Some Remarks on Automata without Letichevsky Criteria

Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory

Author(s)
Domosi, Pal

Citation
数理解析研究所講究録 (2004), 1366: 44-51

Issue Date
2004-04

URL
http://hdl.handle.net/2433/25360

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Some Remarks on Automata without Letichevsky Criteria\footnote{This work was supported by the grant from Dirección General de Universidades, Secretaría de Estado de Educación y Universidades, Ministerio de Educación, Cultura y Deporte (SAB2001-0081), España, the project “Automata and Formal Languages” of the Hungarian Academy of Sciences and the Japan Society for the Promotion of Science, Grant-in-Aid for Science Research 1340016, Japan Society for the Promotion of Science, and the travel grant of the Hungarian Ministry of Education (Mecenatúra, No. MEC-01409/2002).}

Pál DÖMÖSI
Institute of Mathematics and Informatics, Debrecen University
Debrecen, Egyetem tér 1., H-4032, Hungary
e-mail: domosi@math.klte.hu

Abstract: In this paper we show some properties of finite automata having no Letichevsky criteria

Keywords: Finite automata, Letichevsky criterion.

1. Introduction

We start with some standard concepts and notations. The elements of an alphabet \(X \) are called letters (\(X \) is supposed to be finite and nonempty). A word over an alphabet \(X \) is a finite string consisting of letters of \(X \). The string consisting of zero letters is called the empty word, written by \(\lambda \). The length of a word \(w \), in symbols \(|w|\), means the number of letters in \(w \) when each letter is counted as many times it occurs. By definition, \(|\lambda| = 0\). At the same time, for any set \(H \), \(|H|\) denotes the cardinality of \(H \). If \(u \) and \(v \) are words over an alphabet \(X \), then their catenation \(uv \) is also a word over \(X \). Catenation is an associative operation and the empty word \(\lambda \) is the identity with respect to catenation: \(w\lambda = \lambda w = w \) for any word \(w \). For a word \(w \) and positive integer \(n \), the notation \(w^n \) means the word obtained by catenating \(n \) copies of the word \(w \). \(w^0 \) equals the empty word \(\lambda \). \(w^n \) is called the \(m \)-th power of \(w \) for any non-negative integer \(m \).

Let \(X^* \) be the set of all words over \(X \), moreover, let \(X^* = X^* \setminus \{\lambda\} \). \(X^* \) and \(X^+ \) are the free monoid and the free semigroup, respectively, generated by \(X \) under catenation.

A (finite) directed graph (or, in short, a digraph) \(D = (V, E) \) (of order \(|V| > 0| \) is a pair consisting of sets of vertices \(V \) and edges \(E \subseteq V \times V \). A walk in \(D = (V, E) \) is a sequence of vertices \(v_1, \ldots, v_n, n > 1 \) such that \((v_i, v_{i+1}) \in E, i = 1, \ldots, n - 1 \). A walk is closed if \(v_1 = v_n \). By a (directed) path from a vertex \(a \) to a vertex \(b \neq a \) we shall mean a sequence \(v_1 \ldots v_n, n > 1 \) of pairwise distinct vertices such that \(a = v_1, b = v_n \).
and \((v_i, v_{i+1}) \in E\) for every \(i = 1, \ldots, n - 1\). The positive integer \(n - 1\) is called the length of the path. Thus a path is a walk with all \(n\) vertices distinct. A closed walk with all vertices distinct except \(v_1 = v_n\) is a cycle of length \(n - 1\).

By an automaton we mean a finite automaton without outputs. Given an automaton \(\mathcal{A} = (A, X, \delta)\) with set of states \(A\), set of input letters \(X\), and transition \(\delta : A \times X \rightarrow A\), it is understood that \(\delta\) is extended to \(\delta^* : A \times X^* \rightarrow A\) with \(\delta^*(a, \lambda) = a\), \(\delta^*(a, xq) = \delta^*(\delta(a, x), q)\). In the sequel, we will consider the transition of an automaton in this extended form and thus we will denote it by the same Greek letter \(\delta\). Let \(\mathcal{A} = (A, X, \delta)\) be an automaton. It is said that a state \(a \in A\) generates a state \(b \in A\) if \(\delta(a, p) = b\) holds for some \(p \in X^*\). For every state \(a \in A\) define the state subautomaton \(\mathcal{B} = (B, X, \delta')\) generated by \(a\) such that \(B = \{b \mid b = \delta(a, p), p \in X^*\}\), moreover, \(\delta'(b, x) = \delta(b, x)\) for every pair \(b \in B, x \in X\). \(\mathcal{A}\) is called strongly connected if for every pair \(a, b \in A\) there exists \(p \in X^*\) such that \(\delta(a, p) = b\).

We say that \(\mathcal{A}\) satisfies Letichevsky’s criterion if there are a state \(a \in A\), input letters \(x, y \in X\), input words \(p, q \in X^*\) such that \(\delta(a, x) \neq \delta(a, y)\) and \(\delta(a, xp) = \delta(a, yq) = a\). It is said that \(\mathcal{A}\) satisfies the semi-Letichevsky criterion if it does not satisfy Letichevsky’s criterion but there are a state \(a \in A\), input letters \(x, y \in X\), an input word \(p \in X^*\) such that \(\delta(a, x) \neq \delta(a, y)\), \(\delta(a, xp) = a\) and for every \(q \in X^*\), \(\delta(a, yq) \neq a\). If \(\mathcal{A}\) do not satisfy either Letichevsky’s criterion or the semi-Letichevsky criterion then we say that \(\mathcal{A}\) does not satisfy any Letichevsky criteria or is without any Letichevsky criteria.

The Letichevsky criterion has a central role in the investigations of products of automata (see [1],[2],[3],[4]). Automata having semi-Letichevsky criterion and automata without any Letichevsky criteria are also important in the classical result of Z. Ésik and Gy. Horváth (see [2],[3]). In this paper we investigate automata without any Letichevsky criteria.

2. Results

First we observe

Proposition 1 Given an automaton \(\mathcal{A} = (A, X, \delta)\), a state \(a_0 \in A\), four input words \(u, v, p, q \in X^*\) with \(|up|, |vq| > 0\) under which \(\delta(a_0, u) \neq \delta(a_0, v)\), and \(\delta(a_0, up) = \delta(a_0, vq) = a_0\). Then \(\mathcal{A}\) satisfies Letichevsky’s criterion.

Proof: First we suppose \(|u|, |v| > 0\). Then there exist input words \(w, w', w_1, w_2 \in X^*\) and input letters \(x, y \in X\) such that \(u = wxw_1, v = w'yw_2\) and \(\delta(a_0, wx) \neq \delta(a_0, wy) = \delta(a_0, w'y)\). Therefore, we can reach Letichevsky’s criterion substituting \(a_0, u, v, p, q\) for \(\delta(a_0, u), x, y, w_1, w_2\).

Now we assume, say, \(|v| = 0\). Then, by our assumptions, \(|q| > 0\) with \(\delta(a_0, q) = a_0\). On the other hand, \(\delta(a_0, u) \neq \delta(a_0, v) = a_0\) implies \(|u| > 0\). In addition, then we have \((a_0 = \delta(a_0, v) =) \delta(a_0, q) \neq \delta(a_0, u)\). Therefore, there are input words \(w, w', w_1, w_2 \in X^*\) and input letters \(x, y \in X\) such that \(u = wxw_1, q = w'yw_2\) and \(\delta(a_0, wx) \neq \delta(a_0, wy) = \delta(a_0, wy)\).
\[\delta(a_0, wy) = \delta(a_0, w'y). \] We obtain again Letichevsky's criterion substituting \(a_0, u, v, p, q \) for \(\delta(a_0, w), x, y, w_1pw, w_2w. \) \(\square \)

Now we study automata having no Letichevsky's criteria. The following statement is obvious.

Proposition 2 \(\mathcal{A} = (A, X, \delta) \) is a automaton without any Letichevsky criteria if and only if for every state \(a_0 \in A \), input letters \(x, y \in X \) and an input word \(p \in X^* \) having \(\delta(a_0, xp) = a_0 \), it holds that \(\delta(a_0, x) = \delta(a_0, y). \) \(\square \)

Obviously, if \(\mathcal{A} = (A, X, \delta) \) has the above properties then there exists a nonnegative integer \(n \) such that for every \(p \in X^* \) with \(|p| \geq n\), each \(\delta(a, p) \) generates an autonomous state-subautomaton of \(\mathcal{A} \). Denote by \(n_{\mathcal{A}}(\leq n) \) the minimal nonnegative integer having this property.

Proposition 3 \(n_{\mathcal{A}} \leq \max(|A| - 2, 0) \).

Proof: Take out of consideration the trivial cases. Thus we may assume \(|A| > 2\). Consider \(a \in A, x_1, \ldots, x_{m+2} \in X \) having \(\delta(a, x_1 \cdots x_m x_{m+1}) \neq \delta(a, x_1 \cdots x_m x_{m+2}). \) If \(a, \delta(a, x_1), \delta(a, x_1 x_2), \ldots, \delta(a, x_1 \cdots x_m) \) are not distinct states then \(\mathcal{A} \) satisfies either Letichevsky's criterion or the semi-Letichevsky criterion, a contradiction. Hence, \(m \leq |A| - 3 \). Thus \(n_{\mathcal{A}} \leq |A| - 2. \) \(\square \)

We also note the next direct consequence of Proposition 2.

Proposition 4 If \(\mathcal{A} \) is a strongly connected automaton without any Letichevsky criteria then \(\mathcal{A} \) is autonomous. \(\square \)

By this observation, we get immediately the following

Proposition 5 Suppose that \(\mathcal{A} = (A, X, \delta) \) is a strongly connected automaton without any Letichevsky criteria. There exists a \(k > 0 \) such that for every \(a, b \in A \), \(a = b \) if and only if there exists a pair \(p, q \in X^* \) with \(|p| \equiv |q| \pmod{k} \) and \(\delta(a, p) = \delta(b, q). \) \(\square \)

Lemma 6 Given an automaton \(\mathcal{A} = (A, X, \delta) \) be without any Letichevsky criteria, \(a \in A \) is a state of a strongly connected state-subautomaton of \(\mathcal{A} \) if and only if there exists a nonempty word \(p \in X^* \) with \(\delta(a, p) = a. \)

Proof: Let \(a \in A \) be a state of a strongly connected state-subautomaton of \(\mathcal{A} \). By definition, for every nonempty word \(q \in X^* \), there exists a word \(r \in X^* \) with \(\delta(a, qr) = a. \) Conversely, suppose that \(\delta(a, p) = a \) for some \(a \in A \) and \(p \in X^*, p \neq \lambda \). Then for every prefix \(p' \) of \(p \) and input letters \(x, y \in X \), \(\delta(a, p'x) = \delta(a, p'y) \). Therefore, for every \(q \in X^* \), \(\delta(a, q) = \delta(a, r) \), where \(r \) is a prefix of \(p \) with \(|q| \equiv |r| \pmod{|p|} \). But then \(a \) generates a strongly connected state-subautomaton of \(\mathcal{A}. \) \(\square \)

We shall use the following consequence of the above statement.
Proposition 7 Let $A = (A, X, \delta)$ be an automaton without any Letichevsky criteria. Moreover, suppose that $a \in A$ and nonempty $p \in X^*$ then $\delta(a, q) \neq b, q \in X^*$. Conversely, if $\delta(a, r) = c$ for some $c \in A$ and nonempty $r \in X^*$ then $\delta(c, q) \neq a, q \in X^*$.

Lemma 8 Let $A = (A, X, \delta)$ be a automaton without any Letichevsky's criteria. If there are $a \in A, q, q' \in X^*, |q| = |q'| \geq |A| - 1, \delta(a, q) \neq \delta(a, q')$ then for every pair of words $r, r' \in X^*, |r| = |r'|$ we have $\delta(a, qr) \neq \delta(a, q'r')$.

Proof: Suppose that our statement does not hold, i.e., there are $a \in A, q, q'r, r' \in X^*, |q| = |q'| \geq |A| - 1, |r| = |r'|$ having $\delta(a, q) \neq \delta(a, q')$ and $\delta(a, qr) = \delta(a, q'r')$. Then, of course, $|r| = |r'| > 0$. We distinquish the following three cases.

Case 1. There are $q_1, r_1, q_2, r_2, q_1', r_1', q_2', r_2'$ with $q = q_1 r_1 = q_2 r_2, q' = q_1 r_1' = q_2 r_2'$, $|q| < |q_1|, |q'| < |q_2|$, such that $\delta(a, q_1) = \delta(a, q_2), \delta(a, q_1') = \delta(a, q_2')$. But then, by Proposition 2, $\delta(a, q_1 w) = \delta(a, q_1 w')$ and $\delta(a, q_2 w) = \delta(a, q_2 w')$ for every $w, w' \in X^*, |w| = |w'|$. Thus, because of $\delta(a, q_1) = \delta(a, q_2)$ and $\delta(a, q_1') = \delta(a, q_2')$, we obtain that, for every $w, w' \in X^*$ there are $z, z' \in X^*$ with $\delta(a, q_1 wz) = \delta(a, q_1')$ and $\delta(a, q_2 w'z') = \delta(a, q_2')$. Thus $q_1 r_1 = q, q_1' r_1' = q'$ imply that $\delta(a, q_1 wz) = \delta(a, q_1')$ and $\delta(a, q_2 w'z') = \delta(a, q_2')$ hold for some $z, z' \in X^*$. This means that $\delta(a, q_1 r_1) = \delta(a, q_2)$ and $\delta(a, q_2' r_1') = \delta(a, q_2')$. Put $b = \delta(a, q_1 r_1)(= \delta(a, q_2' r_1')), c = \delta(a, q), c' = \delta(a, q')$. Then $\delta(b, q_1 r_1) = c \neq c' = \delta(b, q_2' r_1')$ and $\delta(c, r) = \delta(c', r') = b$. But then $|r| = |r'| > 0$ implies $|z_1 r_1 r_1|, |z_2 r_1' r_1'| > 0$. Therefore, by Proposition 1, A satisfies Letichevsky's criterion, a contradiction.

Case 2. There are q_1, r_1, q_2, r_2 with $q = q_1 r_1 = q_2 r_2, |q_1| < |q_2|$, such that $\delta(a, q_1) = \delta(a, q_2)$, but $\delta(a, q_1') \neq \delta(a, q_2')$ holds for every distinct prefixes q_1, q_2 of q. Then, because of $|q| = |q'| \geq |A| - 1$, we necessarily have $|q| = |q'| = |A| - 1$, moreover, we also have that for every $d \in A$ there exists a prefix q_1' of q with $\delta(a, q_1') = d$. (Indeed, we assumed $\delta(a, q_1') \neq \delta(a, q_2)$ for every distinct prefixes q_1, q_2 of q', where $|q'| = |A| - 1$.)

And then for every $d \in A$ there exists an $r_1' \in X^*$ having $\delta(d, r_1') = \delta(a, q')$. On the other hand, we may assume $\delta(a, q_1 r_1 r_1') = \delta(a, q)$ as in the previous case.

Now we suppose again $\delta(a, q_1') = \delta(a, q_2')$ as before. Substituting d for $\delta(a, q_1 r_1)$, there exists an $r_1' \in X^*$ holding $\delta(a, q_1' r_1 r_1') = \delta(a, q_1')$. Put $b = \delta(a, q_1 r_1), c = \delta(a, q), c' = \delta(a, q')$. But then $|r| = |r'| > 0$ implies $|z_1 r_1 r_1|, |z_2 r_1' r_1'| > 0$. Therefore, by Proposition 1 we obtain again that A satisfies Letichevsky's criterion contrary of our assumptions.

Case 3. Let $\delta(a, q_1) \neq \delta(a, q_2)$ and $\delta(a, q_1') \neq \delta(a, q_2')$ for every distinct prefixes q_1, q_2 of q and q_1', q_2' of q', respectively. Then for every $d \in A$ there are $r_1, r_1' \in X^*$ having $\delta(d, r_1) = \delta(a, q)$ and $\delta(d, r_1') = \delta(a, q')$. Therefore, assuming $\delta(a, q_1 r_1) = \delta(a, q_1' r_1')$ for some $r, r' \in X^*$, and substituting d for $\delta(a, q_1 r_1) = \delta(a, q_1' r_1')$, we obtain $\delta(a, q_1 r_1) = \delta(a, q), \delta(a, q_1' r_1') = \delta(a, q')$ (with $\delta(a, q) = \delta(a, q_1 r_1)$). Put $c = \delta(a, q), c' = \delta(a, q')$.

\footnote{This holds automatically if $|q| = |q'| \geq |A|$.}
Then \(\delta(d, r_1) = c, \delta(d, r'_1) = c', \delta(c, r) = \delta(c', r') = d \) such that, by \(|r| = |r'| > 0, |r_1r|, |r'_1r'| > 0\). By Proposition 1, this implies that \(\mathcal{A} \) satisfies Letichevsky’s criterion, a contradiction again.

Theorem 9 Let \(\mathcal{A} = (\mathcal{A}, \mathcal{X}, \delta) \) be a automaton without any Letichevsky’s criteria. For every state \(a \in \mathcal{A} \) we have one of the following two possibilities:

(i) there exist \(q, q' \in \mathcal{X}^* \) such that \(|q| = |q'| \geq |\mathcal{A}| - 1 \) such that \(\delta(a, qr) \neq \delta(a, q'r') \) for every \(r, r' \in \mathcal{X}^*, |r| = |r'| \).

(ii) \(\delta(a, q) = \delta(a, q') \) for every \(q, q' \in \mathcal{X}^* \) such that \(|q| = |q'| \geq |\mathcal{A}| - 1 \).

Proof: Suppose that (i) does not hold. Then for every \(q, q' \in \mathcal{X}^* \) such that \(|q| = |q'| \geq |\mathcal{A}| - 1 \) there exist \(r, r' \in \mathcal{X}^* \) having \(\delta(a, qr) = \delta(a, q'r') \). Using Lemma 8, \(\delta(a, qr) = \delta(a, q'r') \), \(|r| = |r'| \) and \(|q| = |q'| \geq |\mathcal{A}| - 1 \) implies \(\delta(a, q) = \delta(a, q') \). Thus (ii) holds whenever (i) does not hold. \(\square \)

The following statement is obvious.

Lemma 10 Given a digraph \(\mathcal{D} = (V, E) \), let \(v \in V, p_1, p_2, p_3, p_4 \in V^* \) such that \(p_1p_2p_3vp_4v \) and \(p_1p_2p_3vp_4v \) are walks and \(vp_4v \) is a cycle. \(|p_2| \equiv |p_2'| \) (mod \(|p_4v| \)) if and only if there are positive integers \(k, \ell \) having \(p_1p_2p_3v(p_4v)^k = p_1p_2p_3v(p_4v)^\ell \). \(\square \)

We finish the paper studying both types of states given in Theorem 9.

Proposition 11 Let \(\mathcal{A} = (\mathcal{A}, \mathcal{X}, \delta) \) be an automaton without any Letichevsky’s criteria. Consider a state \(a \in \mathcal{A} \) and suppose that there are \(q, q' \in \mathcal{X}^* \) such that \(|q| = |q'| \geq |\mathcal{A}| - 1 \), \(\delta(a, q) \neq \delta(a, q') \). Then there are \(q, q' \) having this property for which \(q = uv \) and \(q' = uv' \) for some \(u, v, v' \in \mathcal{X}^* \) such that for every prefixes \(r \) of \(v \) and \(r' \) of \(v' \) with \(|r| = |r'| > 0 \) we have \(\delta(a, ur) \neq \delta(a, ur') \), and simultaneously, for every \(w, z_1, z_2, w', z'_1, z'_2 |w| \geq 0 \), \(w|w'| > 0 \) with \(v = wz_1z_2, v' = w'z'_1z'_2 \) we obtain \(z_1 = z'_1 \) whenever \(\delta(a, uw) = \delta(a, uw') \), and \(|z_1| = |z'_1| \).

Proof: Consider \(a \in \mathcal{A} \) and suppose that our conditions hold, i.e., there are \(q, q' \in \mathcal{X}^* \) having \(|q| = |q'| \geq |\mathcal{A}| - 1 \), \(\delta(a, q) \neq \delta(a, q') \). Then Proposition 3 implies that \(\delta(a, q) \) and \(\delta(a, q') \) generate autonomous state subautomata of \(\mathcal{A} \). We will distinguish the following cases (omitting some of the analogous cases):

Case 1. There are \(u, u', v, v' \in \mathcal{X}^* \) such that \(q = uv, q' = u'v' \) and for every nonempty prefixes \(r \) of \(v \) and \(r' \) of \(v' \), \(\delta(a, ur) \neq \delta(a, u'r') \), \(\delta(a, ur) \neq \delta(a, ur') \), and \(\delta(a, ur) \neq \delta(a, ur'). \footnote{u = u' = \lambda \ is \ possible.} \) Let, say, \(|u| \geq |u'| \) and let \(v'' \) be a prefix of \(v' \) \(|v''| = |v| \). Change \(q' \) for \(uv'' \) and then we will have our requirements.

Case 2. There exist a prefix \(u \) of \(q \) having \(\delta(a, u) = \delta(a, q) \). Let \(t_2 \in \mathcal{X}^* \) be a nonempty word with minimal length having \(\delta(a, q't_2t_2) = \delta(a, q't_1) \) for some word
$t_1 \in X^*$ and assume that t_2 is minimal in the sense that for every nonempty $p \in X^*$, $\delta(a, q't_1p) = \delta(a, q't_1)$ implies $|t_2| \leq |p|$.\footnote{The finiteness of the state set of A implies the existence of t_1 and t_2.} Then, using that $\delta(a, q')$ generates an autonomous state subautomaton of A, we have $q = uv$, where v is a nonempty prefix of $t_1t_2^k$ for a suitable $k \geq 0$.

Prove that in this case $u \equiv |q'| \text{(mod } |t_2|)$ is impossible. Assume the contrary. Recall again that $\delta(a, q')$ generates an autonomous state subautomaton of A. But then, applying Lemma 10, there are words $r, r' \in X^*, |r| = |r'|$ having $\delta(a, qr) = \delta(a, q'r')$. By Lemma 8, then $|q| = |q'| < |A| - 1$ contrary of our assumptions. Thus we have the following cases.

Case 2.1. Suppose $u \not\equiv |q'| \text{(mod } |t_2|)$ such that for every prefixes u_1 of u and u_1' of q' with $u_1u_1' \neq \lambda$, $\delta(a, u_1) = \delta(a, u_1')$ implies $u_1 = u$ and $u_1' = q'$. Then we obtain our requirements again (having $q = uv$, where v is a nonempty prefix of $t_1t_2^k$ for a suitable $k \geq 0$).

Case 2.2. Assume $u \not\equiv |q'| \text{(mod } |t_2|)$, and simultaneously, let for some prefixes u_1 of u and u_1' of q', $\delta(a, u_1) = \delta(a, u_1')$ such that $u = u_1v_1$, $q' = u_1v_1'$, furthermore, $\lambda \in \{u_1, v_1\}$ implies $\lambda \not\in \{u_1', v_1'\}$ and $\lambda \in \{u_1', v_1'\}$ implies $\lambda \not\in \{u_1, v_1\}$. If $v_1 = \lambda$ and $v_1' \neq \lambda$ then $\delta(a, u_1) = \delta(a, u_1v_1') \neq \delta(a, u_1v_1v)(= \delta(a, uv))$ such that v is a nonempty suffix of q. But then A has either Letichevs'ky's criterion or the semi-Letichevs'ky criterion, a contradiction. Similarly, it also lead to a contradiction is we assume $v_1 \neq \lambda$ and $v_1' = \lambda$. Thus $\lambda \not\in \{v_1, v_1'\}$ can be assumed and we may also assume $\lambda \not\in \{u_1, u_1'\}$ analogously.

By $u \not\equiv |q'| \text{(mod } |t_2|)$, either $|u_1| \not\equiv |u_1'| \text{(mod } |t_2|)$, or $|v_1| \not\equiv |v_1'| \text{(mod } |t_2|)$.

Case 2.2.1. Suppose $|u_1| \not\equiv |u_1'| \text{(mod } |t_2|)$ and let, say, $|v_1| \geq |v_1'|$. Take a prefix v' of $t_1t_2^k$ for a suitable $k \geq 0$ with $|u_1v_1v'| = |q|$ and let us consider u_1v_1v' instead of q'.

Case 2.2.2. Suppose $|u_1| \equiv |u_1'| \text{(mod } |t_2|)$. Let, say, $|u_1| \geq |v_1'|$. Take a prefix v' of $t_1t_2^k$ for a suitable $k \geq 0$ with $|u_1v_1v'| = |q|$ and change u_1v_1v' for q'.

In both of the above Case 2.2.1 and Case 2.2.2, we have words\footnote{in Case 2a, of course, $w = \lambda$.} $w, w_1, w_2, w_1', w_2' \in X^*, \lambda \not\in \{w_1, w_1'\}$, $w_1 \not\equiv |w_1'| \text{(mod } |t_2|)$, w_2' is a prefix of w_2 (or, in the opposite case, w_2 is a prefix of w_2'), $q = wu_1w_2$, $q' = wu_1w_2'$, such that $\delta(a, wu_1) = \delta(a, wu_1')$. Then let $w, w_1, w_2, w_1', w_2' \in X^*$ be arbitrary having these properties for which min$(|w_1|, |w_2|)$ is minimal.

If for every nonempty proper prefixes z_1 of w_1 and z_1' of w_1' we have $\delta(a, w) \not\in \{\delta(a, wz_1'), \delta(a, wz_1')\}$ and $\delta(a, wz_1) \neq \delta(a, wz_1')$ then we are ready having our properties for $q = wu_1w_2$, $q' = wu_1w_2'$.

Now we assume $|w_1| \not\equiv |w_1'| \text{(mod } |t_2|)$ such that for some prefixes z_1 of w_1 and z_1' of w_1', $\delta(a, z_1) = \delta(a, z_1')$ such that $w_1 = z_1z_2$, $w_1' = z_1'z_2'$, furthermore, $\lambda \in \{z_1, z_2\}$ implies $\lambda \not\in \{z', z_2'\}$ and $\lambda \in \{z_1, z_2\}$ implies $\lambda \not\in \{z_1, z_2\}$. We can prove $\lambda \not\in \{z_1, z_1', z_2, z_2'\}$ similarly as before. Then either $|z_1| \not\equiv |z_1'| \text{(mod } |t_2|)$ or $|z_2| \not\equiv |z_2'| \text{(mod } |t_2|)$. It remains to prove that these cases are impossible.
If $|z_1| \neq |z_1| \pmod{|t_2|}$ and, say, $|z_2| \geq |z_2|$ then considering the prefix w'_2 of w_2 having $|z'_1w'_2| = |z_1w_2|$, we can take $w, z_1, z_2w_2, z_1', z_2w'_2$ as w, w_1, w_2, w'_1, w'_2 contrary of the minimality of $\min(|w_1|, |w_2|)$.

If $|z_1| \equiv |z_1| \pmod{|t_2|}$ with $|z_2| \neq |z_2| \pmod{|t_2|}$ and, say, $|z_1| \geq |z_1|$ then considering the prefix w''_2 of w'_2 having $|z'_2w''_2| = |z_2w_2|$, we can take w, z_2, z'_2, w_2, w''_2 as w, w_1, w'_1, w_2, w'_2 contradicting the minimality of $\min(|w_1|, |w_2|)$.

The proof is complete.

\[\square \]

Proposition 12 Let $A = (A, X, \delta)$ be an automaton without any Letichevsky's criteria. Consider $a, a_0 \in A, p \in X^*$ with $\delta(a_0, p) = a$ and suppose that $\delta(a, r) = \delta(a, r')$ holds for every $r, r' \in X^*, |pr| = |pr'| \geq |A| - 1$. Assume that $\delta(a, q) \neq \delta(a, q')$ holds for some $q, q' \in X^*, |pq| = |pq'|(< |A| - 1)$ and let q, q' be words of maximal length having this property. Then there are q, q' with this property having

(i) $q = uv$ and $q' = uv'$ for some $u, v, v' \in X^*$ such that for every prefixes r of v and r' of v' with $|r| = |r'| > 0$ we have $\delta(a, ur) \neq \delta(a, ur')$, and simultaneously, for every $w, z_1, z_2, u, v', z'_1, z'_2$ with $v = wz_1z_2, v' = w'z'_1z'_2$ we obtain $z_1 = z'_1$ whenever $\delta(a, u) = \delta(a, u', v')$, and $|z_1| = |z'_1|;

(ii) for every distinct prefixes p_1, p_2 of $pq, \delta(a_0, p_1) \neq \delta(a_0, p_2)$.

Proof: Consider $a \in A$ and suppose that our conditions hold.

First we suppose that, whenever $uu' \neq \lambda$, $\delta(a, u) = \delta(a, u')$ implies $u = q$ and $u' = q'$ for every prefixes u of q and u' of q'. It is clear then that we are ready.

Assume the opposite case and let $q = uv, q' = u'v'$ with $\lambda \notin \{uu', vv\}$ such that $\delta(a, u) = \delta(a, u')$.

Let $\min(|u|, |u'|)$ be maximal with the above property and prove that in this case $u = u'$ can be assumed. Indeed, if it true if $|u| = |u'|$ because we can consider, say, uu' instead of $u'v'$.

Finally, prove that, say, $|u| > |u'|$ is impossible. Indeed, otherwise we could change q' for uu', where u'' is a prefix of v' with $|u''| = |v'|$. This contradicts the maximality of $\min(|u|, |u'|)$.

Now we prove (ii) omitting some analogous cases. If there are no distinct prefixes $p_1, p_2 \in X^*$ of pq with $\delta(a_0, p_1) = \delta(a_0, p_2)$ for pq and pq. Therefore, in this case, we are ready. Otherwise, we may suppose $\delta(a_0, p_1') = \delta(a_0, p_2')$ for some distinct prefixes $p_1', p_2' \in X^*$ of pq. Let, say, $p_1' = p_2'r'$ for some nonempty $r' \in X$. By Lemma 2 and $\delta(a_0, pq) \neq \delta(a_0, pq')$, this implies that $\delta(a_0, p_2')$ generates an autonomous state-subautomaton B of A. Moreover, $\delta(a_0, p_1') = \delta(a_0, p_2'r') = \delta(a_0, p_2'), r' \neq \lambda$ implies that this autonomous state-subautomaton is strongly connected. On the other hand, by the maximality of $|q| = |q'|$, $\delta(a_0, pqx) = \delta(a_0, pq'x')$ holds for every $x, x' \in X$. Thus, $\delta(a_0, pqx) = \delta(a_0, pqx')$ is also a state of the state-subautomaton B of A. Recall that by the maximality of q and q', we have $\delta(a_0, pqx) = \delta(a_0, p'q'x'), x, x' \in X$. Then $\delta(a_0, pq) \neq \delta(a_0, pq')$ and $\delta(a_0, pqx) = \delta(a_0, pq'x')$ imply that $\delta(a_0, pq)$ is not a state of B. Therefore, for every prefix p_1 of pq, $\delta(a_0, p_1)$ is not a state of B.
Suppose that, contrary of our assumptions, $\delta(a_0, p_1) = \delta(a_0, p_2)$ holds for distinct prefixes p_1 and p_2 of pq and put, say, $p_1 = p_2 r_1$ (where $r_1 \neq \lambda$ is assumed). In other words, $\delta(a_0, p_2 r_1) = \delta(a_0, p_2)$ holds such that $\delta(a_0, p_2)$ is not a state of B. But $\delta(a_0, pq x) = \delta(a_0, pq' x')$, $x, x' \in X$ implies that there exists an $r_2 \in X^*$ such that $\delta(a_0, p_2 r_2)$ is a state of B. Clearly, then A satisfies either Letichevsky's criterion or the semi-Letichevsky criterion, a contradiction. This completes the proof. \hfill \square

References

