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Crossover between ballistic motion and normal diffusion is studied based on the
continuous-time random walk (CTRW) approach in order to analyze universal properties
of strongly correlated motion and the decay process of correlation in deterministic diffusion.
There exists a characteristic time scale τ . For the time region t � τ , ballistic motion is
observed, which is followed by normal diffusion for t � τ . Higher-order moments are ana-
lytically obtained, and it is found that they obey scaling relations that are reminiscent of
the generalized extended self-similarity (GESS) found in turbulent systems. As a simple
dynamical system for numerical simulations, the climbing sine map in the vicinity of band
crisis is considered. Good agreement between the theory and the numerical simulations is
observed.

§1. Introduction

From the viewpoint of deterministic diffusion,1) diffusion is caused by chaotic
dynamics in a dynamical system. The invariant sets relevant to the chaotic dynamics
in the phase space suffer bifurcations when the control parameter is changed. Long
correlations occur in the vicinity of the bifurcation point, leading to anomalous dif-
fusion. There exists a characteristic time τ , which corresponds to the mean free time
in the case of the diffusion caused by thermal noise. Unlike the mean free time, this
characteristic time τ may diverge in the vicinity of the bifurcation point. Tangent
bifurcation is an example. Thus, it is important to characterize crossover phenom-
ena between anomalous and normal diffusion observed respectively for t� τ and for
t� τ by use of various scaling properties, as is also the case for turbulent phenom-
ena.2) We attempted to find scaling laws that hold from the anomalous subdiffusion
region into the normal diffusion region as a whole, and compare them with gener-
alized scaling laws, like generalized extended self-similarity (GESS),3) which were
introduced to describe turbulence at intermediate Reynolds numbers. Miyazaki et
al. succeeded in finding such scaling laws related to modulational intermittency4)–7)

and to superdiffusion in oscillating convection flows.8)

§2. Crossover between ballistic motion and normal diffusion

We derive the crossover between anomalous ballistic motion and normal diffusion
by using the CTRW velocity model,9) which describes motion consisting of uniform
motion and instantaneous changes of direction. Let ψ(t) be the probability density
function (PDF) to go straight in one direction up to time t, ‘flight duration’, which
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emerges as a straight segment in Fig. 1. We assume the following PDF

ψ(t) =
1
τ

exp
(
− t

τ

)
, (2.1)

where τ corresponds to a characteristic time scale of the crossover, which is equal
to the average flight duration. Based on the CTRW velocity model, we obtain the
mean square displacement corresponding to ψ(t) given by Eq. (2.1) as

〈r2〉(t)
2Dt

= φ̄
( t

2τ

)
, (2.2)

with the diffusion constant D = τv2, and the scaling function

φ̄(z) = 1 − 1
2z

(1 − exp(−2z)) . (2.3)

We have φ̄(z) ∼ z for z � 1, and φ̄(z) ∼ 1 for z � 1. From the CTRW velocity model
and saddle-point calculations, we can also obtain for the 2m-th moment as 〈r2m〉(t) =
Nm g

(
t

2mτ

) [
t̂
(

t
2mτ

)]m with Nm = Γ (2m+ 1)(2eτ2v2)m, φ(z) =
√

1+z2−1
z exp(−z +√

1 + z2), g(z) = z+1+
√

1+z2√
1+z2+

√
1+z2

, and t̂(z) = z φ(z). When we consider the moment

normalized by the function g

〈r2m〉(tm)

g
( t

2τ

) ∝



〈r2n〉(tn)

g
( t

2τ

)




m/n

, (2.4)

which holds for all t. This scaling relation is an analog of GESS.3)

Now we compare the theory with numerical simulations using a simple dynamical
system on the real line called the climbing sine map: xn+1 = xn +a sin(2πxn) (a >
0).10),11) Diffusive motion starts at a = 0.7326441325 . . . , below which only nondif-
fusive motion is observed. There exist cascades of tangent bifurcations and band
crises in this system. In the vicinity of the bifurcation points, diffusive motion is so
strongly correlated that the diffusion constants are either vanishing or diverging.10)

Let us consider the bifurcation point a = ac = 1.1082300133 . . . , below which
only the running chaotic solution to the right or the left is observed. The direction of
motion depends on the initial value x0. There exist two attractors corresponding to
leftward and rightward motions. These two attractors (bands) collapse and a wider
attractor is simultaneously born at the bifurcation point called band crisis. The
situation is similar to that of the three-band crisis at the right edge of the period-3
window of the bifurcation diagram of the logistic map. Strong correlations of the
local expansion rate (local Lyapunov exponent) in the vicinity of the band crisis
were analyzed previously.12)–14) This time we bring the strong velocity correlations
of diffusive motion into the question. Figures 1 and 2 depict time series of position
xn and velocity vn = xn+1 −xn at a = ac(1+ ε) with ε = 0.00002 just after the band
crisis.
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Fig. 1. Time series of position xn at a = ac(1+

ε) with ε = 0.00002 just after the band cri-

sis.
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Fig. 2. Time series of velocity vn = xn+1 −xn

at a = ac(1+ ε) with ε = 0.00002 just after

the band crisis.

It has already been shown that the distribution of the duration of one-directional
motion of the system is given by an exponential function (2.1),10) so that the statis-
tical properties described in the preceding section are valid for the climbing sine map
just after the band crisis. In Fig. 3, the scaling function of the second moment (2.2)
for ε = 0.02(+), 0.002(×), 0.0002(∗) is plotted against the scaled time t/(2τ), where
τ is the mean duration of one-directional motion. The theory given by (2.3) is also
drawn as a solid line. In Fig. 4, the compensated 2m-th moments 〈r2m〉(tm)/g( t

2τ ) at
moment-order dependent scaled time t = tm = mt are plotted against the compen-
sated second moment 〈r2〉(t1)/g( t

2τ ) for m = 2(+), 3(×), 4(∗) and 5(�). The theory
given by (2.4) is also drawn as lines. Good agreement is observed in both Figs. 3
and 4.
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Fig. 3. The scaling function of the second

moment (2.2) for ε = 0.02(+), 0.002(×),

0.0002(∗) is plotted against the scaled time

t/τ , where τ is the mean duration of one-

directional motion. The theory given by

(2.3) is also drawn as solid line.
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Fig. 4. The compensated 2m-th moments

〈r2m〉(tm)/g( t
2τ

) at moment-order depen-

dent scaled time t = tm = mt are plotted

against the compensated second moment

〈r2〉(t1)/g( t
2τ

) for m = 2(+), 3(×), 4(∗)
and 5(˜). The theory given by (2.4) is also

drawn as lines.
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§3. Concluding remarks

A test particle under the influence of deterministic diffusion has strongly cor-
related motion for the time scale which is much shorter than a characteristic time
estimated from the correlation time due to the underlying chaotic dynamics caus-
ing deterministic diffusion. General nonhyperbolic dynamical systems found in the
realistic world have rich structures of bifurcations. The bifurcation diagram of the lo-
gistic map illustrates this situation most clearly. In the vicinity of bifurcation points,
the above characteristic time becomes so long that it is important to analyze the uni-
versal properties of strongly correlated motion and the decay process of correlation
in deterministic diffusion. Based on this idea, the scaling properties of higher order
moments were derived for the simple system describing crossover between ballistic
motion and normal diffusion. Numerical simulations using the climbing sine map in
the vicinity of the band crisis agree with our theory very well.
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