2{ 25 we obtain 2, = 2; whenever
&(a, uw) = é(a,uw’), and |z1| = |z];

(4) for every distinct prefizes p1,pa of pq, 6(ao, p1) # 6(ao, p2)-

Proof: Consider a € A and suppose that our conditions hold.

First we suppose that, whenever uu' # A, 6(a,u) = §(a,’) implies v = ¢ and
u' = ¢ for every prefixes u of ¢ and u’ of ¢'. It is clear that then we are ready.

Assume the opposite case and let ¢ = uv,q = v'v' with A\ ¢ {uv’,vv'} such that
0(a,u) = 6(a,u'). _

Let min(|u, |u'|) be maximal with the above property and prove that in this case
u = u' can be assumed. Indeed, if it true if |u| = |u’| because we can consider, say,
uv’ instead of u'v'.

Finally, prove that, say, |u| > |«| is impossible. Indeed, otherwise we could change
q for uv”, where v” is a prefix of v/ with |v”| = |v’|. This contradicts of the maximality
of min(|ul, |«]).

Now we prove (1) omitting some analogous cases. If there are no distinct prefixes
Py, ph € X* of pg with &(ag,p)) = &(ao,p) for pg’ and pq. Therefore, in this case,
we are ready. Otherwise, we may suppose 6(ao,p;) = 0(ao, py) for some distinct pre-
fixes p},py € X* of pg'. Let, say, p{ = pyr’ for some nonempty ' € X. By Lemma 2
and 6(ag, pq) # (a0, pq’), this implies that §(ap,p)) generates an autonomous state-
subautomaton B of .A. Moreover, 6(ag, p}) = 6(ap, a7’} = 6(ao, ph), ™’ # A implies that
this autonomous state-subautomaton is strongly connected. On the other hand, by
the maximality of |g|(= |¢|), 6(ao, pgz) = 8(ao, pg'z’) holds for every z,z' € X. Thus,
6(ao, pgz) is also a state of the state-subautomaton B of A. Recall that by the maximal-
ity of g and ¢', we have 6(ag, pgz) = é(ao, p'q't’), z,z' € X. Then 6(ao, pq) # 6(ao,pq’)
and &(ag, pgzr) = 8(ap, pg'z’) imply that 8(ao,pq) is not a state of B. Therefore, for
every prefix p; of pg, 6(ao,p1) is not a state of B.



Suppose that, contrary of our assumptions, §(ag, p1) = (ao, p2) holds for distinct
prefixes p; and ps of pg and put, say, p1 = per1 (where r; # X is assumed). In
other words, 6(ag, par1) = 6(ag, p2) holds such that &(ao, pz) is not a state of B. But
6(ag, pqz) = 6(ao,pq'z'),z,x' € X implies that there exists an r; € X* such that
6(ag, p2r2) is a state of B. Clearly, then A satisfies either Letichevsky’s criterion or
the semi-Letichevsky criterion, a contradiction. This completes the proof. ]
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