Well-ordered monoids
- two numerical functions -

YUJI KOBAYASHI
(小林 ゆう治)

Department of Information Science
Toho University, Funabashi 274-8510, Japan
(東邦大学理学部情報科学科)

1 Introduction

Compatible well-orders on monoids are used in the rewriting theory in algebra. They do not only guarantee the termination of reduction processes in a system [3], [4] but also are a base of the completion procedure [8]. In the Gröbner base theory of polynomial rings, such orders on free commutative monoids, and in the rewriting theory of groups and monoids, such orders on free monoids play a crucial role (see [1], [11]). Compatible orders on a free commutative monoid are characterized by weights [15], but in contrast, compatible orders on a free monoid are very diverse and complicated ([2], [9], [10]).

In this paper we study compatible well-orders on monoids. A well-ordered monoid is a monoid with a well-order that is strictly compatible with the operation of the underlying monoid. We introduce two numerical parameters associated with the order. The first one, which is discussed in Section 3, is related to weight functions on a monoid. The second, which is discussed in Section 4, comes from some effect of commutation of two elements in a monoid. With these parameters we study the ordered structure of well-ordered monoids, especially in the case of two-generator monoids in the last section.

2 Preliminary

A quasi-order \succeq on a set X is a reflexive transitive relation on X such that $x \succeq y$ or $y \succeq x$ holds for any $x, y \in X$. For a quasi-order \succeq, define relations \sim and \succ as follows. For $x, y \in X$, $x \sim y$ if and only if $x \succeq y$ and $y \succeq x$, and $x \succ y$ if $y \succeq x$ does not hold, equivalently, $x \succeq y$ but $x \not\sim y$. We call \succ the strict part of \succeq. It is easy to see that \sim is an equivalence relation. A quasi-order \succeq is an order, if \sim is the equality relation, that
is, $x \sim y$ if and only if $x = y$. A quasi-order \succeq is well-founded, if there is no infinite decreasing sequence $x_1 \succ x_2 \succ \cdots$. A well-founded order is called a well-order.

Let \succeq_1 and \succeq_2 be two quasi-orders on X. The lexicographic composition $\succeq_1 \circ \succeq_2$ of \succeq_1 and \succeq_2 is defined by

$$x (\succeq_1 \circ \succeq_2) y \iff x \succeq_1 y, \text{ or } x \sim y \text{ and } x \succeq_2 y,$$

where \sim_1 is the equivalence relation induced by \succeq_1. Similarly, for n quasi-orders $\succeq_1, \ldots, \succeq_n$, the lexicographic composition $\succeq_1 \circ \cdots \circ \succeq_n$ is defined as follows. Let $x, y \in X$ and \sim_i be the equivalence relation induced by \succeq_i and \succ_i be the strict part of \succeq_i. Then, $x (\succeq_1 \circ \cdots \circ \succeq_n) y$, if $x \sim_i y$ for $i = 1, \ldots, k - 1$ and $x \succ_k y$ for some $1 \leq k \leq n$, or $x \sim_i y$ for all $i = 1, \ldots, n$.

Lemma 2.1. If $\succeq_1, \ldots, \succeq_n$ are (well-founded) quasi-orders on X, then $\succeq_1 \circ \cdots \circ \succeq_n$ is (well-founded) quasi-orders on X.

Let \succeq_i be a quasi-order on a set X_i ($i = 1, 2$). A mapping $f : X_1 \rightarrow X_2$ is order-preserving, if $x \succeq_1 y$ implies $f(x) \succeq_2 f(y)$ for all $x, y \in X_1$, equivalently, $f(x) \succ_2 f(y)$ implies $x \succ_1 y$. It is strictly order-preserving if $x \succeq_1 y \Leftrightarrow f(x) \succeq_2 f(y)$ for all $x, y \in X_1$.

A (quasi- (resp. well-)) ordered set is a pair (X, \succeq) of a set X and a (quasi- (resp. well-)) order \succeq on X. Quasi-ordered sets (X_1, \succeq_1) and (X_2, \succeq_2) are isomorphic if there is a bijection $f : X_1 \rightarrow X_2$ which is strictly order-preserving. A class of isomorphic well-ordered sets is an order type. If the class of (X, \succeq) is α, we say (X, \succeq) has order type α.

Let \succeq be the ordinary order of the set \mathbb{N} of natural numbers. The order type of (\mathbb{N}, \succeq) is denoted by ω. For $n \geq 2$, let \succeq_{lex} be the lexicographic order on \mathbb{N}^n, that is, $(x_1, \ldots, x_n) \succeq_{\text{lex}} (y_1, \ldots, y_n)$ if there is k such that $1 \leq k \leq n$ and $x_1 = y_1, \ldots, x_{k-1} = y_{k-1}$ and $x_k > y_k$. The order type of $(\mathbb{N}^n, \succeq_{\text{lex}})$ is ω^n. Similarly we can consider the length-lexicographic order \succeq_{lex} on the set $\mathbb{N}^* = \bigcup_{k=1}^{\infty} \mathbb{N}^k$ of all finite sequences of natural numbers;

$$(x_1, \ldots, x_m) \succeq_{\text{lex}} (y_1, \ldots, y_n) \iff m > n, \text{ or } m = n \text{ and } (x_1, \ldots, x_m) \succeq_{\text{lex}} (y_1, \ldots, y_m).$$

The ordered set $(\mathbb{N}^*, \succeq_{\text{lex}})$ has order type ω^ω.

Let M be a monoid, a semigroup with identity element 1. A quasi-order \succeq on M is compatible if $x \succeq y$ implies $zxw \succeq zyw$ for any $x, y, z, w \in M$, or equivalently, $zxw \succeq zyw$ implies $x \succeq y$. It is strictly compatible if $x \succ y \Leftrightarrow zxw \succ zyw$ for any $x, y, z, w \in M$, or equivalently $x \succeq y \Leftrightarrow zxw \succeq zyw$ for any $x, y, z, w \in M$. A pair (M, \succeq) of a monoid and a compatible (quasi-) order \succeq on M is a (quasi-) ordered monoid.

Lemma 2.2. Let \succeq be a compatible quasi-order on a monoid M. Then, the equivalence relation \sim induced by \succeq is a congruence and the quotient monoid M/\sim is an ordered monoid with the order induced by \succeq. If \succeq is strictly compatible (resp. well-founded) on M, then so is the induced order \succeq on M/\sim.

Note that the induced order \succeq on the quotient M/\sim in the above lemma is defined as $[x] \succeq [y] \iff x \succeq y$ for $x, y \in M$, where $[x]$ denotes the congruence class of x.

In this paper, by a well-ordered monoid we mean an ordered monoid (M, \succeq) with strictly compatible well-order \succeq. As easily seen, a monoid (M, \succeq) with compatible well-order \succeq is a well-ordered monoid if it is cancellative.

Lemma 2.3. If $\succeq_1, \ldots, \succeq_n$ are (strictly) compatible quasi-orders on M, then the lexicographic compositions $\succeq_1 \circ \cdots \circ \succeq_n$ is also a (strictly) compatible quasi-order on M.

A weight function of M is a morphism of M to the additive group \mathbb{R} of real numbers; $f(xy) = f(x) + f(y)$ for $x, y \in M$. Of course, the zero function 0 is a weight function. A weight function f is non-negative (resp. positive) if $f(x) \geq 0$ (resp. $f(x) > 0$) for all $x \in M \setminus \{1\}$. If M is generated by a subset Σ, a weight function f is determined by the values $f(a)$ for generators $a \in \Sigma$. In fact, for any $x = a_1 \cdots a_n$ with $a_i \in \Sigma$, we have $f(x) = \sum_i f(a_i)$.

We define a relation \succeq_f associated with a weight function f on M by

$$x \succeq_f y \iff f(x) \geq f(y).$$

Lemma 2.4. For a weight function f of a monoid M, \succeq_f is a strictly compatible quasi-order on M. The congruence \sim_f induced by \succeq_f is given by $x \sim_f y \iff f(x) = f(y)$, and the quotient M/\sim_f is a well-ordered monoid.

A quasi-order \succeq on a monoid M is weight-sensitive, if there is a nonzero order-preserving weight function f on M, that is, $x \succeq y$ implies $f(x) \geq f(y)$, or equivalently, $f(x) > f(y)$ implies $x \succ y$, for $x, y \in M$. In this case we say \succeq is f-sensitive specifying f. If this f is nonzero non-negative (resp. positive), \succeq is non-negatively (resp. positively) weight-sensitive.

Lemma 2.5. Let M be a finitely generated monoid. If f is a non-negative weight function of M, the quasi-order \succeq_f is well-founded. If f is positive, any f-sensitive quasi-order is well-founded.

3 Weight sensitivity

In this section M is always a well-ordered monoid.

Lemma 3.1. M is torsion-free, cancellative, and for any $x \in M \setminus \{1\}$, we have an infinite increasing sequence

$$1 < x < x^2 < \cdots < x^n < \cdots.$$

Corollary 3.2. Let $x, y \in M$ and $m, n \in \mathbb{N}$. Then,

1. $x^m \succ x^n \iff m > n$.
2. $x^m \succ y^m \iff x \succ y$.
As we see in Lemma 3.1, $x \geq 1$ for any $x \in M$. This is actually a sufficient condition for a compatible quasi-order \succeq on M to be well-founded by Higman’s well-known theorem [6].

An element a of M is a pivot, if for any $x \in M$ there is $n \in \mathbb{N}$ such that $x < a^n$. A monoid may not have a pivot, but a finitely generated monoid, which we are interested in, has one.

Lemma 3.3. A nontrivial finitely generated monoid M has a pivot.

We fix a pivot $a \in M$, and based on this element we define a function $\phi_a : M \rightarrow \mathbb{R}$ as follows:

$$\phi_a(x) = \inf \{n/m \mid x^m \preceq a^n, \ m, n \in \mathbb{N}, m > 0\}$$

for $x \in M$.

Now, we have the main results in this section.

Theorem 3.4. ϕ_a is a nonzero non-negative order-preserving weight function on M.

Corollary 3.5. If a well-ordered monoid (M, \succeq) has a pivot a, \succeq is non-negatively weight-sensitive, specifically, ϕ_a-sensitive.

Corollary 3.6. A well-founded strictly compatible nontrivial quasi-order \succeq on a finitely generated monoid M is non-negatively weight-sensitive.

The above results were proved for free monoids in [13] (see [14] for a different proof), and are a variant of the classical embedding theorems of ordered semigroups into the nonnegative reals (see [5], [7]).

Lemma 3.7. $\phi_a(a^n) = n$ for all $n \in \mathbb{N}$.

Lemma 3.8 (approximation lemma). For any $m > 0$ there is a positive integer n such that $x^m \preceq a^n$ and

$$\frac{n-1}{m} \leq \phi_a(x) \leq \frac{n}{m}.$$

Lemma 3.9. An order-preserving nonzero non-negative weight function on M (if exists) is unique up to constant factor.

Theorem 3.10 (chain rule). Let a and b be pivots of M. For any $x \in M$ we have

$$\phi_a(x) = \phi_a(b) \cdot \phi_b(x).$$

Define a relation \equiv on M as follows: For $x, y \in M$, $x \equiv y$ if and only if $y \preceq x^m$ and $x \preceq y^n$ for some positive integers m, n.

Lemma 3.11. \equiv is an equivalence relation on M.
The equivalence class $A(x)$ of $x \in M$ is the archimedean component of x in M. As easily seen, if $x > y$ and $A(x) \neq A(y)$, then $x' > y'$ for all $x' \in A(x)$ and $y' \in A(y)$. Thus, we can define a relation \succeq on the set A of all archimedean components by $A(x) \succeq A(y) \iff x \succeq y$. Actually \succeq is a well-order of A, and the set P of all pivots of M, if it is not empty, is the maximal archimedean component of M.

If P and \{1\} are the only archimedean components of M, M is called archimedean. Accordingly, M is archimedean if and only if for any $x, y \in M \setminus \{1\}$ there are $m, n > 0$ such that $y \preceq x^m$ and $x \preceq y^n$.

Theorem 3.12. For a nontrivial well-ordered monoid M, the following statements are equivalent.

1. M is archimedean.
2. ϕ_a is positive for any (some) $a (\neq 1) \in M$.
3. M has an order-preserving positive weight function.

If M is finitely generated, these are still equivalent to

4. M has order type ω.

4 Position sensitive functions

The value of a weight function for an element is only determined by the weights of generators which appear in that element, but does not depend on the positions where the generators appear. In this section we introduce a function which depends not only on how many times a generator appears in the element but also on the places where it appears.

Let M_1 be a submonoid of a well-ordered monoid (M, \succeq). M_1 is also a well-ordered monoid with the order \succeq restricted to M_1. Let a be a pivot of M_1 and set $\phi = \phi_a$ be the weight function of M_1 based on a. For $x \in M$ define

$$\mu_{\ell}(x) = \inf \{ \phi(u)/\phi(v) \mid xv \preceq ux, u, v \in M_1, \phi(v) > 0 \}.$$

Here, if there are no elements $u, v \in M$ such that $\phi(v) > 0$ and $xv \preceq ux$, $\mu_{\ell}(x)$ is defined to be ∞. These functions are considered to be a generalization of the functions introduced by Martin and Scott on the free monoid generated by two elements (see [12]).

For $r, s \in [0, \infty) = \mathbb{R}_{+} \cup \{0, \infty\}$, the product $r \cdot s$ is defined in a conventional way, but $0 \cdot \infty$ and $\infty \cdot 0$ are not defined.

Theorem 4.1. For all $x \in M$, $\mu_{\ell}(x) \in [0, \infty]$, and

$$\mu_{\ell}(xy) = \mu_{\ell}(x) \cdot \mu_{\ell}(y)$$

holds for any $x, y \in M$ as far as the righthand side is defined.
The value $\mu_\ell(x)$ is, so to speak, the rate of change of the weight when an element of M_1 is transformed from right to left of x. We can consider also the rate from left to right as follows. For $x \in M$ define

$$\mu_r(x) = \inf \{ \phi(v)/\phi(u) \mid ux \preceq xv, u, v \in M_1, \phi(u) > 0 \}$$

here $\mu_r(x) = \infty$ if there are no $u, v \in M_1$ such that $ux \preceq xv$ and $\phi(u) > 0$.

Theorem 4.2. For any $x \in M$ we have

$$\mu_r(x) = 1/\mu_\ell(x).$$

Lemma 4.3. $\mu_\ell(x) = \mu_r(x) = 1$ for any $x \in M_1$.

For an element $x \in M$ expressed as

$$x = u_0b_1u_1 \cdots b_ku_k$$

(4.1)

with $k \geq 0$, $u_i \in M_1$ for $i = 0, 1, \ldots, k$ and $b_i \in M$ such that $0 \leq \mu_\ell(b_i) < \infty$, define

$$\psi(x) = \phi(u_0) + \phi(u_1)\mu_1 + \cdots + \phi(u_k)\mu_1 \cdots \mu_k,$$

where $\mu_i = \mu_\ell(b_i)$ and ϕ is the weight function on M_1 based on a pivot a of M_1.

For the main theorem of this section we need the following assumption:

(*) There is an element $b \in M$ such that $0 < \mu = \mu_\ell(b) < \infty$ and $\mu \neq 1$.

Theorem 4.4. We assume the condition (*). Let x, y be two elements of M expressed as (4.1);

$$x = u_0b_1u_1 \cdots b_ku_k \quad (u_i \in M_1, b_i \in M),$$

$$y = u'_0b'_1u'_1 \cdots b'_k'u'_k \quad (u'_i \in M_1, b'_i \in M).$$

Then, $b_1 \cdots b_k = b'_1 \cdots b'_k$ and $\psi(x) > \psi(y)$ imply $x \succ y$.

We do not know if Theorem 4.4 remains true in general without assumption (*). But in some special situations we consider next, we can prove the assertion without (*).

First we consider the case where each b_i is in the cyclic submonoid b^* generated by a fixed element b in M. Consider an element x of M written as (4.1), where $b_i \in b^*$ for $i = 1, \ldots, k$. If $\mu_\ell(b) = 1$, the value of our weight sensitive function ψ is given by

$$\psi(x) = \phi(u_0) + \phi(u_1) + \cdots + \phi(u_k).$$

Let y be another element of M written as

$$y = u'_0b'_1u'_1 \cdots b'_k'u'_k \quad (u'_i \in M_1, b'_i \in b^*).$$
Lemma 4.5. Assume $\mu(b) = 1$. For elements x and y given above, if $b_1 \cdots b_k = b'_1 \cdots b'_k$ and
\[
\phi(u_0) + \phi(u_1) + \cdots + \phi(u_k) > \phi(u'_0) + \phi(u'_1) + \cdots + \phi(u'_k),
\]
then $x \succ y$.

If M is generated by $M_1 \cup \{b\}$, any element $x \in M$ is written as (4.1) with $b \in b^*$. Now, using the function ψ we define a quasi-order \succeq' on M by
\[
x \succeq y \Leftrightarrow \psi(x) \geq \psi(y).
\]

Corollary 4.6. If M is generated by $M_1 \cup \{b\}$ for some $b \in M$ such that $0 < \mu_t < \infty$, then
\[
\succeq = \succeq |_{b} \circ \psi \circ \succeq'
\]
for some quasi-order \succeq'.

If $\mu_t(b_i) = 0$ for some i in (4.1), letting \tilde{k} be the smallest such i, we have $\psi(x) = \psi(\tilde{x})$, where $\tilde{x} = u_0 b_1 u_1 \cdots b_{\tilde{k}-1} u_{\tilde{k}-1}$. So under the condition (*), Theorem 4.4 asserts that $b_1 \cdots b_k = b'_1 \cdots b'_k$ and $\psi(\tilde{x}) > \psi(\tilde{y})$ imply $x \succ y$ for x, y given in the theorem. Here we consider without condition (*) the case where $\mu_{\ell}(b_i) = 0$ for all i in (4.1) and M_1 is cyclic.

Lemma 4.7. Let $a \in M_1$ and $b_1, \ldots, b_k \in M$ and suppose $\mu_{\ell}(b_1) = \cdots = \mu_{\ell}(b_k) = 0$. Let x and y be elements of M written as
\[
x = a^{m_0} b_1 a^{m_1} \cdots b_k a^{m_k}
\]
and
\[
y = a^{n_0} b_1 a^{n_1} \cdots b_k a^{n_k}.
\]
Then, $(m_0, m_1, \ldots, m_k) \geq_{\text{lex}} (n_0, n_1, \ldots, n_k)$ implies $x \succ y$.

When $\mu_{\ell}(b_i) = \infty$ for all i in (4.1), then $\mu_r(b_i) = 0$. Thus, in the dual way we have

Corollary 4.8. Let $a \in M_1$ and $b_1, \ldots, b_k \in M$ and suppose $\mu_{\ell}(b_1) = \cdots = \mu_{\ell}(b_k) = \infty$. Let x and y be elements of M written as (4.2) and (4.3) respectively. Then, $(m_k, m_{k-1}, \ldots, m_0) \geq_{\text{lex}} (n_k, n_{k-1}, \ldots, n_0)$ implies $x \succ y$.

5 Monoids generated by two elements

In this section we apply the results obtained in Sections 3 and 4 to monoids generated by two elements. Let (M, \geq) be a well-ordered monoid generated by a and b. Suppose that b is a pivot and consider the weight function $\phi = \phi_b$ based on b. By Theorem 3.4
\[
\geq_{\phi} = \geq_{\phi_b} \circ \geq'
\]
for some compatible quasi-order \succeq', where \succeq_ϕ is the quasi-order associated with ϕ.

If $r = \phi(a) > 0$, a is also a pivot. By Theorem 3.12, M is archimedean and has order type ω. The quasi-order \succeq_ϕ is an order if and only if the congruence \sim_ϕ induced by \succeq_ϕ is the equality relation, that is, $x = y$ in M if and only if $\phi(x) = \phi(y)$. In this case, M is a commutative monoid isomorphic to $\langle a, b \rangle^* / \sim$, where for $x, y \in \Sigma^*$, $x \sim y$ if and only if

$$ \phi(x) = |x|_b + r \cdot |x|_a = \phi(y) = |y|_b + r \cdot |y|_a. $$

In particular, if r is irrational, the equality $\phi(x) = \phi(y)$ holds if and only if $x = y$ as abelian words over $\{a, b\}$. Hence, M is the free commutative monoid generated by a and b. If $r = n \in \mathbb{N}$, then $a \sim_\phi b^n$ and M is the infinite cyclic monoid generated by b. If $r = 1/n$ ($n \in \mathbb{N}$), then M is the infinite cyclic monoid generated by a. If $r = p/q$ with $p, q > 1$ and $(p, q) = 1$, then M is the commutative monoid generated by a, b subject to the relation $a^q = b^p$. But, if \succeq_ϕ is not an order, we need a quasi-order \succeq' which is nontrivial on \sim_ϕ in (5.1), that is, there are two elements $x, y \in M$ such that $x \sim_\phi y$ and $x \succeq' y$.

Suppose that $r = 0$, then M is not archimedean. Based on the weight function $\cdot |\cdot_a$ on the submonoid $a^* = \{x \in M \mid \phi(a) = 0\}$ of M generated by a, we have the weight sensitive function μ_ℓ on M. Let $\mu = \mu_\ell(b)$.

First, suppose $0 < \mu < \infty$, then for an element

$$ x = a^{m_0} b a^{m_1} \cdots ba^{m_k} $$

of M we have

$$ \psi(x) = m_0 + m_1 \mu + \cdots + m_k \mu^k. $$

By Corollary 4.6 we see

$$ \succeq = \succeq_{|\cdot|_b} \circ \succeq_\psi \circ \succeq' $$

for some quasi-order \succeq'. For any $k \geq 0$, the subset $M_k = \{x \in M \mid |x|_b = k\}$ of M has order type ω, and hence M has order type ω^2.

If μ is transcendental, then $\psi(x) = \psi(y)$ implies $x = y$ as words over $\{a, b\}$. It follows that M is the free monoid generated by a and b, \succeq_ψ is an order, and

$$ \succeq = \succeq_{|\cdot|_b} \circ \succeq_\psi. $$

Next suppose that μ is algebraic. Let

$$ P_\mu(X) = k_0 + k_1 X + \cdots + k_n X^n \quad (k_i \in \mathbb{Z}) $$

be the minimal primitive polynomial of μ over \mathbb{Z}. Set

$$ \ell_i = \begin{cases} k_i & \text{if } k_i > 0 \\ 0 & \text{otherwise} \end{cases} $$

$$ \ell'_i = \begin{cases} -k_i & \text{if } k_i < 0 \\ 0 & \text{otherwise} \end{cases} $$
and define
\[x = a^{n_0}ba^{n_1} \cdots ba^{n_{\ell}}, \]
\[x' = a^{n_0}ba^{n_1} \cdots ba^{n_{\ell}}. \]

Then \(x \neq x' \) as words but \(\psi(x) = \psi(x') \). Let \(\sim \) be the congruence induced by the quasi-order \(\succeq_{|b} \circ \succeq_{\psi} \). Then, \(\succeq_{|b} \circ \succeq_{\psi} \) is an order, if and only if \(\sim \) is the equality relation, and in this case, \(M \) is isomorphic to \(\{a, b\}^*/\sim_{P} \), where \(\sim_{P} \) is the congruence on the free monoid \(\{a, b\} \) defined as follows: for elements \(x = a^{m_0}ba^{m_1} \cdots ba^{m_{k}} \) and \(y = a^{n_0}ba^{n_1} \cdots ba^{n_{\ell}} \), \(x \sim_{P} y \) if and only if \(k = \ell \) and
\[(m_0 - n_0) + (m_1 - n_1)X + \cdots + (m_k - n_k)X^{k} \equiv 0 \pmod{P_{\mu}(X)}. \]

If \(\sim \) is not the equality, \(\succeq_{|b} \circ \succeq_{\psi} \) is not an order, and a quasi-order \(\succeq' \) which is nontrivial on \(\sim \) is necessary in (5.2).

Next suppose \(\mu = 0 \). Then, by Lemma 4.7, for two elements
\[x = a^{m_0}ba^{m_1} \cdots ba^{m_{k}} \]
and
\[y = a^{n_0}ba^{n_1} \cdots ba^{n_{\ell}} \]
in \(M \), \(x \succ y \) if and only if either \(k > \ell \), or \(k = \ell \) and \((m_0, m_1, \ldots, m_k) \succ_{\text{lex}} (n_0, n_1, \ldots, n_k) \). Hence, \(x \succeq y \) and \(y \succeq x \) if and only if \(x = y \) as words. It follows that \(M \) is the free monoid generated by \(a \) and \(b \), and
\[\succeq = \succeq_{|b} \circ \succeq_{0}, \]
where \(\succeq_{0} \) is the quasi-order defined through the lexicographic order \(\succeq_{\text{lex}} \) on \(\mathbb{N}^{*} = \bigcup_{k \geq 1} \mathbb{N}^{k} \). In other words, the ordered set \(M \) is isomorphic to \((\mathbb{N}^{*}, \succeq_{\text{lex}}) \) by the mapping which sends an element \(x \in M \) written as (5.3) to the vector \((m_0, m_1, \ldots, m_k) \in \mathbb{N}^{k+1} \).

The order type of \(M \) is \(\omega^{\mu} \).

Finally, suppose \(\mu = \infty \). Similarly to the case \(\mu = 0 \), \(M \) is free again, and by Corollary 4.8 we have
\[\succeq = \succeq_{|b} \circ \succeq_{\infty}, \]
where \(\succeq_{\infty} \) is the quasi-order defined through the reverse-lexicographic order on \(\mathbb{N}^{*} \). Again, \(M \) has order type \(\omega^{\mu} \).

Summarizing, when \(M \) is non-archimedean and \(\mu \) is transcendental or \(\mu = 0 \) or \(\mu = \infty \), the structure of \(M \) is unique, that is, \(M \) is free, and the order on \(M \) is completely determined by \(r \) and \(\mu \). But in other cases, the two parameters \(r \) and \(\mu \) are not sufficient to determine the structure of \(M \). Actually uncountably many different structures for \(M \) are possible for each \(r \) and nonzero algebraic \(\mu \). Moreover, even if the algebraic structure of the underlying monoid \(M \) is fixed, uncountably many different well-orders on \(M \) are possible. We omit the details here.
References

