Some Remarks on Automata without Letichevsky Criteria¹

Pál DÖMÖSI

Institute of Mathematics and Informatics, Debrecen University Debrecen, Egyetem tér 1., H-4032, Hungary e-mail: domosi@math.klte.hu

Abstract: In this paper we show some properties of finite automata having no Letichevsky criteria

Keywords: Finite automata, Letichevsky criterion.

1. Introduction

We start with some standard concepts and notations. The elements of an alphabet X are called letters (X is supposed to be finite and nonempty). A word over an alphabet X is a finite string consisting of letters of X. The string consisting of zero letters is called the empty word, written by λ . The length of a word w, in symbols |w|, means the number of letters in w when each letter is counted as many times it occurs. By definition, $|\lambda| = 0$. At the same time, for any set H, |H| denotes the cardinality of H. If u and v are words over an alphabet X, then their catenation uv is also a word over X. Catenation is an associative operation and the empty word λ is the identity with respect to catenation: $w\lambda = \lambda w = w$ for any word w. For a word w and positive integer v, the notation v means the word obtained by catenating v copies of the word v. v equals the empty word v is called the v-th power of v for any non-negative integer v.

Let X^* be the set of all words over X, moreover, let $X^+ = X^* \setminus \{\lambda\}$. X^* and X^+ are the *free monoid* and the *free semigroup*, respectively, generated by X under catenation.

A (finite) directed graph (or, in short, a digraph) $\mathcal{D} = (V, E)$ (of order |V| > 0) is a pair consisting of sets of vertices V and edges $E \subseteq V \times V$. A walk in $\mathcal{D} = (V, E)$ is a sequence of vertices $v_1, \ldots, v_n, n > 1$ such that $(v_i, v_{i+1}) \in E, i = 1, \ldots, n-1$. A walk is closed if $v_1 = v_n$. By a (directed) path from a vertex a to a vertex $b \neq a$ we shall mean a sequence $v_1, \ldots, v_n, n > 1$ of pairwise distinct vertices such that $a = v_1, b = v_n$

¹ This work was supported by the grant from Dirección General de Universidades, Secretaría de Estado de Educación y Universidades, Ministerio de Educación, Cultura y Deporte (SAB2001-0081), España, the project "Automata and Formal Languages" of the Hungarian Academy of Sciences and the Japan Society for the Promotion of Science, Grant-in-Aid for Science Research 1340016, Japan Society for the Promotion of Science, and the travel grant of the Hungarian Ministry of Education (Mecenatúra, No. MEC-01409/2002).

and $(v_i, v_{i+1}) \in E$ for every i = 1, ..., n-1. The positive integer n-1 is called the length of the path. Thus a path is a walk with all n vertices distinct. A closed walk with all vertices distinct except $v_1 = v_n$ is a cycle of length n-1.

By an automaton we mean a finite automaton without outputs. Given an automaton $\mathcal{A}=(A,X,\delta)$ with set of states A, set of input letters X, and transition $\delta:A\times X\to A$, it is understood that δ is extended to $\delta^*:A\times X^*\to A$ with $\delta^*(a,\lambda)=a,\ \delta^*(a,xq)=\delta^*(\delta(a,x),q).$ In the sequel, we will consider the transition of an automaton in this extended form and thus we will denote it by the same Greek letter δ . Let $\mathcal{A}=(A,X,\delta)$ be an automaton. It is said that a state $a\in A$ generates a state $b\in A$ if $\delta(a,p)=b$ holds for some $p\in X^*$. For every state $a\in A$ define the state subautomaton $\mathcal{B}=(B,X,\delta')$ generated by a such that $B=\{b\mid b=\delta(a,p),p\in X^*\}$, moreover, $\delta'(b,x)=\delta(b,x)$ for every pair $b\in B,x\in X$. \mathcal{A} is called strongly connected if for every pair $a,b\in A$ there exists $p\in X^*$ such that $\delta(a,p)=b$.

We say that \mathcal{A} satisfies Letichevsky's criterion if there are a state $a \in A$, input letters $x,y \in X$, input words $p,q \in X^*$ such that $\delta(a,x) \neq \delta(a,y)$ and $\delta(a,xp) = \delta(a,yq) = a$. It is said that \mathcal{A} satisfies the semi-Letichevsky criterion if it does not satisfy Letichevsky's criterion but there are a state $a \in A$, input letters $x,y \in X$, an input word $p \in X^*$ such that $\delta(a,x) \neq \delta(a,y), \delta(a,xp) = a$ and for every $q \in X^*$, $\delta(a,yq) \neq a$. If \mathcal{A} do not satisfy either Letichevsky's criterion or the semi-Letichevsky criterion then we say that \mathcal{A} does not satisfy any Letichevsky criteria or is without any Letichevsky criteria.

The Letichevsky criterion has a central role in the investigations of products of automata (see [1],[2],[3],[4]). Automata having semi-Letichevsky criterion and automata without any Letichevsky criteria are also important in the classical result of Z. Ésik and Gy. Horváth (see [2],[3]). In this paper we investigate automata without any Letichevsky criteria.

2. Results

First we observe

Proposition 1 Given an automaton $A = (A, X, \delta)$, a state $a_0 \in A$, four input words $u, v, p, q \in X^*$ with |up|, |vq| > 0 under which $\delta(a_0, u) \neq \delta(a_0, v)$, and $\delta(a_0, up) = \delta(a_0, vq) = a_0$. Then A satisfies Letichevsky's criterion.

Proof: First we suppose |u|, |v| > 0. Then there exist input words $w, w', w_1, w_2 \in X^*$ and input letters $x, y \in X$ such that $u = wxw_1, v = w'yw_2$ and $\delta(a_0, wx) \neq \delta(a_0, wy) = \delta(a_0, w'y)$. Therefore, we can reach Letichevsky's criterion substituting a_0, u, v, p, q for $\delta(a_0, w), x, y, w_1pw, w_2qw$.

Now we assume, say, |v| = 0. Then, by our assumptions, |q| > 0 with $\delta(a_0, q) = a_0$. On the other hand, $\delta(a_0, u) \neq \delta(a_0, v) = a_0$ implies |u| > 0. In addition, then we have $(a_0 = \delta(a_0, v) =)\delta(a_0, q) \neq \delta(a_0, u)$. Therefore, there are input words $w, w', w_1, w_2 \in X^*$ and input letters $x, y \in X$ such that $u = wxw_1, q = w'yw_2$ and $\delta(a_0, wx) \neq 0$.

 $\delta(a_0, wy) = \delta(a_0, w'y)$. We obtain again Letichevsky's criterion substituting a_0, u, v, p, q for $\delta(a_0, w), x, y, w_1pw, w_2w$.

Now we study automata having no Letichevsky's criteria. The following statement is obvious.

Proposition 2 $A = (A, X, \delta)$ is a automaton without any Letichevsky criteria if and only if for every state $a_0 \in A$, input letters $x, y \in X$ and an input word $p \in X^*$ having $\delta(a_0, xp) = a_0$, it holds that $\delta(a_0, x) = \delta(a_0, y)$.

Obviously, if $\mathcal{A} = (A, X, \delta)$ has the above properties then there exists a nonnegative integer n such that for every $p \in X^*$ with $|p| \geq n$, each $\delta(a, p)$ generates an autonomous state-subautomaton of \mathcal{A} . Denote by $n_{\mathcal{A}}(\leq n)$ the minimal nonnegative integer having this property.

Proposition 3 $n_A \leq \max(|A| - 2, 0)$.

Proof: Take out of consideration the trivial cases. Thus we may assume |A| > 2. Consider $a \in A, x_1, \ldots, x_{m+2} \in X$ having $\delta(a, x_1 \cdots x_m x_{m+1}) \neq \delta(a, x_1 \cdots x_m x_{m+2})$. If $a, \delta(a, x_1), \delta(a, x_1 x_2), \ldots, \delta(a, x_1 \cdots x_m), \delta(a, x_1 \cdots x_m x_{m+1}), \delta(a, x_1 \cdots x_m x_{m+2})$ are not distinct states then A satisfies either Letichevsky's criterion or the semi-Letichevsky criterion, a contradiction. Hence, $m \leq |A| - 3$. Thus $n_A \leq |A| - 2$.

We also note the next direct consequence of Proposition 2.

Proposition 4 If A is a strongly connected automaton without any Letichevsky criteria then A is autonomous.

By this observation, we get immediately the following

Proposition 5 Suppose that $A = (A, X, \delta)$ is a strongly connected automaton without any Letichevsky criteria. There exists a k > 0 such that for every $a, b \in A$, a = b if and only if there exists a pair $p, q \in X^*$ with $|p| \equiv |q| \pmod{k}$ and $\delta(a, p) = \delta(b, q)$.

Lemma 6 Given an automaton $A = (A, X, \delta)$ be without any Letichevsky criteria, $a \in A$ is a state of a strongly connected state-subautomaton of A if and only if there exists a nonempty word $p \in X^*$ with $\delta(a, p) = a$.

Proof: Let $a \in A$ be a state of a strongly connected state-subautomaton of \mathcal{A} . By definition, for every nonempty word $q \in X^*$, there exists a word $r \in X^*$ with $\delta(a, qr) = a$. Conversely, suppose that $\delta(a, p) = a$ for some $a \in A$ and $p \in X^*$, $p \neq \lambda$. Then for every prefix p' of p and input letters $x, y \in X$, $\delta(a, p'x) = \delta(a, p'y)$. Therefore, for every $q \in X^*$, $\delta(a, q) = \delta(a, r)$, where r is a prefix of p with $|q| \equiv |r| \pmod{|p|}$. But then a generates a strongly connected state-subautomaton of \mathcal{A} .

We shall use the following consequence of the above statement.

Proposition 7 Let $A = (A, X, \delta)$ be an automaton without any Letichevsky criteria. Moreover, suppose that $a \in A$ is not a state of any strongly connected state-subautomaton of A. If $\delta(b,p) = a$ for some $b \in A$ and nonempty $p \in X^*$ then $\delta(a,q) \neq b, q \in X^*$. Conversely, if $\delta(a,r) = c$ for some $c \in A$ and nonempty $r \in X^*$ then $\delta(c,q) \neq a, q \in X^*$.

Lemma 8 Let $A = (A, X, \delta)$ be a automaton without any Letichevsky's criteria. If there are $a \in A, q, q' \in X^*, |q| = |q'| \ge |A| - 1, \delta(a, q) \ne \delta(a, q')$ then for every pair of words $r, r' \in X^*, |r| = |r'|$ we have $\delta(a, qr) \ne \delta(a, q'r')$.

Proof: Suppose that our statement does not hold, i.e., there are $a \in A, q, q'r, r' \in X^*, |q| = |q'| \ge |A| - 1, |r| = |r'|$ having $\delta(a, q) \ne \delta(a, q')$ and $\delta(a, qr) = \delta(a, q'r')$. Then, of course, |r| = |r'| > 0. We distuinguish the following three cases.

Case 1. There are $q_1, r_1, q_2, r_2, q'_1, r'_1, q'_2, r'_2$ with $q = q_1r_1 = q_2r_2, q' = q'_1r'_1 = q'_2r'_2, |q_1| < |q'_2| |$ such that $\delta(a, q_1) = \delta(a, q_2), \delta(a, q'_1) = \delta(a, q'_2).$ But then, by Proposition 2, $\delta(a, q_1w) = \delta(a, q_1w')$ and $\delta(a, q'_1w) = \delta(a, q'_1w')$ for every $w, w' \in X^*, |w| = |w'|$. Thus, because of $\delta(a, q_1) = \delta(a, q_2)$ and $\delta(a, q'_1) = \delta(a, q'_2)$, we obtain that, for every $w, w' \in X^*$ there are $z, z' \in X^*$ with $\delta(a, q_1wz) = \delta(a, q_1)$ and $\delta(a, q'_1w'z') = \delta(a, q'_1)$. Thus $q_1r_1 = q, q'_1r'_1 = q'$ imply that $\delta(a, qrz) = \delta(a, q_1)$ and $\delta(a, q'r'z') = \delta(a, q'_1)$ hold for some $z, z' \in X^*$. This means that $\delta(a, qrzr_1) = \delta(a, q)$ and $\delta(a, q'r'z'r'_1) = \delta(a, q')$. Put $\delta(a, qr) = \delta(a, q')$ and $\delta(a, q'r'z'r'_1) = \delta(a, q')$. Put $\delta(a, qr) = \delta(a, q')$ and $\delta(a, q'r'z'r'_1) = \delta(a, q')$. Then $\delta(a, qr) = \delta(a, q')$ and $\delta(a, q'r'z'r'_1) = \delta(a, q')$. Therefore, by Proposition 1, $\delta(a, qr) = \delta(a, q')$. Considering the properties of $\delta(a, qr) = \delta(a, qr)$.

Case 2. There are q_1, r_1, q_2, r_2 with $q = q_1r_1 = q_2r_2, |q_1| < |q_2|$, such that $\delta(a, q_1) = \delta(a, q_2)$, but $\delta(a, q_1') \neq \delta(a, q_2')$ holds for every distinct prefixes q_1', q_2' of q'. Then, because of $|q| = |q'| \geq |A| - 1$, we necessarily have |q| = |q'| = |A| - 1, moreover, we also have that for every $d \in A$ there exists a prefix q_1' of q' with $\delta(a, q_1') = d$. (Indeed, we assumed $\delta(a, q_1') \neq \delta(a, q_2')$ for every distinct prefixes q_1', q_2' of q', where |q'| = |A| - 1.)

And then for every $d \in A$ there exists an $r'_1 \in X^*$ having $\delta(d, r'_1) = \delta(a, q')$. On the other hand, we may assume $\delta(a, qrzr_1) = \delta(a, q)$ as in the previous case.

Now we suppose again $\delta(a,qr) = \delta(a,q'r')$ as before. Substituting d for $\delta(a,qrzr_1)$, there exists an $r'_1 \in X^*$ holding $\delta(a,qrzr_1r'_1) = \delta(a,q'_1)$. Put $b = \delta(a,qr)$, $c = \delta(a,q)$, $c' = \delta(a,q')$. But then |r| = |r'| > 0 implies $|zr_1r|$, $|zr_1r'_1r'| > 0$. Therefore, by Proposition 1 we obtain again that A satisfies Letichevsky's criterion contrary of our assumptions.

Case 3. Let $\delta(a, q_1) \neq \delta(a, q_2)$ and $\delta(a, q_1') \neq \delta(a, q_2')$ for every distinct prefixes q_1, q_2 of q and q_1', q_2' of q', respectively. Then for every $d \in A$ there are $r_1, r_1' \in X^*$ having $\delta(d, r_1) = \delta(a, q)$ and $\delta(d, r_1') = \delta(a, q')$. Therefore, assuming $\delta(a, qr) = \delta(a, q'r')$ for some $r, r' \in X^*$, and substituting d for $\delta(a, qr) = \delta(a, q'r')$, we obtain $\delta(a, qrr_1) = \delta(a, q), \delta(a, qrr_1') = \delta(a, q')$ (with $\delta(a, qr) = \delta(a, q'r')$). Put $c = \delta(a, q), c' = \delta(a, q')$.

²This holds automatically if $|q| = |q'| \ge |A|$.

Then $\delta(d, r_1) = c$, $\delta(d, r'_1) = c'$, $\delta(c, r) = \delta(c', r') = d$ such that, by |r| = |r'| > 0, $|r_1r|, |r'_1r'| > 0$. By Proposition 1, this implies that \mathcal{A} satisfies Letichevsky's criterion, a contradiction again.

Theorem 9 Let $A = (A, X, \delta)$ be a automaton without any Letichevsky's criteria. For every state $a \in A$ we have one of the following two possibilities:

- (i) there exist $q, q' \in X^*, |q| = |q'| \ge |A| 1$ such that $\delta(a, qr) \ne \delta(a, q'r')$ for every $r, r' \in X^*, |r| = |r'|,$
 - (ii) $\delta(a,q) = \delta(a,q')$ for every $q, q' \in X^*, |q| = |q'| \ge |A| 1$.

Proof: Suppose that (i) does not hold. Then for every $q, q' \in X^*, |q| = |q'| \ge |A| - 1$ there exist $r, r' \in X^*, |r| = |r'|$ having $\delta(a, qr) = \delta(a, q'r')$. Using Lemma 8, $\delta(a, qr) = \delta(a, q'r'), |r| = |r'|$ and $|q| = |q'| \ge |A| - 1$ implies $\delta(a, q) = \delta(a, q')$. Thus (ii) holds whenever (i) does not hold.

The following statement is obvious.

Lemma 10 Given a digraph $\mathcal{D} = (V, E)$, let $v \in V, p_1, p_2, p'_2, p_3, p_4 \in V^*$ such that $p_1p_2p_3vp_4v$ and $p_1p'_2p_3vp_4v$ are walks and vp_4v is a cycle. $|p_2| \equiv |p'_2| \pmod{|p_4v|}$ if and only if there are positive integers k, ℓ having $|p_1p_2p_3v(p_4v)^k| = |p_1p'_2p_3v(p_4v)^\ell|$. \square

We finish the paper studying both types of states given in Theorem 9.

Proposition 11 Let $A = (A, X, \delta)$ be an automaton without any Letichevsky's criteria. Consider a state $a \in A$ and suppose that there are $q, q' \in X^*$, $|q| = |q'| \ge |A| - 1$, $\delta(a, q) \ne \delta(a, q')$. Then there are q, q' having this property for which q = uv and q' = uv' for some $u, v, v' \in X^*$ such that for every prefixes r of v and r' of v' with |r| = |r'| > 0 we have $\delta(a, ur) \ne \delta(a, ur')$, and simultaneously, for every $w, z_1, z_2, w', z'_1, z'_2, |w|, |w'| > 0$ with $v = wz_1z_2, v' = w'z'_1z'_2$ we obtain $z_1 = z'_1$ whenever $\delta(a, uw) = \delta(a, uw')$, and $|z_1| = |z'_1|$.

Proof: Consider $a \in A$ and suppose that our conditions hold, i.e., there are $q, q' \in X^*$ having $|q| = |q'| \ge |A| - 1$, $\delta(a, q) \ne \delta(a, q')$. Then Proposition 3 implies that $\delta(a, q)$ and $\delta(a, q')$ generate autonomous state subautomata of A. We will distinguish the following cases (omitting some of the analogous cases):

Case 1. There are $u, u', v, v' \in X^*$ such that $q = uv, q' = u'v', \delta(a, u) = \delta(a, u')$ and for every nonempty prefixes r of v and r' of v', $\delta(a, u) \neq \delta(a, u'r'), \delta(a, u') \neq \delta(a, ur)$, and $\delta(a, ur) \neq \delta(a, u'r')$. Let, say, $|u| \geq |u'|$ and let v'' be a prefix of v' with |v''| = |v|. Change q' for uv'' and then we will have our requirements.

Case 2. There exist a prefix u of q having $\delta(a, u) = \delta(a, q')$. Let $t_2 \in X^*$ be a nonempty word with minimal length having $\delta(a, q't_1t_2) = \delta(a, q't_1)$ for some word

 $^{^3}u = u' = \lambda$ is possible.

 $t_1 \in X^*$ and assume that t_2 is minimal in the sense that for every nonempty $p \in X^*$, $\delta(a, q't_1p) = \delta(a, q't_1)$ implies $|t_2| \leq |p|$. Then, using that $\delta(a, q')$ generates an autonomous state subautomaton of \mathcal{A} , we have q = uv, where v is a nonempty prefix of $t_1t_2^k$ for a suitable $k \geq 0$.

Prove that in this case $u \equiv |q'| \pmod{|t_2|}$ is impossible. Assume the contrary. Recall again that $\delta(a, q')$ generates an autonomous state subautomaton of \mathcal{A} . But then, applying Lemma 10, there are words $r, r' \in X^*, |r| = |r'|$ having $\delta(a, qr) = \delta(a, q'r')$. By Lemma 8, then |q| = |q'| < |A| - 1 contrary of our assumptions. Thus we have the following cases.

Case 2.1. Suppose $u \not\equiv |q'| (\text{mod } |t_2|)$ such that for every prefixes u_1 of u and u'_1 of q' with $u_1u'_1 \neq \lambda$, $\delta(a, u_1) = \delta(a, u'_1)$ implies $u_1 = u$ and $u'_1 = q'$. Then we obtain our requirements again (having q = uv, where v is a nonempty prefix of $t_1t_2^k$ for a suitable $k \geq 0$).

Case 2.2. Assume $u \not\equiv |q'| (\text{mod } |t_2|)$, and simultaneously, let for some prefixes u_1 of u and u'_1 of q', $\delta(a, u_1) = \delta(a, u'_1)$ such that $u = u_1v_1$, $q' = u'_1v'_1$, furthermore, $\lambda \in \{u_1, v_1\}$ implies $\lambda \notin \{u'_1, v'_1\}$ and $\lambda \in \{u'_1, v'_1\}$ implies $\lambda \notin \{u_1, v_1\}$. If $v_1 = \lambda$ and $v'_1 \neq \lambda$ then $\delta(a, u'_1) = \delta(a, u'_1v'_1) \neq \delta(a, u'_1v'_1v) (= \delta(a, uv))$ such that v is a nonempty suffix of q. But then A has either Letichevsky's criterion or the semi-Letichevsky criterion, a contradiction. Similarly, it also lead to a contradiction is we assume $v_1 \neq \lambda$ and $v'_1 = \lambda$. Thus $\lambda \notin \{v_1, v'_1\}$ can be assumed and we may also assume $\lambda \notin \{u_1, u'_1\}$ analogously.

By $u \not\equiv |q'| \pmod{|t_2|}$, either $|u_1| \not\equiv |u'_1| \pmod{|t_2|}$, or $|v_1| \not\equiv |v'_1| \pmod{|t_2|}$.

Case 2.2.1. Suppose $|u_1| \not\equiv |u_1'| \pmod{|t_2|}$ and let, say, $|v_1| \geq |v_1'|$. Take a prefix v' of $t_1t_2^k$ for a suitable $k \geq 0$ with $|u_1'v_1v'| = |q|$ and let us consider $u_1'v_1v'$ instead of q'.

Case 2.2.2. Suppose $|u_1| \equiv |u_1'| \pmod{|t_2|}$. Then $|v_1| \not\equiv |v_1'| \pmod{|t_2|}$. Let, say, $|u_1| \geq |u_1'|$. Take a prefix v' of $t_1 t_2^k$ for a suitable $k \geq 0$ with $|u_1 v_1' v'| = |q|$ and change $u_1 v_1' v'$ for q'.

In both of the above Case 2.2.1 and Case 2.2.2, we have words⁵ $w, w_1, w_2, w_1', w_2' \in X^*, \lambda \notin \{w_1, w_1'\}, w_1 \not\equiv |w_1'| (\text{mod } |t_2|), w_2' \text{ is a prefix of } w_2 \text{ (or, in the opposite case, } w_2 \text{ is a prefix of } w_2'), q = ww_1w_2, q' = ww_1'w_2', \text{ such that } \delta(a, ww_1) = \delta(a, ww_1').$ Then let $w, w_1, w_2, w_1', w_2' \in X^*$ be arbitrary having these properties for which $\min(|w_1|, |w_2|)$ is minimal.

If for every nonempty proper prefixes z_1 of w_1 and z'_1 of w'_1 we have $\delta(a, w) \notin \{\delta(a, wz'_1), \delta(a, wz'_1)\}$ and $\delta(a, wz_1) \neq \delta(a, wz'_1)$ then we are ready having our properties for $q = ww_1w_2, q' = ww'_1w'_2$.

Now we assume $|w_1| \not\equiv |w_1'| \pmod{|t_2|}$ such that for some prefixes z_1 of w_1 and z_1' of w_1' , $\delta(a, z_1) = \delta(a, z_1')$ such that $w_1 = z_1 z_2$, $w_1' = z_1' z_2'$, furthermore, $\lambda \in \{z_1, z_2\}$ implies $\lambda \notin \{z_1', z_2'\}$ and $\lambda \in \{z_1', z_2'\}$ implies $\lambda \notin \{z_1, z_2\}$. We can prove $\lambda \notin \{z_1, z_1', z_2, z_2'\}$ similarly as before. Then either $|z_1| \not\equiv |z_1'| \pmod{|t_2|}$ or $|z_2| \not\equiv |z_2'| \pmod{|t_2|}$. It remains to prove that these cases are impossible.

⁴The finiteness of the state set of \mathcal{A} implies the existence of t_1 and t_2 .

⁵in Case 2a, of course, $w = \lambda$,.

If $|z_1| \not\equiv |z_1'| \pmod{|t_2|}$ and, say, $|z_2| \ge |z_2'|$ then considering the prefix w_2'' of w_2' having $|z_1'w_2''| = |z_1w_2|$, we can take $w, z_1, z_2w_2, z_1', z_2w_2''$ as w, w_1, w_2, w_1', w_2' contrary of the the minimality of $\min(|w_1|, |w_2|)$.

If $|z_1| \equiv |z_1'| \pmod{|t_2|}$ with $|z_2| \not\equiv |z_2'| \pmod{|t_2|}$ and, say, $|z_1| \geq |z_1'|$ then considering the prefix w_2'' of w_2' having $|z_2'w_2''| = |z_2w_2|$, we can take $wz_1, z_2, z_2', w_2, w_2''$ as w, w_1, w_1', w_2, w_2' contradicting the minimality of $\min(|w_1|, |w_2|)$.

The proof is complete.

Proposition 12 Let $A = (A, X, \delta)$ be an automaton without any Letichevsky's criteria. Consider $a, a_0 \in A, p \in X^*$ with $\delta(a_0, p) = a$ and suppose that $\delta(a, r) = \delta(a, r')$ holds for every $r, r' \in X^*, |pr| = |pr'| \ge |A| - 1$. Assume that $\delta(a, q) \ne \delta(a, q')$ holds for some $q, q' \in X^*, |pq| = |pq'| (< |A| - 1)$ and let q, q' be words of maximal length having this property. Then there are q, q' with this property having

(i) q = uv and q' = uv' for some $u, v, v' \in X^*$ such that for every prefixes r of v and r' of v' with |r| = |r'| > 0 we have $\delta(a, ur) \neq \delta(a, ur')$, and simultaneously, for every $w, z_1, z_2, w', z_1', z_2'$ with $v = wz_1z_2, v' = w'z_1'z_2'$ we obtain $z_1 = z_1'$ whenever $\delta(a, uw) = \delta(a, uw')$, and $|z_1| = |z_1'|$;

(ii) for every distinct prefixes p_1, p_2 of $p_3, \delta(a_0, p_1) \neq \delta(a_0, p_2)$.

Proof: Consider $a \in A$ and suppose that our conditions hold.

First we suppose that, whenever $uu' \neq \lambda$, $\delta(a, u) = \delta(a, u')$ implies u = q and u' = q' for every prefixes u of q and u' of q'. It is clear that then we are ready.

Assume the opposite case and let q = uv, q' = u'v' with $\lambda \notin \{uu', vv'\}$ such that $\delta(a, u) = \delta(a, u')$.

Let $\min(|u|, |u'|)$ be maximal with the above property and prove that in this case u = u' can be assumed. Indeed, if it true if |u| = |u'| because we can consider, say, uv' instead of u'v'.

Finally, prove that, say, |u| > |u'| is impossible. Indeed, otherwise we could change q' for uv'', where v'' is a prefix of v' with |v''| = |v'|. This contradicts of the maximality of $\min(|u|, |u'|)$.

Now we prove (ii) omitting some analogous cases. If there are no distinct prefixes $p'_1, p'_2 \in X^*$ of pq' with $\delta(a_0, p'_1) = \delta(a_0, p'_2)$ for pq' and pq. Therefore, in this case, we are ready. Otherwise, we may suppose $\delta(a_0, p'_1) = \delta(a_0, p'_2)$ for some distinct prefixes $p'_1, p'_2 \in X^*$ of pq'. Let, say, $p'_1 = p'_2r'$ for some nonempty $r' \in X$. By Lemma 2 and $\delta(a_0, pq) \neq \delta(a_0, pq')$, this implies that $\delta(a_0, p'_2)$ generates an autonomous state-subautomaton \mathcal{B} of \mathcal{A} . Moreover, $\delta(a_0, p'_1) = \delta(a_0, p'_2r') = \delta(a_0, p'_2), r' \neq \lambda$ implies that this autonomous state-subautomaton is strongly connected. On the other hand, by the maximality of |q| (= |q'|), $\delta(a_0, pqx) = \delta(a_0, pq'x')$ holds for every $x, x' \in X$. Thus, $\delta(a_0, pqx)$ is also a state of the state-subautomaton \mathcal{B} of \mathcal{A} . Recall that by the maximality of q and q', we have $\delta(a_0, pqx) = \delta(a_0, p'q'x'), x, x' \in X$. Then $\delta(a_0, pq) \neq \delta(a_0, pq')$ and $\delta(a_0, pqx) = \delta(a_0, pq'x')$ imply that $\delta(a_0, pq)$ is not a state of \mathcal{B} . Therefore, for every prefix p_1 of pq, $\delta(a_0, p_1)$ is not a state of \mathcal{B} .

Suppose that, contrary of our assumptions, $\delta(a_0, p_1) = \delta(a_0, p_2)$ holds for distinct prefixes p_1 and p_2 of pq and put, say, $p_1 = p_2r_1$ (where $r_1 \neq \lambda$ is assumed). In other words, $\delta(a_0, p_2r_1) = \delta(a_0, p_2)$ holds such that $\delta(a_0, p_2)$ is not a state of \mathcal{B} . But $\delta(a_0, pqx) = \delta(a_0, pq'x'), x, x' \in X$ implies that there exists an $r_2 \in X^*$ such that $\delta(a_0, p_2r_2)$ is a state of \mathcal{B} . Clearly, then \mathcal{A} satisfies either Letichevsky's criterion or the semi-Letichevsky criterion, a contradiction. This completes the proof.

References

- [1] Z. Ésik, Homomorphically complete classes of automata with respect to the α_2 -product. Acta Sci. Math., 48 (1985), 135–141.
- [2] Z. Ésik and Gy. Horváth, The α_2 -product is homomorphically general. *Papers on Automata Theory V*, No. DM83-3, Dep. Math., Karl Marx University of Economics, Budapest (1983), 49–62.
- [3] F. Gécseg, *Products of Automata*. EATCS Monographs on Theor. Comput. Sci., Vol. 7, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1986.
- [4] A. A. Letichevsky, Conditions of completeness for finite automata (in Russian). *Žurn. Mat. i Mat. Fiz.*, 1 (1961), 702–710.