<table>
<thead>
<tr>
<th>Title</th>
<th>On Commutative Semigroup Rings (Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matsuda, Ryuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1366: 153-164</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25372</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On Commutative Semigroup Rings

松田 隆輝 (Ryūki Matsuda)
茨城大学理学部 (Faculty of Science, Ibaraki University)

I am now making a book on commutative semigroup rings. It will appear before long. This is an introduction to the book.

Thus let G be an abelian additive group which is torsion-free. A subsemigroup S of G which contains 0 is called a grading monoid (or a g-monoid). Let R be a commutative ring, and let $R[X;S] = \{ \sum_{finite} a_i X^{s_i} \mid a_i \in R, s_i \in S \}$ be the semigroup ring of S over R. Let Π be a ring-theoretical property. We will determine conditions for $R[X;S]$ to have property Π. For the present, within my knowledge and within my interest, there are 71 Theorems and 38 Propositions on $R[X;S]$ by a number of authors. We confer a number of references. The following is a part of them:

REFERENCES

This is an abstract and the details will appear elsewhere.
Now we will note some theorems on commutative semigroup rings. Let G be a non-zero torsion-free abelian additive group, S be a non-zero grading monoid, R be a commutative ring, and D be an integral domain. Let $q(S) = \{a - b \mid a, b \in S\}$. Then it is called the quotient group of
Let $\alpha \in \mathbb{q}(S)$. If $n\alpha \in S$ for some positive integer n, then α is called integral over S. If each integral element of $\mathbb{q}(S)$ belongs to S, then S is called integrally closed.

Theorem 1 The followings are equivalent.
(1) $D[X;S]$ is integrally closed.
(2) D is integrally closed, and S is integrally closed.

Let $\alpha \in \mathbb{q}(S)$. Then α is called almost integral over S, if there exists $s \in S$ such that $s + n\alpha \in S$ for each positive integer n. If each almost integral element belongs to S, then S is called completely integrally closed.

Theorem 2 The followings are equivalent.
(1) $D[X;S]$ is completely integrally closed.
(2) D is completely integrally closed, and S is completely integrally closed.

A non-zero divisor of R is also called a regular element. An ideal of R which contains regular elements is called a regular ideal.

The total quotient ring of R is denoted by $\mathbb{q}(R)$.

If each finitely generated regular ideal of R is invertible, then R is called a Prüfer ring.

If each finitely generated ideal of R is principal, then R is called a Bezout ring.

If, for each $a \in R$, there exists $b \in R$ such that $a = a^2b$, then R is called a von Neumann regular ring.

Theorem 3 Let \mathbb{Q}_0 be the non-negative rational numbers. The followings are equivalent.
(1) $R[X;S]$ is a Prüfer ring.
(2) R is a von Neumann regular ring, and S is isomorphic onto either a subgroup of \mathbb{Q} or a subsemigroup S' of \mathbb{Q}_0 such that $\mathbb{q}(S') \cap \mathbb{Q}_0 = S'$.
(3) $R[X;S]$ is a Bezout ring.
If \(G \) satisfies ascending chain condition on cyclic subgroups, then \(G \) is said to satisfy ACCC.

Theorem 4 Let \(G = q(S) \). The followings are equivalent.
(1) \(D[X; S] \) is a unique factorization ring.
(2) \(D \) is a unique factorization ring, \(S \) is a unique factorization semigroup, and \(G \) satisfies ACCC.

If \(R \) satisfies ascending chain condition on regular ideals, then \(R \) is called an \(r \)-Noetherian ring.

Theorem 5 The followings are equivalent.
(1) \(R[X; S] \) is a Noetherian ring.
(2) \(R[X; S] \) is an \(r \)-Noetherian ring.
(3) \(R \) is a Noetherian ring, and \(S \) is a finitely generated \(g \)-monoid.

Let \(I \) be a non-empty subset of \(q(R) \). We set \(I^{-1} = \{ x \in q(R) \mid xI \subset R \} \). We set \(I^v = (I^{-1})^{-1} \).

Let \(I \) be a fractional ideal of \(R \). If \(I^v = I \), then \(I \) is called divisorial.
If each divisorial ideal of \(D \) is principal, then \(D \) is called a pseudo-principal ring.
If each divisorial ideal of \(S \) is principal, then \(S \) is called a pseudo-principal semigroup.

Theorem 6 Let \(G = q(S) \). The followings are equivalent.
(1) \(D[X; S] \) is a pseudo-principal ring.
(2) \(D \) is a pseudo-principal ring, \(S \) is a pseudo-principal semigroup, and \(G \) satisfies ACCC.

Let \(I \) be an ideal of \(R \) such that \(I^{k+1} = 0 \) for some positive integer \(k \). We set \(d(I^i/I^{i+1}) = \min \{|X| \mid X \text{ is a set of generators of the } R \text{-module } I^i/I^{i+1}\} \) for each \(i \) (\(d(0) = 0 \)). We set \(\nu(I) = d(I/I^2) + \cdots + d(I^{k-1}/I^k) + d(I^k) \).
If each finitely generated ideal of R is generated by n-elements, then R is said to have n-generator property.

Let S be a finitely generated subsemigroup of Q_0, and let $q(S) = Zr$ $(r \in Q_0)$. Then $\min \{(1/r)S - \{0\}\}$ is called the order of S, and is denoted by $o(S)$.

Theorem 7 Let N be the nil radical of R. The followings are equivalent.

(1) $R[X;S]$ has the n-generator property.
(2) One of the followings holds.

(i) S is isomorphic onto a subgroup of Q, and $\dim (R) = 0$. If I is a finitely generated ideal contained in N, there exists a decomposition $R = Re_1 \oplus \cdots \oplus Re_h$ such that $\nu(Ie_j) < n$ for each j.

(ii) S is isomorphic onto a subsemigroup of Q_0, $o(S) < \infty$, and $\dim (R) = 0$. If I is a finitely generated ideal contained in N, there exists a decomposition $R = Re_1 \oplus \cdots \oplus Re_h$ such that $(\nu(Ie_j) + 1)o(S) \leq n$ for each j.

Theorem 8 The followings are equivalent.

(1) $R[X;S]$ has $n(1/2)$-generator property.
(2) $R[X;S]$ has n-generator property.
(3) $R[X;S]$ has $r-n(1/2)$-generator property.
(4) $R[X;S]$ has $r-n$-generator property.

If each finitely generated regular ideal is generated by n-elements, then R is said to have $r-n$-generator property.

If, for each regular non-unit a of R, $R/(a)$ has n-generator property, then R is said to have $r-n(1/2)$-generator property.

If, for each non-zero and non-unit a of R, $R/(a)$ has n-generator property, then R is said to have $n(1/2)$-generator property.

If each ideal of R is generated by n-elements, then R is said to have rank n.
Theorem 9 Let \mathbb{Z}_0 be the non-negative integers. The followings are equivalent.

(1) $R[X;S]$ has rank n.

(2) One of the followings holds.

(i) S is isomorphic onto \mathbb{Z}, and there exists a decomposition $R = R_1 \oplus \cdots \oplus R_h$ which satisfies the following condition: If N_i is the nil radical of R_i, then $v(N_i) < n$, and R_i is a Noetherian local ring with maximal ideal N_i for each i.

(ii) S is isomorphic onto a subsemigroup of \mathbb{Z}_0, and there exists a decomposition $R = R_1 \oplus \cdots \oplus R_h$ which satisfies the following condition: If N_i is the nil radical of R_i, then $(\nu(N_i) + 1)\sigma(S) \leq n$, and R_i is a Noetherian local ring with maximal ideal N_i for each i.

Let K be a commutative ring with $K = q(K)$, and let Γ be a totally ordered abelian additive group. A mapping v of K onto $\Gamma \cup \{\infty\}$ is called a valuation on K if $v(x + y) \geq \inf (v(x), v(y))$, and $v(xy) = v(x) + v(y)$ for all $x, y \in K$. The subring $V = \{x \in K \mid v(x) \geq 0\}$ of K is called a valuation ring on K. t.f.r. (Γ) is called the rank of v (or of V), where t.f.r. $(\Gamma) = \max \{|X| \mid X \text{ is a subset of } \Gamma \text{ which is linearly independent over } \mathbb{Z}\}$.

If there exists a family $\{V_\lambda \mid \Lambda\}$ of valuation rings on $q(R)$ which satisfies the following conditions, then R is called a Krull ring: $R = \cap_\lambda V_\lambda$, each V_λ is rank 1 and discrete, and each regular element of R is a unit of V_λ for almost all λ.

Let Γ be a totally ordered abelian additive group. A mapping v of G onto Γ is called a valuation on G, if $v(x + y) = v(x) + v(y)$ for all $x, y \in G$. The subsemigroup $V = \{x \in G \mid v(x) \geq 0\}$ of G is called a valuation semigroup on G. t.f.r. (Γ) is called the rank of v (or of V).

Theorem 10 Let $G = q(S)$. The followings are equivalent.

(1) $D[X;S]$ is a Krull ring.

(2) D is a Krull ring, S is a Krull semigroup, and G satisfies ACCC.

Let L be an abelian additive group, and let p be a prime number. The
Theorem 11 Let H be the unit group of S, and let F be a free subgroup of H such that H/F is torsion. Let Ω be the set of prime numbers p such that pl_R is a non-unit of R. The followings are equivalent.

(1) $R[X;S]$ is a locally Noetherian ring.

(2) t.f.r. $(H) < \infty$, R is locally Noetherian, S is of the form $H + \mathbb{Z}_0s_1 + \cdots + \mathbb{Z}_0s_n$, and the p-primary component of H/F is finite for each $p \in \Omega$.

Theorem 12 Assume that $D[X;S]$ is a Krull ring. Then $\mathcal{C}(D[X;S]) \cong \mathcal{C}(D) \oplus \mathcal{C}(S)$, where $\mathcal{C}()$ denotes the divisor class group.

R is called a v-ring, if it satisfies the following condition: If I, J_1, J_2 are finitely generated ideals of R with I regular, and $(IJ_1)^v \subset (IJ_2)^v$, then $J_1^v \subset J_2^v$.

We may naturally define v-semigroup.

Theorem 13 The followings are equivalent.

(1) $D[X;S]$ is a v-ring.

(2) D is a v-ring, and S is a v-semigroup.

Theorem 14 Assume that D is integrally closed, and S is integrally closed. The followings are equivalent.

(1) For each finite number of finitely generated non-zero ideals I_1, \cdots, I_n of $D[X;S]$, we have $(I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v$.

(2) For each finite number of finitely generated non-zero ideals I_1, \cdots, I_n of D, we have $(I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v$, and for each finite number of finitely generated ideals I_1, \cdots, I_m of S, we have $(I_1 \cap \cdots \cap I_m)^v = I_1^v \cap \cdots \cap I_m^v$.

(3) $D[X;S]$ is a v-ring.
If, for each finitely generated regular ideal \(I \) of \(R \), there exists a finitely generated regular fractional ideal \(J \) such that \((IJ)^v = R\), then \(R \) is called a Prüfer \(v \)-multiplication ring.

Theorem 15 The followings are equivalent.
1. \(D[X; S] \) is a Prüfer \(v \)-multiplication ring.
2. \(D \) is a Prüfer \(v \)-multiplication ring, and \(S \) is a Prüfer \(v \)-multiplication semigroup.

Let \(I \) be a non-zero fractional ideal of \(R \). We set \(I^v = \cup \{ J^v \mid J \text{ is a finitely generated fractional ideal contained in } I \} \).

Theorem 16 Assume that \(D \) is integrally closed, and \(S \) is integrally closed. The followings are equivalent.
1. For each finite number of non-zero ideals \(I_1, \cdots, I_n \) of \(D[X; S] \), we have \((I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v \).
2. For each finite number of non-zero ideals \(I_1, \cdots, I_n \) of \(D \), we have \((I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v \), and for each finite number of ideals \(I_1, \cdots, I_m \) of \(S \), we have \((I_1 \cap \cdots \cap I_m)^v = I_1^v \cap \cdots \cap I_m^v \).
3. \(D[X; S] \) is a Prüfer \(v \)-multiplication ring.

If \(R \) satisfies the following condition, then \(R \) is called a root closed ring: If \(x \in q(R) \) and \(x^n \in R \) for some positive integer \(n \), then \(x \in R \).

Theorem 17 The followings are equivalent.
1. \(D[X; S] \) is a root closed ring.
2. \(D \) is a root closed ring, and \(S \) is an integrally closed semigroup.

If \(R \) satisfies the following condition, then \(R \) is called a seminormal ring: If \(x \in q(R) \) and \(x^2, x^3 \in R \), then \(x \in R \).

If \(S \) satisfies the following condition, then \(S \) is called a seminormal semigroup: If \(x \in q(S) \) and \(2x, 3x \in S \), then \(s \in S \).
Theorem 18 The followings are equivalent.
(1) $D[X;S]$ is seminormal.
(2) D is seminormal, and S is seminormal.

R is called a u-closed ring, if it satisfies the following condition: If $x \in q(R)$, and $x^2 - x \in R$, $x^3 - x^2 \in R$, then $x \in R$.

Theorem 19 If D is u-closed, then $D[X;S]$ is u-closed.

An ideal of R (resp. S) is also called an integral ideal.

If D satisfies the ascending chain condition on divisorial integral ideals of D, then D is called a Mori-ring.

If D is a Mori-ring, and if, for all $a, b \in D - \{0\}$, the ideal (a, b) is divisorial, then D is called an M-ring.

We may naturally define Mori-semigroup and M-semigroup.

Theorem 20 The followings are equivalent.
(1) $D[X;S]$ is an M-ring.
(2) D is a field, and S is isomorphic onto an M-subsemigroup of Z.

Let $F(R)$ be the set of non-zero fractinal ideals of R. A mapping $*$ of $F(R)$ to $F(R)$ is called a star operation on R, if, for regular $a \in q(R)$ and $I, J \in F(R)$,

(a) $^* = (a)$.
(b) $(aI)^* = aI^*$.
(c) $I \subset I^*$.
(d) If $I \subset J$, then $I^* \subset J^*$.
(e) $(I^*)^* = I^*$.

The mapping $I \mapsto I^* = (I^{-1})^{-1}$ is a star operation called v-operation.

Assume that R is integrally closed, and let $\{V_\Lambda \mid \Lambda \}$ be the set of valuation overrings of R. The mapping $I \mapsto I^b = \cap_\Lambda IV_\Lambda$ is a star operation called b-operation.

A star operation $*$ is called an e.a.b., if it satisfies the following condition: If I, J_1, J_2 are finitely generated non-zero ideals of R with I regular,
and \((IJ_1)^* \subset (IJ_2)^*\), then \(J_1^* \subset J_2^*\).

Let \(F'(R)\) be the set of non-zero \(R\)-submodules of \(q(R)\). A mapping \(*\) of \(F'(R)\) to \(F'(R)\) is called a semistar operation on \(R\), if it satisfies the following condition: For regular \(a \in q(R)\) and \(I, J \in F'(R)\),
\[(aI)^* = aI^*.
\]

If \(I \subset J\), then \(I^* \subset J^*\).
\[(I^*)^* = I^*.
\]

A semistar operation \(*\) of \(R\) is called e.a.b., if it satisfies the following condition: If \(I, J_1, J_2\) are non-zero finitely generated ideals with \(I\) regular, and \((IJ_1)^* \subset (IJ_2)^*\), then \(J_1^* \subset J_2^*\).

The mapping \(I \mapsto I^*\) of \(F'(R)\) is a semistar operation called \(v\)-operation.

Let \(\{V_\lambda \mid \Lambda\}\) be the set of valuation overrings of \(R\). The mapping \(I \mapsto I^v = \cap_\lambda IV_\lambda\) of \(F'(R)\) is a semistar operation called \(b\)-operation.

If each finitely generated regular ideal is principal, then \(R\) is called an \(r\)-Bezout ring.

Let \(f = \sum a_i X^{s_i}\), where each \(a_i \neq 0\), and \(s_i \neq s_j\) for \(i \neq j\). We set \(\sum R a_i = c(f)\).

If each regular ideal of \(R\) is generated by regular elements, then \(R\) is called a Marot ring. If \(R\) satisfies the following condition, then \(R\) is said to have Property (A): If \(f\) is a regular element of \(R[X]\), then \(c(f)\) is a regular ideal of \(R\).

\(A\) denotes a Marot ring with Property (A).

Theorem 21 Let \(*\) be an e.a.b. star operation on \(A\).

Set \(A_* = \{f/g \in q(A[X; S]) \mid f, g \in A[X; S] - \{0\}, g \text{ is regular, and } c(f)^* \subset c(g)^*\} \cup \{0\}\). Then,
\[(1) A_* \text{ is an overring of } A[X; S], \text{ and } A_* \cap K = A, \text{ where } K = q(A).
\]
\[(2) A_* \text{ is an } r\text{-Bezout ring}.
\]
\[(3) \text{If } I \text{ is a finitely generated regular ideal of } A, \text{ then } IA_* \cap K = I^* \text{ and } IA_* = I^*A_*.
\]

A multiplicative subset \(T\) of \(R\) is called a regular multiplicative subset,
if each element of \(T \) is regular.

Theorem 22 Assume that \(A \) is integrally closed. Let \(T = \{ f \in A[X;S] \mid c(f) = A \} \). The followings are equivalent.

1. \(A \) is a Prüfer ring.
2. \(A[X;S]_T = A_b \).
3. \(A[X;S]_T \) is a Prüfer ring.
4. \(A_b \) is a quotient ring of \(A[X;S] \) with respect to a regular multiplicative subset.
5. Each prime ideal of \(A[X;S]_T \) is the contraction of a prime ideal of \(A_b \).
6. Each regular prime ideal of \(A[X;S]_T \) is the contraction of a prime ideal of \(A_b \).
7. Each regular prime ideal of \(A[X;S]_T \) is the extension of a prime ideal of \(A \).

If each regular ideal is the product of prime ideals, then \(R \) is called a Dedekind ring.

If each regular ideal of \(R \) is principal, then \(R \) is called an r-principal ideal ring.

Theorem 23 Assume that \(A \) is integrally closed. Let \(T = \{ f \in A[X;S] \mid c(f) = A \} \). The followings are equivalent.

1. \(A \) is a Dedekind ring.
2. \(A[X;S]_T \) is a Dedekind ring.
3. \(A_b \) is a Dedekind ring.
4. \(A_b \) is an r-Noetherian ring.
5. \(A_b \) is a Krull ring.
6. \(A_b \) is an r-principal ideal ring.

Let \(* \) be a star operation on \(R \). If, for each finitely generated regular ideal \(I \) of \(R \), there exists a finitely generated regular fractional ideal \(J \) such that \((IJ)^* = R \), then \(R \) is called a Prüfer \(* \)-multiplication ring.

Let \(P \) be a prime ideal of \(R \). Then we set \(R_{[P]} = \{ x \in q(R) \mid sx \in R \} \).
Theorem 24 Let $*$ be an e.a.b. star operation on A. Let $N = \{g \in A[X; S] \mid g \text{ is regular, and } c(g)^* = A\}$. The followings are equivalent.

1. A is a Prüfer $*$-multiplication ring.
2. A_* is a quotient ring of $A[X; S]$ with respect to a regular multiplicative subset.
3. If V is a valuation overring of A_*, there exists a prime ideal P of A which satisfies the following condition: $A_{[P]}$ is a valuation overring of A, and $V = A[X; S]_{[P; A[X; S]]}$.
4. A_* is a flat $A[X; S]$-module.
5. $A[X; S]_N$ is a Prüfer ring.

Let $f = \sum a_i X^{s_i}$, where each $a_i \neq 0$ and $s_i \neq s_j$ for $i \neq j$. We set $e(f) = \cup(S + s_i)$.

Theorem 25 Let $*$ be an e.a.b. star operation on S, $G = q(S)$, and let K be a field. We set $S_* = \{f/g \mid f, g \in K[X; S] - \{0\}, e(f)^* \subset e(g)^*\} \cup \{0\}$.

1. S_* is an overring of $K[X; S]$, and $S_* \cap G = S$.
2. S_* is a Bezout ring.
3. If I is a finitely generated ideal of S, then $(IS_*) \cap G = I^*$, and $IS_* = I^* S_*$.

For an e.a.b. semiatar operation $*$ on A (or on S), we may naturally define Kronecker function ring A_* (or S_*). Moreover, we may show the similar results to those for star operations.