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A directed network such as the WWW can be represented by a transition matrix. Com-
paring this matrix to a Frobenius-Perron matrix of a chaotic piecewise-linear one-dimensional
map whose domain can be divided into Markov subintervals, we are able to relate the net-
work structure itself to chaotic dynamics. Just like various large-deviation properties of local
expansion rates (finite-time Lyapunov exponents) related to chaotic dynamics, we can also
discuss those properties of network structure. Recurrence time statistics and their relation-
ships to double time correlation functions and to power spectra are also considered.

§1. Introduction

One of the most remarkable points about deterministic chaos is the duality con-
sisting of irregular dynamics and fractal structure of the attractor in the phase space.
Amplifying this relation between dynamics and geometry, we will try to construct
dynamics corresponding to a directed network structure such as the WWW. A di-
rected network or graph can be represented by a transition matrix. On the other
hand, temporal evolution of a chaotic piecewise-linear one-dimensional map with
Markov partition can be governed by a Frobenius-Perron matrix. Both transition
matrices and Frobenius-Perron matrices belong to a class of transition matrices shar-
ing the same mathematical properties. The maximum eigenvalue is equal to unity.
The corresponding eigenvector is always a real vector, and evaluates the probabil-
ity density of visiting a subinterval of the map or a site of the network, which is
commercially valuable information in the field of the WWW.Y) Relating these two
matrices to each other, we are able to represent the structure of the directed network
as a dynamical system. Once we relate the directed network to chaotic dynamics,
several approaches to deterministic chaos can be also applied to graph theory.

In chaotic dynamical systems, the local expansion rates which evaluate an or-
bital instability fluctuate largely in time, reflecting a complex structure in the phase
space. Its average is called the Lyapunov exponent, whose positive sign is a practi-
cal criterion of chaos. There exist numerous investigations based on large-deviation
statistics in which one considers distributions of coarse-grained expansion rates
(finite-time Lyapunov exponent) in order to extract large deviations caused by non-
hyperbolicities or long correlations in the vicinity of bifurcation points.2)

In general, statistical structure functions consisting of weighted averages, vari-
ances, and these partition functions as well as fluctuation spectra of coarse-grained
dynamic variables can be obtained by processing the time series numerically. In the
case of the piecewise-linear map with Markov partition, we can obtain these struc-
ture functions analytically. This is one of the reasons why we correspond a directed
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network to a piecewise-linear map. We herein try to apply an approach based on
large-deviation statistics in the research field of chaotic dynamical systems to net-
work analyses. What is the Lyapunov exponent of the network? What becomes of
fluctuations of the network Lyapunov exponent or other coarse-grained variables?

In §2, a one-dimensional piecewise-linear map corresponding to directed network
is derived. In §3, large-deviation statistics of temporal fluctuation are reviewed.
Based on these statistics, statistical structure functions and generalized spectral
densities of directed network are obtained in §4. In §5, recurrence statistics are
discussed. The final section is devoted to concluding remarks.

§2. One-dimensional map corresponding to directed network

We will consider the very simple example shown in Fig. 1. There exist two kinds
of loops. One is a loop between node 1 and 2, the other a loop or a triangle 1, 3,
2. Let us define this adjacency matrix A, where Aj; is equal to unity if the node
i is linked to j. If not, Aj; is equal to zero. Transition matrix H can be derived
straightforwardly from the adjacency matrix. The element H;; is equal to A;; divided
by the number of nonzero elements of column j. The transition matrix of the simple
triangular graph mentioned before is explicitly given by the 3 by 3 matrix as

0 1 0
H=1|1/2 0 1]. (2:1)
1/2 0 0

The maximum eigenvalue is always equal to unity. The corresponding eigenvector
measures site importance in the context of the web network, which is commercially
used as mentioned earlier.

In the case of chaotic dynamics caused by a one-dimensional map f, the trajec-
tory is given by iteration. Its distribution at time n, p,(x), is given by the average
of this delta function (d(x, — x)), where (---) denotes the average with respect to
initial points zg. The temporal evolution of p is given by the following relation
Pnt1(z) = fol d(f(y) —x)pn(y) dy = Hpp(x). This operator H, called the Frobenius-
Perron operator, is explicitly given as

v G;) .
HE@ = 2 Ty) 22

where the sum is taken over all solutions y;(z) satisfying f(y;) = .
In the case of a piecewise-linear map with Markov partition, invariant density is

constant for each interval. Taking these 3 functions as a basis, we can represent the

Frobenius-Perron operator as this 3 by 3 matrix. This is nothing but the transition

matrix of the directed graph consisting of 3 nodes mentioned before. The map f can

be chosen as

fa) = {2x+1/3, (0<z<1/3) 23)

x—1/3, (1/3<z<1)

and is shown in Fig. 2.
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Fig. 2. One-dimensional map corresponding to
the directed network shown in Fig. 1.

Fig. 1. Example.

The Lyapunov exponent of the one-dimensional map is an average of the log-
arithm of the slope of the map with respect to its invariant density. Comparing
the directed network, the map f, the matrix H, we find that the number of arrows
originating from node i is equal to the slope of the interval I;. Thus the Lyapunov
exponent of the network is found to be an average of the logarithm of the number
of arrows originating from each node. This exponent quantifies the complexity of
link relations. Degree distribution is often used to characterize link relations. The
network Lyapunov exponent and its fluctuation are also supposed to be useful in
the context of the network. In this way, we can relate the network structure itself
to a chaotic dynamical system, and we try to characterize the network based on an
approach to deterministic chaos, namely large-deviation statistics, in other words,
thermodynamical formalism.

§3. Large-deviation statistics

Let us briefly describe large deviation statistics following the series of studies by

Fujisaka and his coworkers.?»%) Consider a stationary time series u. The average over
time interval 7" is given by this formula, Tr(t) = & tt+T u{s}ds, which distributes

when T is finite. When T' is much larger than the correlation time of u, the distribu-
tion of coarse-grained u is assumed to be an exponential form Pr(u) oc e 57T, Here
we can introduce fluctuation S(u) as S(u) = — limp_.o = log Pr(u). When 7T is com-
parable to the correlation time, correlation cannot be ignored, so non-exponential or
non-extensive statistics will be a problem, but here we do not discuss this point any
further. Let ¢ be a real parameter. We introduce the generating function M, of T’
by this definition: My(T) = (e"7) = [ Pr(u)e? ™ du. We can also here assume
the exponential distribution and introduce characteristic function ¢(q) as ¢(q) =
limy_ 7 log My(T). The Legendre transform holds between fluctuation spectrum
S(u) and characteristic function ¢(q), which is obtained from saddle-point calcula-
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tions. ds(u) =q, ¢(q) = —S(u(qg)) + qu(q). In this transform a derivative d¢/dq
do(q)
dq

. - qTﬂT
= lim ure so we find
T—o0 M, T

that ¢ is a kind of weight index. We can also introduce susceptibility x(q) = dZ—(;)

as a weighted variance. These statistical structure functions S(u), #(q),u(q), x(q)
constitute the framework of statistical thermodynamics of temporal fluctuation,
which characterize the static properties of chaotic dynamics. In order to con-
sider dynamic properties, we can introduce this generalized spectrum density as a
weighted average of conventional spectrum density as I;(w) = limz_, (] fOT [u{t+s}—
u(q)le~sds|2edT¥r) / (T M,(T)). In the same way, the generalized double time cor-
relation function is Cq(t) = limy oo limr oo ((u{t + 7} — u(q)) (u{r} — u(q))e?*r)
/My (T). The relation between the two is given by the Wiener-Khintchine theorem:
Cyt) = [, I(w)e~“Iduw/(2m) and I,(w) = Y52 Cylt)e.

Let us consider the case of a one-dimensional map. Let u[x,] be a unique function
of x, which is governed by the map z,+1 = f(z,). The question is how to obtain
statistical structure functions and generalized spectral densities of u. The answer is
to solve the eigenvalue problems of a generalized Frobenius-Perron operator. As we
mentioned before, the characteristic function ¢(q) is given by the asymptotic form of
the generating function M,(n) in the limit of n — oo corresponding to the temporal

appears, and is a weighted average of ur, u(q) =

coarse-grained quantity @, = + Y 0 u[azﬁm] where we assume an exponential fast
decay of time correlations of u. A generating function can be expressed in terms
of invariant density as My(n) = [ poo(z)exp [q > 520 Lulf (a:)]] dx = [ H}}poo(z)de,
where the generalized Frobenius Perron operator H, is deﬁned and related to the
original one as H,G(z) = H[e™IG(x)] = 3, eqr}m on )| ) for an arbitrary function
G(z) (Ho = H). To obtain the above equation, the follovving relation is repeatedly
used: H{G(x) [¢ 57 ulF@)]| } = (H,G(@)) [0 275 ul @)]].

Let 1/(0) be the maximum eigenvalue of H,. The characteristic function is given
by its logarithm as ¢(q) = log V(go). The weighted average u(q) and the susceptibility
x(q) are given by the first and the second derivatives of ¢(q )

The generalized spectral density is given by I,(w) = [v(g —u(q)][Jq(w)+

Jo(=w) = 1[ulz] — u(@)]h© (x)dr, where J,(w) = 1/ [ (e W/ y > q], 0O (z) and
h(o)(ac) are respectively the left and right eigenfunctions corresponding to the maxi-
mum eigenvalue Véo) of H,. The generalized double time correlation function is given
by Cy(t) = [ v (@) [ula] - u(q)][Hy/vs" ' ulz] - u(q)|h)(@)de.

The normal Frobenius Perron operator H depends on the map f only. The
generalized one H, depends also on a dynamic variable u and determines statistical
structure functions and generalized spectral densities of u. For example, in the case

of local expansion rates u[z] = log|f’(x)| whose average is the Lyapunov exponent,
the generalized operator is explicitly given by

=2 [y If ) \1 3 &1)
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In the case of the triangular network mentioned earlier, three subintervals con-
stitute the Markov partition, such that H, can be represented by a 3 x 3 matrix
as

0 1 0 eu(ln) 0 0
H,=[1/2 0 1 0 el (3-2)
1/2 0 0 0 0 equ(ls)

in the same way as H.

§4. Statistical structure functions and generalized spectral densities
of directed network

Let us analyze the triangular directed network based on the large-deviation
statistics. As a dynamic variable we choose the local expansion rates (the logarithmic
number of arrows originating from each nodes) u(I;) = log(|f'(1;)|), so that we have
u(ly) =log2, u(lz) = 0, u(I3) = 0.

In any choice of a dynamic variable u, right and left eigenvectors corresponding
to eigenvalue 1 of the aforementioned Frobenius-Perron matrix H are determined.
The left eigenvector is given by (1/3,1/3,1/3), where it is so normalized that the
sum of all elements is equal to unity. Note that the element is equal to the width
of the subinterval of the Markov partition. The right eigenvector gives the proba-
bility density to visit each subinterval, and is equal to (6/5,6/5,3/5), where it is so
normalized that the inner product of the right and the left eigenvectors is equal to
unity. The generalized Frobenius-Perron matrix H, can be represented as

0 1 0 e?los2 0 0 10
H,=(1/2 0 1 0  edloel 0 =(2¢t 0 1. 41
1/2 0 0 0 0  edlosl 2¢-1 0 0

The statistical structure functions ¢(q), u(q), x(¢), and S(u) are obtained from
the maximum eigenvalue of H,; and are shown in Figs. 3 — 6. The weighted aver-
age u(q) has two asymptotes. The upper asymptote u(+oo) = (log2 + log1)/2 =
(log 2)/2 and the lower one u(—o0) = (log2+1log1+1log1)/3 = (log2)/3 correspond
to period-2 and period-3 loops, respectively. This can be regarded as a kind of phase
transition from period-2 loop phase to period-3. The mean logarithmic number of
arrows originating from each node is given by u(0), which is also obtained from
the right eigenvalue (the probability density) corresponding to the eigenvalue 1 of
H = Hj as % X g xlog2—|—% X g x log1l + % X % x logl = %logz The average
number of arrows originating from each node corresponds to exp(u(0)). Its value
is equal to 22/5 ~ 1.3, which lies between 1 and 2 as expected. Period 2 and 3
trajectories are (0,0) — (0,1/340) — (1/340,1/340) — (1/340,0) — (0,0) and
(1/3-0,1/3—-0) — (1/3—-0,1) — (1,1) — (2/3,1) — (2/3,2/3) — (2/3,1/3—0) —
(1/3—-10,1/3 —0), where f(1/3—-0) =1 and f(1/3 4 0) = 0. One can trace these
trajectories along the grid lines shown in Fig. 2.

The fluctuation spectrum S(u) (the line in Fig. 6) can be defined between two
values given by the asymptotes of the weighted average 0.23 ~ (log2)/3 < u <
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Fig. 3. Characteristic function ¢(q). Fig. 4. Weighted average u(q).
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Fig. 5. Weighted variance x(q). Fig. 6. Fluctuation spectrum S(u) (line) and
parabola indicating the central limit theo-
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Fig. 7. Generalized spectral density I4(w) (¢ = —5,0,5).

(log2)/2 ~ 0.35. Expanding the spectrum around the average up to the quadratic
term, we have a parabola (the symbols in Fig. 6) indicating the central limit theorem.
Large deviation statistics obviously do not coincide with the central limit theorem.
The generalized spectral densities I,(w) for ¢ = —5,0,5 are shown in Fig. 7. As
q goes to 400, the density has a sharp peak at w = m, which corresponds to the
period-2 loop. In the same way, As ¢ goes to —oo, the density has a sharp peak
at w = 27 /3, which corresponds to the period-3 loop. There is nothing remarkable
about the normal spectral density Ip(w).
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§5. Recurrence time statistics

One of the other choices of a dynamic variable is u(I;) = d;;, which implies that
the variable is equal to unity if the specific node [ is visited. If not, it is zero. In this
case, the recurrence time to visit a specific interval or node is the time span between
the succeeding times at which u = 1 is satisfied.

Let 9;(t) be the probability density function of the recurrence time of the node
[. For nodes 1 and 2, only two and three time steps are allowed, so that we have
P1(t) = 2(t) = (d2¢ + d3+)/2. For node 3, three or a larger odd number of steps are
allowed, which is caused by the bouncing motion between nodes 1 and 2, so that we
have 3(t) = (1/2)¢1/2 (+ = 3,5,7,---) and 3(t) = 0 (t = 0,1,2,4,6,---). The
conventional double time correlation time C’él)( t) for the dynamic variable u(1l;) = d;
can be expressed in terms of () as C’O (1) = ¥u(1), C (2) = Y(2) + Y (1)? =

() + P V1), - -,

) =30 (m — k)i(k) + Gmo, (51)
k=0
where the correlation function is normalized in such a way that C'(()l)(()) = 1is

satisfied.®) It can be straightforwardly shown that C(l)( t) = 0(2)(15) = C’ég)(t)
(1/2)’5/2 cos(3mt/4). Tt can be shown that C’( (m) =31 C (m — k)i(k) +
Om o, C’( (m)=>,C 2)(m — k)ya(k) + 0mo. For even m, we have Yoo C’(()S)(m —

k)s(k) + 6mo = CSP(m). For odd m, Y70, C (m — k)s(k) + mo = C(m) +
1/ V2. In this case, the convolution relation for a fixed time m does not exactly hold,
since recurrence times longer than m always exist.

In the long time limit, we can pass on to continuous time. The Laplace transform
of the convolution relation yields

Co(s) = ———— (5-2)
with f(s) = [°dt f(t)e™*!, so that we have

~ Coliw) + Co(—iw) 1 1 1 '
folw) = T2 (1 ") 1o @(-m)) - 63

If the recurrence time distribution is given by a power law, the correlation decay
also obeys a power law. The relationship between the two power-law indices is
obtained from the above formula. Such a power law will be observed in more complex
networks such as a scale-free network. Furthermore, the average recurrence time
t = foootw(t) dt can be alternatively used as a measure of dynamically observed
network size instead of average path length which is geometrically defined.
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§6. Concluding remarks

We introduced a way of relating a directed network to chaotic dynamics. Relat-
ing the directed network to a chaotic dynamical system, and applying the formalism
of statistical thermodynamics to it, we can extract important loops individually and
elucidate the fluctuations of arrows originating from each node.

The reason why the author insists on deterministic chaos is that chaos has a
rigid skeleton of unstable periodic orbits and it determines the distribution of the
coarse-grained variables concerned. Stochastic processes such as random walk or
Brownian motion have no skeleton of unstable periodic orbits. In the preceding
section, we discussed the recurrence time, which is nothing but one of the periods of
the unstable periodic orbits. The author will try to express large deviation statistics
of directed networks in terms of these periodic orbits in the future.

In the case of chaotic dynamics, ¢ of thermodynamical formalism is merely a
weight index to process time series. This index g can be used to control traffic in
the context of the web network.

Here we illustrated an idea which relates a directed network to chaotic dynamics
using a very simple example consisting of three nodes. What becomes of more com-
plicated networks? Dynamics corresponding to the small world are thought to need
relatively short periodic orbits only. For a scale-free network, longer periodic orbits
will take an important role, strongly correlated dynamics will appear, and recurrence
time statistics will have interesting properties. Investigation in this direction is a fu-
ture problem. Furthermore, random matrix theory of conventional and generalized
transition matrices must play an important role.
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