<table>
<thead>
<tr>
<th>Title</th>
<th>A generalization of a non-symmetric numerical semigroup generated by three elements (Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Komeda, Jiryo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25369</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A generalization of a non-symmetric numerical semigroup generated by three elements

神奈川工科大学 米田 二良 (Jiryo Komeda)
Kanagawa Institute of Technology

§1. Non-symmetric numerical semigroups generated by three elements.

Let \(\mathbb{N} \) be the additive semigroup of non-negative integers. Let \(H \) be a numerical semigroup of genus \(g \), i.e., a subsemigroup of \(\mathbb{N} \) whose complement \(\mathbb{N} \setminus H \) consists of \(g \) elements. We denote by \(g(H) \) the genus of \(H \). We set

\[c(H) = \min \{ c \in \mathbb{N} | c + \mathbb{N} \subseteq H \} \]

which is called the conductor of \(H \). Then \(c(H) \leq 2g(H) \). A numerical semigroup \(H \) is said to be symmetric if \(c(H) = 2g(H) \). Let \(M(H) = \{ a_1, a_2, \ldots, a_n \} \) be the minimal set of generators for \(H \). We set

\[\alpha_i = \min \{ \alpha | \alpha a_i \in \langle a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \rangle \} \]

where for any non-negative integers \(b_1, \ldots, b_m \) the set \(\langle b_1, \ldots, b_m \rangle \) means the semigroup generated by \(b_1, \ldots, b_m \).

Example 1.

i) Let \(H = \langle 4, 5, 6 \rangle \). Then \(g(H) = 4 \) and \(c(H) = 8 \). Hence \(H \) is symmetric. If we set \(a_1 = 4 \), \(a_2 = 5 \) and \(a_3 = 6 \), then \(\alpha_1 = 3 \), \(\alpha_2 = 2 \) and \(\alpha_3 = 2 \).

ii) Let \(H = \langle 4, 5, 7 \rangle \). Then \(g(H) = 4 \) and \(c(H) = 7 \). Hence \(H \) is non-symmetric. If we set \(a_1 = 4 \), \(a_2 = 5 \) and \(a_3 = 7 \), then \(\alpha_1 = 3 \), \(\alpha_2 = 3 \) and \(\alpha_3 = 2 \).

Remark 2 (Herzog [1]). Let \(H \) be a non-symmetric numerical semigroup with \(M(H) = \{ a_1, a_2, a_3 \} \). Then

\[\alpha_1 a_1 = \alpha_{12} a_2 + \alpha_{13} a_3, \quad \alpha_2 a_2 = \alpha_{21} a_1 + \alpha_{23} a_3 \quad \text{and} \quad \alpha_3 a_3 = \alpha_{31} a_1 + \alpha_{32} a_2 \]

where \(\alpha_1 = \alpha_{21} + \alpha_{31}, \alpha_2 = \alpha_{12} + \alpha_{32}, \alpha_3 = \alpha_{13} + \alpha_{23} \) and \(0 < \alpha_{ij} < \alpha_j \), all \(i, j \). In this case \(\alpha_{ij} \)'s are uniquely determined.

Proposition 3. Let the notation be as in Remark 2. Then we have

\[
\begin{vmatrix}
\alpha_1 & -\alpha_{12} \\
-\alpha_{21} & \alpha_2
\end{vmatrix}
= a_3.
\]

Example 4. Let \(H = \langle a_1 = 4, a_2 = 5, a_3 = 7 \rangle \). Then

\[3a_1 = a_2 + a_3, \quad 3a_2 = 2a_1 + a_3, \quad 2a_3 = a_1 + 2a_2 \]

and

\[
\begin{vmatrix}
\alpha_1 & -\alpha_{12} \\
-\alpha_{21} & \alpha_2
\end{vmatrix}
= \begin{vmatrix}
3 & -1 \\
-2 & 3
\end{vmatrix}
= 7 = a_3.
\]

In this section we introduce the notion of a numerical semigroup of quasi-toric type and give several examples.

Definition 5. i) Let H be a numerical semigroup with $M(H) = \{a_1, \ldots, a_n\}$. A system of relations

$$
\begin{align*}
\alpha_1a_1 &= \alpha_{12}a_2 + \cdots + \alpha_{1n}a_n \\
& \quad \vdots \\
\alpha_na_n &= \alpha_{n1}a_1 + \cdots + \alpha_{nn-1}a_{n-1}
\end{align*}
$$

satisfying

$$\alpha_j = \alpha_{1j} + \cdots + \alpha_{j-1j} + \alpha_{j+1j} + \cdots + \alpha_{nj}$$

for any j and $0 \leq \alpha_{ij} < \alpha_j$ for all i, j is said to be neat.

ii) A numerical semigroup H is said to be neat if it has a neat system of relations.

Example 6. i) Any non-symmetric numerical semigroup H with $\#M(H) = 3$ is neat by Remark 2.

ii) Let $H = \langle a_1 = 20, a_2 = 24, a_3 = 25, a_4 = 31 \rangle$. We have a unique neat system of relations

$$4a_1 = a_2 + a_3 + a_4, \quad 4a_2 = 2a_1 + a_3 + a_4, \quad 3a_3 = a_1 + a_2 + a_4 \quad \text{and} \quad 3a_4 = a_1 + 2a_2 + a_3,$$

which implies that H is neat.

Definition 7. Let H be a numerical semigroup with $M(H) = \{a_1, \ldots, a_n\}$. The \mathbb{Z}--module

$$R = \{(r_1, r_2, \ldots, r_n) \in \mathbb{Z}^n | \sum_{i=1}^{m} r_ia_i = 0\}$$

is called a relation module for H.

Lemma 8. Let the notation be as in Definition 7. Then a relation module for H is a free \mathbb{Z}--module of rank $n - 1$.

Definition 9. Let S be a subsemigroup of \mathbb{Z}^n. S is said to be saturated if the condition $nr \in S$, where n is a positive integer and r an element of \mathbb{Z}^n, implies that $r \in S$.

Definition 10. Consider an order on the set

$$I = \{(i, j)|1 \leq i \leq n, 1 \leq j \leq n, i \neq j\},$$

which is fixed. Let H be a neat numerical semigroup with $M(H) = \{a_1, \ldots, a_n\}$.
Take a neat system of relations

\[
\begin{align*}
\alpha_{2a} a_1 + \cdots + \alpha_{1n} a_1 &= \alpha_1 a_1 = \alpha_{12} a_2 + \cdots + \alpha_{1n} a_n \\
\alpha_{2n-1} a_{n-1} + \cdots + \alpha_{n-1} a_{n-1} &= \alpha_{n-1} a_{n-1} + \alpha_{n-1} a_n \\
\alpha_{1n} a_n &= \alpha_{n1} a_1 + \cdots + \alpha_{nn-1} a_{n-1}
\end{align*}
\]

Assume that

\[
\begin{vmatrix}
\alpha_1 & -\alpha_{12} & \cdots & -\alpha_{1n-1} \\
-\alpha_{21} & \alpha_2 & \cdots & -\alpha_{2n-1} \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_{n-11} & -\alpha_{n-12} & \cdots & \alpha_n
\end{vmatrix} \neq 0.
\]

We set \(N = \# \{(i,j) | \alpha_{ij} \neq 0 \} - (n - 1) \). We associate the vector in \(\mathbb{Z}^N \) with \(\alpha_{ij} a_j \) by induction on \(i \) which means the \(i \)-th relation in the neat system of relations. Let \(i \) be fixed. Let \((k_i, l_i) \) be the maximum of the set

\[
L_i = \{(j, i) | \alpha_{ji} \neq 0 \} \cup \{(i, j) | \alpha_{ij} \neq 0 \} \cap \left(I \setminus \bigcup_{p=1}^{n-1} L_p \right).
\]

We number successively the elements \((i, j) \) of the set \(L_i \) by \(\sigma(i, j) \) in the given order if \((i, j) \neq (k_i, l_i) \). We associate the vector \(b_{\sigma(i,j)} = e_{\sigma(i,j)} \) with \(\alpha_{ij} a_j \) if \((i, j) \neq (k_i, l_i) \). For \(\alpha_{k_\sigma l_\sigma} a_{l_\sigma} \) we consider

\[
\alpha_{k_\sigma l_\sigma} a_{l_\sigma} = \cdots \pm \alpha_{pq} a_p \cdots
\]

from the \(i \)-th relation in the neat system. Using the relation we can associate the vector \(b_{N+i} \) with \(\alpha_{k_i l_i} a_{l_i} \), because we already have associated some vector with \(\alpha_{pq} a_p \). Thus, we can construct the subsemigroup \(S = \langle b_1, \ldots, b_{N+n-1} \rangle \) of \(\mathbb{Z}^N \). The neat numerical semigroup \(H \) is said to be of quasi-toric type if the semigroup \(S \) is saturated.

The reason why \(H \) is said to be of quasi-toric type is that if the associated semigroup \(S \) is saturated then the affine scheme \(\text{Spec } k[S] \) becomes an affine toric variety where \(k \) is an algebraically closed field.

Remark 11. Let a neat system of relations be fixed. Then the property of"quasi-toric type" does not depend on the choices of the numbering of the elements of \(M(H) \) and the order on the set \(I = \{(i,j)| 1 \leq i \leq n, 1 \leq j \leq n, i \neq j \} \).

Example 12. Let \(H \) be a non-symmetric numerical semigroup with \(M(H) = \{a_1, a_2, a_3\} \). We have the neat system of relations

\[
\begin{align*}
\alpha_1 a_1 &= (\alpha_{21} + \alpha_{31}) a_1 = \alpha_{12} a_2 + \alpha_{13} a_3 \\
\alpha_2 a_2 &= (\alpha_{12} + \alpha_{22}) a_2 = \alpha_{21} a_1 + \alpha_{23} a_3 \\
\alpha_3 a_3 &= (\alpha_{13} + \alpha_{23}) a_3 = \alpha_{31} a_1 + \alpha_{32} a_2
\end{align*}
\]
We define the order on the set
\[
\{(i,j)|i,j = 1,2,3\text{ and } i \neq j\}
\]
as follows: \((i,j) \leq (i',j')\) if \("j < j'"\) or \("j = j', i \leq i'"\). The associated subsemigroup \(S\) of \(\mathbb{Z}^4\) is generated by \(b_1 = e_1, b_2 = e_2, b_3 = e_3, b_4 = e_4, b_5 = (1,1,-1,0)\) and \(b_6 = (-1,0,1,1)\). Then \(S\) is saturated, which implies that \(H\) is of quasi-toric type.

Proposition 13. Let \(H\) be a neat numerical semigroup with \(M(H) = \{a_1, \ldots, a_n\}\) such that it has a neat system of relations
\[
\begin{align*}
\alpha_1 a_1 &= \alpha_{12} a_2 + \cdots + \alpha_{1n} a_n \\
\alpha_{n} a_n &= \alpha_{n1} a_1 + \cdots + \alpha_{n-1} a_{n-1}
\end{align*}
\]
with
\[
\begin{vmatrix}
\alpha_1 & -\alpha_{12} & \cdots & -\alpha_{1n-1} \\
-\alpha_{21} & \alpha_2 & \cdots & -\alpha_{2n-1} \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_{n-11} & -\alpha_{n-12} & \cdots & \alpha_{n-1}
\end{vmatrix} \neq 0.
\]
i) If there is some \(j_0\) with \(1 \leq j_0 \leq n\) such that \(\alpha_{ij_0} > 0\) for all \(i\), then \(H\) is of quasi-toric type.
ii) If there is some \(i_0\) with \(1 \leq i_0 \leq n\) such that \(\alpha_{i_0j} > 0\) for all \(j\), then \(H\) is of quasi-toric type.

Example 14. Let \(H = <a_1 = 20, a_2 = 24, a_3 = 25, a_4 = 31>\). We have a neat system of relations
\[
\begin{align*}
4a_1 &= a_2 + a_3 + a_4, \\
4a_2 &= 2a_1 + a_3 + a_4, \\
3a_3 &= a_1 + a_2 + a_4 \text{ and } 3a_4 = a_1 + 2a_2 + a_3.
\end{align*}
\]
Since we have
\[
\begin{vmatrix}
4 & -1 & -1 \\
-2 & 4 & -1 \\
-1 & -1 & 3
\end{vmatrix} = 31 \neq 0,
\]
by Proposition 13 \(H\) is of quasi-toric type (Cf. Example 6 ii)).

Proposition 15. Let \(H\) be a neat numerical semigroup with \(M(H) = \{a_1, \ldots, a_n\}\) such that it has a neat system of relations
\[
\begin{align*}
\alpha_1 a_1 &= \alpha_{1n} a_n + \alpha_{12} a_2 \\
\alpha_2 a_2 &= \alpha_{23} a_3 + \alpha_{23} a_3 \\
\cdots & \cdots \cdots \\
\alpha_{i} a_{i} &= \alpha_{i-1} a_{i-1} + \alpha_{ii+1} a_{i+1} (2 \leq i \leq n-1) \\
\cdots & \cdots \cdots \\
\alpha_n a_n &= \alpha_{n-1} a_{n-1} + \alpha_{n1} a_1
\end{align*}
\]
with
\[
\begin{vmatrix}
\alpha_1 & -\alpha_{12} & \cdots & -\alpha_{1n-1} \\
-\alpha_{21} & \alpha_2 & \cdots & -\alpha_{2n-1} \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_{n-11} & -\alpha_{n-12} & \cdots & \alpha_{n-1}
\end{vmatrix} \neq 0
\]
where we set \(\alpha_{ij} = 0 \) if \(\alpha_{ij}a_j \) does not appear in the system of relations. Then \(H \) is of quasi-toric type.

Example 16 (Komeda [3]). For any \(n \geq 5 \), let \(H_n \) be the numerical semigroup with
\[
M(H_n) = \{a_1 = n, a_2 = n + 1, a_3 = 2n + 3, a_4 = 2n + 4, \ldots, a_{n-1} = 2n + n - 1\}.
\]
Then we have a neat system of relations
\[
\alpha_1a_1 = 4a_1 = a_2 + a_{n-1}, \quad \alpha_2a_2 = 3a_2 = a_1 + a_3, \quad \alpha_3a_3 = 2a_3 = 2a_2 + a_4,
\]
\[
\alpha_i a_i = 2a_i = a_{i-1} + a_{i+1} \quad (4 \leq i \leq n-2), \quad \alpha_{n-1}a_{n-1} = 2a_{n-1} = 3a_1 + a_{n-2}.
\]
By Proposition 15, \(H_n \) is a neat numerical semigroup of quasi-toric type.

Theorem 17. Let \(H \) be a neat numerical semigroup with \(M(H) = \{a_1, a_2, a_3, a_4\} \). Then \(H \) is of quasi-toric type.

Proof. Let
\[
\begin{align*}
\alpha_1a_1 &= \alpha_{12}a_2 + \alpha_{13}a_3 + \alpha_{14}a_4 \\
\alpha_2a_2 &= \alpha_{21}a_1 + \alpha_{23}a_3 + \alpha_{24}a_4 \\
\alpha_3a_3 &= \alpha_{31}a_1 + \alpha_{32}a_2 + \alpha_{34}a_4 \\
\alpha_4a_4 &= \alpha_{41}a_1 + \alpha_{42}a_2 + \alpha_{43}a_3
\end{align*}
\]
be a unique neat system of relations for \(H \). We note that
\[
D = \begin{vmatrix}
\alpha_1 & -\alpha_{12} & -\alpha_{13} \\
-\alpha_{21} & \alpha_2 & -\alpha_{23} \\
-\alpha_{31} & -\alpha_{32} & \alpha_3
\end{vmatrix} > 0.
\]
By Proposition 13 first we may assume that \(\alpha_1a_1 = \alpha_{12}a_2 + \alpha_{14}a_4 \), which implies that \(\alpha_3 = \alpha_{23} + \alpha_{43} \). Moreover, we have

"\(\alpha_2a_2 = \alpha_{21}a_1 + \alpha_{23}a_3 \) or \(\alpha_{23}a_3 + \alpha_{24}a_4 \)"

and

"\(\alpha_4a_4 = \alpha_{41}a_1 + \alpha_{43}a_3 \) or \(\alpha_{42}a_2 + \alpha_{43}a_3 \)."

i) \(\alpha_2a_2 = \alpha_{21}a_1 + \alpha_{23}a_3, \quad \alpha_4a_4 = \alpha_{41}a_1 + \alpha_{43}a_3. \) Then \(\alpha_3a_3 = \alpha_{32}a_2 + \alpha_{34}a_4. \) This case is reduced to Proposition 15.
ii) $\alpha_2 a_2 = \alpha_1 a_1 + \alpha_3 a_3$, $\alpha_4 a_4 = \alpha_2 a_2 + \alpha_4 a_3$. Hence we get $\alpha_1 = \alpha_2 + \alpha_3, \alpha_2 = \alpha_1 + \alpha_4, \alpha_3 = \alpha_2 + \alpha_4$ and $\alpha_4 = \alpha_1 + \alpha_3$. We introduce the order on the set

$$I = \{(i, j) | 1 \leq i \leq 4, 1 \leq j \leq 4, i \neq j\}$$

as follows:

$(i, j) \leq (i', j')$ if "$j < j'"$ or "$j = j', i \leq i'"$. Then we get the associated subsemigroup

$$S = \langle b_1 = e_1, \ldots, b_5 = e_5, b_6, b_7, b_8 \rangle$$

of \mathbb{Z}^5 through the method in Definition 10 where $b_5 = e_1 + e_2 - e_3, b_7 = e_1 + e_4 - e_3$ and $b_8 = e_2 + e_5 - e_4$. We can show that S is saturated.

iii) $\alpha_2 a_2 = \alpha_2 a_3 + \alpha_2 a_4, \alpha_4 a_4 = \alpha_4 a_1 + \alpha_4 a_3$. In the similar way to ii) we can show that H is of quasi-toric type.

iv) $\alpha_2 a_2 = \alpha_2 a_3 + \alpha_2 a_4, \alpha_4 a_4 = \alpha_2 a_2 + \alpha_4 a_3$. In this case at most one α_{i1} appears. This contradicts the neatness of H.

Q.E.D.

Problem 18. Let $n \geq 5$. If H is a neat numerical semigroup with $\# M(H) = n$, then is it of quasi-toric type?

§3. Numerical semigroups of toric type.

We study the relation between a 1-neat numerical semigroup and a numerical semigroup of toric type whose definitions are given in this section.

Definition 19. Let H be a neat numerical with $M(H) = \{a_1, \ldots, a_n\}$ such that it has a neat system of relations

$$\begin{cases}
\alpha_1 a_1 = \alpha_1 a_2 + \cdots + \alpha_{1n} a_n. \\
\vdots \\
\alpha_n a_n = \alpha_{n1} a_1 + \cdots + \alpha_{nn} a_{n-1}
\end{cases}$$

It is said to be 1-neat if

$$\begin{vmatrix}
\alpha_1 & -\alpha_{12} & \cdots & -\alpha_{1n-1} \\
-\alpha_{21} & \alpha_2 & \cdots & -\alpha_{2n-1} \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_{n-11} & -\alpha_{n-12} & \cdots & \alpha_{n-1}
\end{vmatrix} = a_n.$$

Example 20. By Proposition 3 a non-symmetric numerical semigroup H with $M(H) = \{a_1, a_2, a_3\}$ is 1-neat.

Proposition 21. Let H be a numerical semigroup with $M(H) = \{a_1, \ldots, a_n\}$. Let $r_i = (r_{i1}, r_{i2}, \ldots, r_{in})$ be an element of the relation module R for H with
\[i = 1, \ldots, n - 1. \] Assume that

\[
\begin{array}{cccc}
\tau_{11} & \tau_{12} & \cdots & \tau_{1n-1} \\
\tau_{21} & \tau_{22} & \cdots & \tau_{2n-1} \\
\vdots & \vdots & & \vdots \\
\tau_{n-11} & \tau_{n-12} & \cdots & \tau_{n-1n-1}
\end{array}
= \pm a_n.
\]

Then \(\tau_1, \ldots, \tau_{n-1} \) form a basis for the \(\mathbb{Z} \)-module \(R \).

Let \(H \) be a neat numerical semigroup with \(M(H) = \{a_1, \ldots, a_n\} \) with its fixed neat system of relations. We set \(N = \#\{(i, j) | a_{ij} \neq 0\} - (n - 1) \). Let \(S = \langle b_1, \ldots, b_{N+n-1} \rangle \) of \(\mathbb{Z}^N \) be the associated subsemigroup. Let \(k \) be a field. Let \(\varphi_H : k[X] = k[X_1, \ldots, X_n] \rightarrow k[H] = k[t^h]_{h \in H} \) be a \(k \)-algebra homomorphism sending \(X_i \) to \(t^{a_i} \), \(\pi : k[Y] = k[Y_1, \ldots, Y_{N+n-1}] \rightarrow k[S] = k[T^b]_{b \in S} \) a \(k \)-algebra homomorphism sending \(Y_i \) to \(T^{b_i} \), \(\eta : k[Y] \rightarrow k[X] \) a \(k \)-algebra homomorphism sending \(Y_i \) to \(g_i = X_i^{a_i} \) if \(b_i \) corresponds to \(a_\alpha \), and \(\zeta : k[N^N] = k[t_1, \ldots, t_n] \rightarrow k[H] \) a \(k \)-algebra homomorphism sending \(t_i \) to \(t^{w(c)} \) where the weight \(w \) on \(k[X] \) is defined by \(w(X_i) = a_i \) and \(w(c) = 0 \) for \(c \in k^\times \). By the definition of \(b_i \)'s, \(\zeta \) extends to \(\zeta' : k[S] \rightarrow k[H] \). Then we get \(\varphi_H \circ \eta = \zeta' \circ \pi \), which implies that \(\text{Ker} \varphi_H \supseteq \eta(\text{Ker} \pi) \).

Definition 22. A neat numerical semigroup \(H \) is said to be of toric type if it is of quasi-toric type and we have an isomorphism \(k[H] \cong k[S] \otimes_{k[Y]} k[X] \), that is to say, \(\text{Ker} \varphi_H = (\eta(\text{Ker} \pi)) \).

Remark 23 (Komeda [2]). A numerical semigroup of toric type is Weierstrass, where a numerical semigroup \(H \) is said to be Weierstrass if there is a pointed non-singular complete curve \((C, P)\) over an algebraically closed field such that

\[H = \{ n \in \mathbb{N} \mid \text{there is a rational function } f \text{ on } C \text{ with } (f)_\infty = nP \} \].

Example 24. Any non-symmetric numerical semigroup with \(M(H) = \{a_1, a_2, a_3\} \) is of toric type, because we know that the ideal \(\text{Ker} \varphi_H \) is generated by

\[X_1^{a_1} - X_2^{a_2} X_3^{a_3}, X_2^{a_2} - X_1^{a_1} X_3^{a_3}, \text{ and } X_3^{a_3} - X_1^{a_1} X_2^{a_2} \] (Herzog [1]).

We note that \(H \) is 1-neat (Cf. Example 20).

Example 25. For any integer \(n \geq 5 \), let \(H_n \) be a numerical semigroup with

\[M(H_n) = \{a_1 = n, a_2 = n + 1, a_3 = 2n + 3, a_4 = 2n + 4, \ldots, a_{n-1} = 2n + n - 1\} \]

(Cf. Example 16). Then the ideal \(\text{Ker} \varphi_{H_n} \) is generated by

\[X_2^3 - X_1 X_3, X_2 X_j - X_1 X_{j+1} (3 \leq j \leq n - 2), X_2 X_{n-1} - X_4, \]
$$X_3X_j - X_2^2X_{j+1}(3 \leq j \leq n - 2), \ X_3X_{n-1} - X_2^2X_1^3,$$

$$X_iX_j - X_{i-1}X_{j+1}(4 \leq i \leq n - 2, \ i \leq j \leq n - 2), \ X_iX_{n-1} - X_{i-1}X_1^3(4 \leq i \leq n - 1).$$

It is proved that H_n is of toric type. In this case H_n is also 1-neat.

Theorem 26. A 1-neat numerical semigroup with $M(H) = \{a_1, a_2, a_3, a_4\}$ is of toric type.

Problem 27. Let $n \geq 5$. If H is a 1-neat numerical semigroup with \#$M(H) = n$, is it of toric type?

References

