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Abstract

We study the behaviour of a sequence of biased random walks (X(i))i≥0 on a se-
quence of random graphs, where the initial graph is Zd and otherwise the graph for the
ith walk is the trace of the (i − 1)st walk. The sequence of bias vectors is chosen so
that each walk is transient. We prove the aforementioned transience and a law of large
numbers, and provide criteria for ballisticity and sub-ballisticity. We give examples
of sequences of biases for which each (X(i))i≥1 is (transient but) not ballistic, and the
limiting graph is an infinite simple (self-avoiding) path. We also give examples for
which each (X(i))i≥1 is ballistic, but the limiting graph is not a simple path.
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1 Introduction

The study of stochastic processes in disordered media is an important aspect of modern
probability. Models in this area for which extensive research has been conducted include
the classical model of random walk in random environment, as well as random walks
on random graphs, such as Galton-Watson trees and percolation clusters. Typical
properties that one is interested in include: (i) recurrence/transience; (ii) laws of large
numbers (i.e. the existence of a deterministic limiting velocity); (iii) conditions for
ballisticity/sub-ballisticity; (iv) regularity (i.e. continuity, monotonicity or lack thereof)
of attributes (e.g. the velocity) in terms of some underlying parameter; and (v) scaling
limits.

In this paper, we tackle some of these issues for sequences of biased random walks
(X(i))i≥0 on random graphs, where the initial graph is Z(0) = Z

d and otherwise the
graph Z(i) for the ith walk is the trace of the (i−1)st walk (see Figure 1). The sequence
of biases is chosen so that each walk is transient – somewhat remarkably, this does not
mean that we necessarily require the underlying drift of the ith walk to be oriented
in the direction of the initial walk, see Remark 2.3 for an elaboration of this point.
By regeneration arguments, which require some care to take into account the multiple
processes, we demonstrate the existence of deterministic limiting speeds, see Theorem
1 below for a precise statement of these results. Regarding the issue of ballisticity, we
note that the initial walk X(0), which has non-trivial bias in the direction e1, creates
traps for subsequent walks. Moreover, except in trivial settings, the walk X(i) does not
visit every site of Z(i), so its trace Z(i+1) is a strict subset of Z(i), meaning that the
walk X(i) may delete some traps and create new ones. We will show that the effect of
trapping can lead to zero speeds, and in particular establish a sharp phase transition
for whether the walk X(i) is ballistic or sub-ballistic, see Theorem 2 below. Finally, we
exhibit conditions depending on the sequence of biases that ensure the limiting graph
is or is not an infinite simple path, see Theorem 3. In certain cases (such as when the
sequence of biases is constant) the law of this limit may be of independent interest.

Before introducing our model and results, let us briefly relate our work to other
studies in which trapping has been observed for biased random walk on random graphs.
As early as the 1980s, physicists observed that such a phenomenon might be relevant
when the random graphs are percolation clusters, empirically demonstrating the non-
monotonicity of the speed, and sub-ballisticity in the strong bias regime [3]. Mathe-
matically, a phase transition between ballisticity and sub-ballisticity was first shown
rigorously for the simpler model of random walk on supercritical Galton-Watson trees
[15] (see also [5, 7, 9] for recent work concerning more detailed properties of such pro-
cesses), and has since been confirmed to hold in the percolation setting [6, 14, 20]. A
relatively up-to-date survey of these developments is given in [4]. Qualitatively, our
results match those established for Galton-Watson trees and percolation clusters, and,
although we do not confirm it rigorously, we also observe empirically non-monotonic
behaviour for the speed that is similar to the behaviour expected for these other mod-
els. Moreover, whilst our graphs are more complex than trees, in the sense there is
not a unique shortest path between vertices and the traps are less obviously defined,
the model is still more tractable than the percolation case. As a result, we are able to
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Figure 1: A simulation of a small finite piece of the walks X (0), X (1), X (2) (shaded
thinnest/lightest to thickest/darkest), in 2 dimensions with common biases p(i)(e1) = 3/9,
and p(i)(e) = 2/9 for e 6= e1.

give a more concrete expression for the critical point that separates the ballistic and
sub-ballistic phase, which we are even able to evaluate explicitly in examples. Finally,
we note that, in another related work, biased random walk on an unbiased random
walk has been shown to exhibit localisation on a logarithmic scale [8].

1.1 The model

Let (p(i))i∈Z+∪{∞} be a sequence of probability distributions on the standard basis

vectors {±ej : j ∈ [d]} in Z
d, where [d] := {1, 2, . . . , d} and d ≥ 2. Given such a

probability distribution p, and a connected subgraph Z of Zd that contains the origin
0 ∈ Zd, we define a p-random walk X = (Xn)n∈Z+ on Z to be the discrete-time Markov
chain starting at 0 with transition probabilities

PZ(Xn+1 = x+ e|Xn = x) =

{

p(e)
∑

e′:(x,x+e′)∈Z
p(e′) , if (x, x+ e) ∈ Z,

0, otherwise.

Let Z(0) = Z
d, and let X(0) be a p

(0)-random walk on Z(0), i.e. a simple random
walk on Z

d with step distribution p
(0). Given a walk X(i) taking values in Z

d, we let
Z(i+1) = (V (i+1), E (i+1)) be the connected graph with vertex set

V (i+1) =
{

X(i)
n : n ∈ Z+

}

,

and (undirected) edge set

E (i+1) =
{

(X(i)
n ,X(i)

n+1) : n ∈ Z+

}

.

If p(0) is biased (p(0)(e) 6= p(0)(−e) for some e) and non-trivial (p(0)(e) 6= 1 for any e),
then the walk X(0) is transient (in fact ballistic) and the graph Z(1) is random.

The above procedure can now be iterated, leading to a sequence of walks (X(i))i∈Z+

(with X(i) being a p
(i)-random walk on Z(i) for each i) that are conditionally indepen-

dent given the graphs Z(i) (that is, given Z(i), X(i) is conditionally independent of X(j)
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for j < i). The sequence of graphs is decreasing (Z(i+1) ⊆ Z(i) for each i), and as such
we can define

Z(∞) :=
⋂

i∈Z+

Z(0).

We denote by X(∞) a p
(∞)-random walk on Z(∞). We will suppose the sequence of

walks (X(i))i∈Z+∪{∞} is defined on a probability space (Ω,F ,P).

Let δ(i)

j = p(i)(ej) − p(i)(−ej), and δ(i) = (δ(i)

j )j∈[d]. This vector represents the drift

of a p
(i)-random walk on Z

d. In particular, P-a.s.,

v(0) := lim
n→∞

n−1X(0)
n = δ(0).

Moreover, under the assumption that p(i)(e) > 0 for every e, let ℓ(i) = ℓ̂(i)/‖ℓ̂(i)‖, where
‖ · ‖ denotes the Euclidean norm, and ℓ̂(i) = (ℓ̂(i)j )j∈[d] ∈ R

d is defined by

ℓ̂(i)j = log

(

p(i)(ej)

p(i)(−ej)

)

.

In general, ℓ(i) 6= δ(i)/‖δ(i)‖. However, if δ(i) 6= 0 then

ℓ(i) · δ(i) =
1

‖ℓ̂(i)‖

d
∑

j=1

[log p(i)(ej)− log p(i)(−ej)][p
(i)(ej)− p(i)(−ej)] > 0

since all of the summands are non-negative and at least one is strictly positive.
We henceforth assume the following.

Condition 1. The (p(i))i∈Z+∪{∞} are such that

(a) δ(0)

j ≥ 0 for each j ∈ [d], and δ(0)

1 > 0, and

(b) p(i)(e) > 0 for all e ∈ {±ej : j ∈ [d]}, and

(c) for each i ∈ N ∪ {∞}, δ(0) · ℓ(i) > 0.

We lose no generality in assuming Condition 1(a); it is included solely for the
purpose of fixing a direction of transience for the walk X(0). Condition 1(b) ensures
that the walks always have an available move. Condition 1(c) is the condition required
to ensure that all subsequent walks are also transient. We highlight that it involves the
vector ℓ(i) rather than δ(i) (the importance of this distinction is discussed in Remark
2.3). Note that, given the other two conditions, it is also sharp (see Lemma 2.2).

A further advantage to assuming Condition 1(b) is that it allows us to express the
laws of the processes in terms of conductance networks (see for example [2, 12, 16]).
More precisely, for each i ∈ Z+ ∪ {∞}, let

c(i),j = p(i)(−ej), β(i) = exp{‖ℓ̂(i)‖} ≥ 1.

Then for each x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ Z
d with ‖x− y‖ = 1, define

c(i)(x, y) =





d
∏

j=1

c
|yj−xj |
(i),j



β(x∨y)·ℓ(i)

(i) , (1)
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where x ∨ y = (xj ∨ yj)j∈[d]. The quantity c(i)(x, y) is called the conductance of edge
(x, y) for p(i). Thus ℓ(i) (which is non-zero under Condition 1) describes the direction in
which the conductances grow most rapidly, and β(i) (which is strictly greater than one
under Condition 1) describes the rate of increase. Let c(i)(x) =

∑

y:(x,y)∈E(i) c(i)(x, y),

and, to simplify notation, write P (i) for PZ(i)
. It is straightforward to check that, given

Z(i)

P (i)(X(i)

n+1 = x+ e|X(i)
n = x) =

{

c(i)(x,x+e)

c(i)(x)
, if (x, x+ e) ∈ Z(i),

0, otherwise.

1.2 Main results

We now introduce the main results that were briefly outlined above. Firstly, we estab-
lish directional transience and existence of limiting velocities.

Theorem 1. Assume Condition 1. It then P-a.s. holds that:

(a) for each i ∈ Z+ ∪ {∞}, limn→∞X(i)
n · ℓ → ∞ for every ℓ such that ℓ · δ(0) > 0;

(b) for each i ∈ Z+, there exists a deterministic κ(i) ∈ [0,∞) such that

v(i) := lim
n→∞

n−1X(i)
n = κ(i)δ

(0).

Remark 1.1. Condition 1 is sufficient, but not necessary, to obtain the conclusions of
Theorem 1. Indeed, if d = 2, and, for each i, p(i)(e1) > 0 and p(i)(−e1) = 0 (i.e. −e1
is a forbidden direction), and p(i)(e2), p

(i)(−e2) > 0, then Condition 1(b) is violated but
the conclusions of Theorem 1 are relatively simple to obtain.

There are many natural questions one can ask about κ(i), and we don’t know the
answers to many of them (see Section 1.3 for various open problems). However, our
second main result gives sharp conditions for ballisticity/sub-ballisticity (i.e. whether
or not it is the case that κ(i) > 0). To state this result, we need to introduce some
further notation. Let

ϕ(i)(t) = E
[

exp{−tX(0)

1 · ℓ(i)}
]

. (2)

It is then the case that there is a unique positive solution t(i) to ϕ(i)(t) = 1 (see Lemma
4.1 below), and we set

α(i) = exp{t(i)}. (3)

Theorem 2. Assume Condition 1. Then for each i ∈ N:

(a) If β(i) < α(i), then X(i) is ballistic, i.e. v(i) 6= 0.

(b) If β(i) > α(i), then X(i) is sub-ballistic, i.e. v(i) = 0.

Figure 2 shows simulations of v(1) · e1 for walks on Z
2 where p(0)(e1) = 2/5 and

p(0)(e) = 1/5 otherwise, while p(1)(e1) = r/(r + 3) and p(1)(e) = 1/(r + 3) otherwise,
as a function of r ∈ [1, 2.5]. Theorem 2 shows that v(1) · e1 = 0 when r > 2 in this
case. While non-monotonicity in r is supported by the figure1, the variability between
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Figure 2: Four independent simulations (with their average in bold) of v(1) · e1 (for walks
on Z

2 where p(0)(e1) = 2/5 and p(0)(e) = 1/5 otherwise, and p(1)(e1) = r/(r + 3) and
p(1)(e) = 1/(r + 3) otherwise), as a function of r ∈ [1, 3]. Each point in the graph is
calculated based on the endpoint of a 5× 107-step p(1)-walk (on the trace of a p(0)-walk).

realisations shows that 5× 107-step walks are insufficient to identify a phase transition
by simulation.

As noted above, one interesting feature of our result is that we obtain an explicit
representation for the critical point for our model defined on Z

d. As we will describe
in detail in Sections 4 and 5, the parameter α(i) is related to the decay rate of the
probability the random walk X(0) backtracks a certain distance in direction ℓ(i), an
event which can potentially cause a trap for the ith walk. For further intuition about
the relevance of this parameter, see the discussion prior to the proof of Lemma 5.1, and
the detailed construction of a trap for X(i) within the proof. To illustrate the simplicity
of the condition in Theorem 2, we next present a canonical example, in which it is even
possible to compute the parameters α(i) analytically.

Example 1.2. Suppose that for each i ≥ 0 there exists a ki ∈ [d] and γi > 1 such that

p(i)(e) =
1 + (γi − 1)1{e∈{e1,...,eki}}

2d+ ki(γi − 1)
.

We then have that

δ(i)

j =
γi − 1

2d+ ki(γi − 1)
1{j≤ki}, ℓ̂(i)j = log(γi)1{j≤ki},

and the conductances are given by (1) with

c(i),j = 1, log β(i) =
√

ki log γi.

In this case, it is straightforward to check that Condition 1 holds, and deduce that

v(0) := lim
n→∞

X(0)
n

n
= δ(0) =

γ0 − 1

2d+ k0(γ0 − 1)
(e1 + e2 + · · ·+ ek0).

1We conjecture that in this example the speed in direction e1 is continuous in r, strictly increasing in
r ∈ [1, r∗] and strictly decreasing in r ∈ [r∗, 2] for some r∗ ∈ (1, 2).
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We moreover observe that the value of α(i) can be computed explicitly, thus yield-
ing completely transparent criteria for ballisticity/sub-ballisticity. Indeed, the equation
ϕ(i)(t) = 1 can be rewritten

kie
t/
√
ki + e−t/

√
ki (ki + (k0 ∧ ki)(γ0 − 1)) + 2 (d− (k0 ∨ ki)) + ((k0 ∨ ki)− ki) (γ0 + 1)

= 2d+ k0(γ0 − 1).

Multiplying up by et/
√
ki , gives a quadratic in et/

√
ki , which is readily solved to give that

log α(i) = t(i) =
√

ki log

(

1 +
ki ∧ k0

ki
(γ0 − 1)

)

.

(The other root of the quadratic is obtained by setting t = 0.) Thus, the ith walk is
ballistic if

ki(γi − 1) < (ki ∧ k0)(γ0 − 1), (4)

and sub-ballistic if the reverse (strict) inequality is true. In particular, if ki ≤ k0, then
the condition (4) simplifies further to γi < γ0.

Thus far our results have depended only on relations between p
(i) and p

(0) for
individual i. Our final main result concerns the limiting graph Z(∞), and depends on
the entire sequence (p(i))i∈Z+ .

Theorem 3. Assume Condition 1.

(a) If there exists some p
(i) such that p(i′) = p

(i) for infinitely many i′, then Z(∞) is
almost-surely a simple path.

(b) If for some e 6= e1, and all c ∈ (0,∞),

∞
∑

i=1

c(i)(0, e1)

c(i)(0, e)
min

{

1, (βcδ(0) ·ℓ(i)
(i) − 1)βc

(i)

}

< ∞,

then P(Z(∞) is not simple) > 0.

The following is an example of a sequence for which all but finitely many X(i)

are ballistic in direction e1, but Z(∞) is almost-surely not a simple path. Note that
the random walks become increasingly symmetric as i → ∞, and as a result spend
increasingly long times in finite sections of the graph.

Example 1.3. Let d = 2, and p
(0) be chosen so that δ(0) = 1

2e1. Set

p(i)(e1) =
1

4
+ εi, p(i)(−e1) =

1

4
− εi, p(i)(e2) = p(i)(−e2) =

1

4
,

where εi ∈ (0, 14) for each i, and
∑∞

i=1 εi < ∞. Observe that ℓ(i) = e1 (for each i) since

ℓ̂(i) = (log((1 + 4εi)/(1 − 4εi)), 0) ,

so α(i) = α > 1. Moreover, β(i) = (1 + 4εi)/(1− 4εi) → 1, so Theorem 2(a) applies for
all but finitely many i. With e = e2, the summand in Theorem 3(b) is equal to

4

(

1

4
+ εi

)

(

(

1 + 4εi
1− 4εi

)c/2

− 1

)

(

1 + 4εi
1− 4εi

)c

,

which is asymptotic to 4cεi as i → ∞, and hence Theorem 3(b) applies.
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In our second example, we illustrate an alternative way in which it might transpire
that Z(∞) is not simple. In particular, this is when we have an increasingly large drift
into traps.

Example 1.4. Let d = 2, and p
(0) be chosen so that δ(0) = 1

2e1. Set

p(i)(e1) =
1

2
εi, p(i)(−e1) =

1

4
εi, p(i)(−e2) =

1

4
εi, p(i)(e2) = 1− εi,

where εi ∈ (0, 1) for each i, and
∑∞

i=1 εi < ∞. Here, ℓ(i) → e2, β(i) → ∞ and
α(i) → α ≥ 1 as i → ∞, but ℓ(i) · δ(0) > 0 for each i. Thus, all walks are transient
and all but finitely many are sub-ballistic. We then have that, again with e = e2, the
summand in Theorem 3(b) is bounded above by

εi
2(1− εi)

,

which is summable.

1.3 Open problems

We now collect some open problems that arise from the present work.

Open Problem 1. The regeneration techniques we apply to deduce the existence of
velocities in Theorem 1 do not immediately extend to the i = ∞ case. Prove the
existence of a deterministic velocity in this case.

Open Problem 2. Theorem 2 gives a phase transition for ballisticity, but it does not
resolve the behaviour of the walk at the phase transition. If we assume Condition 1,
then is it the case that X(i) is sub-ballistic when β(i) = α(i)?

Open Problem 3. As has been studied for Galton-Watson trees and percolation clus-
ters, it is natural to consider the scaling limit of the walk X(i). In particular, we would
expect that the asymptotic behaviour of the process is determined by the parameter
γ(i) := min{2, α(i)/β(i)}. In particular, if γ(i) > 2, then we would expect to see a central
limit theorem for X(i) · δ(0) around its mean behaviour. For γ(i) ∈ (1, 2), then we would
expect to see fluctuations related to a γ(i)-stable distribution around the mean, and for
γ(i) ∈ (0, 1) we would expect that X(i) · δ(0) behaves like the inverse of a γ(i)-stable sub-
ordinator. Moreover, in the latter cases, due to a lattice effect that is also seen in
other models, it might be anticipated that the relevant scaling limits only hold along
subsequences. See [7] for recent progress in the Galton-Watson tree case, and [4] for a
discussion of results and conjectures in the percolation case.

Open Problem 4. How does the velocity v(i) (or equivalently speed κ(i)) vary as a
function of p(i)? Is it continuous? Where is it maximised? Is it non-monotonic and
unimodal as a function of β(i) (for other parameters fixed)?

Open Problem 5. Perpendicular to the previous question, one might consider how
v(i) varies with i. To give one concrete question in this direction, suppose that X(1) is
ballistic, and set p(i) = p

(1) for every i ≥ 2. Is it the case that the speeds are increasing
in i?

8



Open Problem 6. We believe that solving these problems would be simpler on trees.
To what extent is it possible to answer any of the above questions if the original walk
has as its state space a regular tree or a supercritical Galton-Watson tree conditioned
to survive, for example?

Open Problem 7. Theorem 3 gives sufficient criteria for Z(∞) almost-surely being
a simple graph, or this not being the case. Is it possible to give a sharp criterion
for simplicity of Z(∞) in terms of basic properties of the transition probabilities p

(i),
i ∈ Z+?

Open Problem 8. If p(i) = p
(0) for every i, then Z(∞) is a simple path by Theorem

3(a). Is there a relationship between Z(∞) and the law of a p
(0) loop-erased random

walk?

1.4 Organisation and notational conventions

The remainder of the article is organised as follows. In Section 2, we characterise
recurrence and transience, proving Theorem 1(a) in particular. This is followed in
Section 3 by a proof of Theorem 1(b), namely the existence of deterministic velocities,
which utilises a particular regeneration structure for the multiple walks. Sections 4
and 5 contain the proof of Theorem 2, with the first of these sections describing the
ballistic regime, and the second the sub-ballistic one. Finally, in Section 6, we study
the graph Z(∞).

Regarding notational conventions, c and C are constants that may change from
line-to-line.

2 Transience

The aim of this section is to prove Theorem 1(a), that is, we will demonstrate transience
of the random walks X(i) under Condition 1. To do this we will appeal to the well-
known criterion that a graph is transient if the effective resistance between a given
vertex and ∞ is finite, e.g. [2, Theorem 2.11]. (For background on effective resistance,
see [2, Chapter 2] or [16, Chapter 2], for example.) In the proof, we write R(i) for the
effective resistance metric on Z(i) when conductances are given by (1). We also write

r(i)(x, y) =
1

c(i)(x, y)

for the corresponding edge resistances. To check that R(i)(0,∞) < ∞, we will show
that the relevant resistance is bounded above by the sum

∑∞
n=0 r

(i)(X(0)
n ,X(0)

n+1), which
is almost-surely finite.

Proof of Theorem 1(a). From the law of large numbers, we P-a.s. have that

lim
n→∞

X(0)
n

n
= E[X(0)

1 ] = δ(0). (5)
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It follows that for any nearest-neighbour path π = (πn)n≥0 with π0 = 0, πn ∈ V (1) and
|πn| → ∞,

lim
n→∞

πn · ℓ = ∞, (6)

for every ℓ such that ℓ · δ(0) > 0, i.e. π is transient in the direction ℓ. Moreover, taking
the supremum over such paths that are also injective, we have for any i ∈ N ∪ {∞}
that (using (1)),

sup
π

∞
∑

n=0

r(i) (πn, πn+1) ≤
∞
∑

n=0

r(i)
(

X(0)
n ,X(0)

n+1

)

≤ C(i)

∞
∑

n=0

β−X
(0)
n ·ℓ(i)

(i)

where C(i) is a deterministic constant. Now, by (5) and the assumption that δ(0)·ℓ(i) > 0,
we have that, P-a.s., for large n,

β−X
(0)
n ·ℓ(i)

(i) ≤ β
−nδ(0)·ℓ(i)/2
(i) ,

and so we conclude that, P-a.s.,

sup
π

∞
∑

n=0

r(i) (πn, πn+1) < ∞. (7)

We use the preceding deductions as the basis of an inductive argument. To begin
with, observe that Rayleigh’s monotonicity principle [16, Chapter 2] implies that for
any injective path π of the form considered in the previous paragraph, we have that,
P-a.s.,

R(1)(0,∞) ≤
∞
∑

n=0

r(1) (πn, πn+1) < ∞.

Hence, by [2, Theorem 2.11], Z(1) is P-a.s. a p
(1)-transient graph. Suppose now that

we have shown that Z(i) is P-a.s. a p
(i)-transient graph for some i ≥ 1. By definition,

this implies that |X(i)
n | → ∞, P-a.s., and so Z(i+1) contains at least one injective path

π from 0 to ∞ with vertices in V (i) ⊆ V (1), P-a.s. Thus, from (7), P-a.s.,

R(i+1)(0,∞) ≤
∞
∑

n=0

r(i+1) (πn, πn+1) < ∞,

and so Z(i+1) is a p
(i+1)-transient graph. We have therefore established that for each

i ∈ N, Z(i) is a p
(i)-transient graph P-a.s.

We now deal with the i = ∞ case. In particular, it must hold that Z(∞) is an
infinite graph, P-a.s. Indeed, if this is not the case, then it must hold that there is a
strictly positive probability that one of the graphs Z(i), i ∈ Z+ is finite, and this clearly
contradicts the conclusion of the previous paragraph. As a consequence, we know that,
P-a.s., Z(∞) contains at least one injective path π from 0 to ∞ with vertices in V (1),
and we can use our previous argument to deduce its transience.

To complete the proof, we are required to check transience in the direction ℓ. To this
end, we observe that the transience we have already established yields that |X(i)

n | → ∞
for every i ∈ Z+ ∪{∞}, P-a.s. Appealing to (6) (and also (5)), we readily see that this
implies X(i)

n · ℓ → ∞ for every i ∈ Z+ ∪ {∞} and ℓ such that ℓ · δ(0) > 0, P-a.s. �
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By a minor adaptation of the previous argument, it is possible to check, as we do
in Lemma 2.2 below, that the condition δ(0) · ℓ(i) > 0 is in fact necessary for transience.
To proceed with this, and for later in the paper, it will be helpful to introduce a
regeneration structure for X(0) in the direction ℓ, where ℓ can be chosen to be any
vector satisfying ℓ ·δ(0) > 0. More precisely, let T ℓ

j denote the jth regeneration time for
X(0) in the direction ℓ, i.e. the jth time that X(0) · ℓ hits a new maximum, from which
it does not return to a lower level in the future. We then have the following standard
result.

Lemma 2.1. Assume the parts of Condition 1 regarding p
(0). For any ℓ satisfying

ℓ · δ(0) > 0, the following statements hold.
(i) P-a.s., the regeneration times (T ℓ

j )
∞
j=1 are all finite.

(ii) The path segments

(

X(0)

T ℓ
j +n

−X(0)

T ℓ
j

)T ℓ
j+1−T ℓ

j

n=0

, j ≥ 1,

are independent and identically distributed.
(iii) P-a.s., it holds that

lim
j→∞

T ℓ
j

j
= C,

where C ∈ [1,∞) is a deterministic constant (depending on i).

Proof. Note that the Markov property and the directional transience of X(0) imply
that once X(0) · ℓ hits a new maximum, there is strictly positive probability that it
does not return to a lower level in the future. Part (i) of the lemma readily follows.
The remaining parts of the lemma are obtained by an application of results from [21].
Specifically, part (ii) is a consequence of [21, Theorem 1.4]. Moreover, Condition 1
ensures that the uniform ellipticity condition (0.1) and the drift condition (2.37) of
[21] hold for X(0) with respect to the direction ℓ. By [21, Proposition 2.4], this gives
us that Kalikow’s condition [21, (0.7)] holds, and so we can apply equation [21, (2.32)]
to deduce that, P-a.s.,

lim
j→∞

X(0)

T ℓ
j
· ℓ

j
= C,

for some finite deterministic constant C. Together with the almost-sure result that
n−1X(0)

n → δ(0), part (iii) of the lemma follows. �

We now confirm that if δ(0) · ℓ(i) ≤ 0, then the ith walk is recurrent. Since this is
not central to the main results of this paper, we are somewhat brief in the proof.

Lemma 2.2. Assume Condition 1(a) and 1(b) hold, but Condition 1(c) does not, i.e.
δ(0) ·ℓ(i) ≤ 0 for some i ∈ N∪{∞}. It then holds that the random walk X(i) is recurrent.

Proof. Let (Tj)j≥1 be the regeneration times for X(0) in direction δ(0). It then holds
that

R(i)(0,∞) ≥
∞
∑

j=2

r(i)

(

X(0)

Tj−1,X
(0)

Tj

)

≥ C

∞
∑

j=2

β
−X

(0)
Tj

·ℓ(i)
(i) , (8)

11



where to deduce the first inequality we again appeal to Rayleigh’s monotonicity prin-
ciple. We will show that, when δ(0) · ℓ(i) ≤ 0, there are P-a.s. infinitely many j for
which

β
−X

(0)
Tj

·ℓ(i)
(i) ≥ 1. (9)

In conjunction with [2, Theorem 2.11], (8) then yields that Z(i) is a p(i)-recurrent graph.
First suppose that δ(0) · ℓ(i) < 0. There then exists a deterministic constant c ∈

(0,∞), such that P-a.s.,
j−1X(0)

Tj → cδ(0). (10)

This is a consequence of the law of large numbers for X(0) and the law of large numbers
for regeneration times that is stated at Lemma 2.1(c). Hence j−1X(0)

Tj ·ℓ
(i) → cδ(0) ·ℓ(i) <

0, which confirms (9) in this case.
In the case when δ(0) · ℓ(i) = 0, a similar, but slightly more delicate argument can be

applied to deduce the same conclusion. In particular, first observe Lemma 2.1 implies
((

X(0)

Tj+1
−X(0)

Tj

)

· ℓ(i)
)

j≥1

form an i.i.d. sequence, and moreover, (10) (together with [13, Theorems VII.9.1 and
VII.9.4]) yields that these random variables have expectation equal to zero. Thus the
sum of these increments is a (non-trivial) one-dimensional simple random walk with
zero mean, and standard arguments show that, P-a.s.,

−∞ = lim inf
j→∞

X(0)

Tj · ℓ(i) < lim sup
j→∞

X(0)

Tj · ℓ(i) = ∞.

Thus (9) holds in this case as well. �

Remark 2.3. The condition δ(0) · ℓ(i) > 0 for transience (in each direction ℓ for which
ℓ · δ(0) > 0) permits some counterintuitive behaviour whereby a random walk can be
transient in the “wrong direction” (to be more precise, the walk X(i) can be transient
in direction δ(0) even though δ(0) · δ(i) < 0, and vice versa, See Example 2.4). Similar
phenomena can be observed for example in random walk in i.i.d. random environ-
ment, where in one dimension the transience of the walk is determined by the sign
of E[log(ω−1

0 − 1)] rather than E[ω0], where ω0 ∈ (0, 1) is the random probability of
stepping to the right at the origin [19].

Example 2.4. Let

p(0)(e1) = p(0)(e2) =
1

4
+ ε, p(0)(−e1) = p(0)(−e2) =

1

4
− ε,

for some ε ∈ (0, 14), so that δ(0) = (2ε, 2ε). Furthermore, let

p(1)(e1) =
15

25
, p(1)(−e1) =

5

25
, p(1)(e2) =

1

25
, p(1)(−e2) =

4

25
. (11)

In this case δ(1) = (1025 ,−
3
25 ) and ℓ̂(1) = (log(3),− log(4)). Thus

δ(1) · δ(0) > 0 > ℓ(1) · δ(0), (12)

12



which implies that even though a random walk on Z
d with transition probabilities p(1)

is transient in the direction δ(0), the process X(1) on Z(1) is not.
If instead we rotate the transition probabilities (11) through π radians, i.e. we set

p(1)(e1) =
5

25
, p(1)(−e1) =

15

25
, p(1)(e2) =

4

25
, p(1)(−e2) =

1

25
,

then the signs in (12) are reversed, so X(1) is transient in the direction δ(0), even though
a walk on Z

d with transition probabilities p(1) is transient in the direction −δ(0).

3 Velocity

The main goal of this section is to prove Theorem 1(b). We will frequently make use
of regenerations of walks in direction e1. In particular, we will write T = (Tk)k∈N for
the set of regeneration times for X(0), where, in the notation of the previous section,
Tk = T e1

k . We note that, by definition, any regeneration time for a walk in direction e1
is also a first hitting time of some level in direction e1 by that walk. The corresponding
regeneration levels are defined as {X(0)

Tk ·e1 : k ∈ N}, and the corresponding regeneration

points are {X(0)

Tk : k ∈ N}.

Lemma 3.1. Assume Condition 1, and let i ∈ N ∪ {∞}.

(1) If X(0) is not transient in direction ±ej , then X(i) ·ej almost surely hits 0 infinitely
often, and limn→∞ n−1X(i)

n · ej = 0.

(2) If for some fixed ε1 > 0, limn→∞ n−1X(i)
n ·e1 = ε1, P-a.s., then limn→∞ n−1X(i)

n =
(ε1/δ

(0)

1 )δ(0), P-a.s.

(3) If limn→∞ n−1X(i)
n · e1 = 0, P-a.s., then limn→∞ n−1X(i)

n = 0.

Proof. For (1), note that since the projection of X(0) in direction ej is a (lazy) simple
symmetric random walk, it is recurrent. This implies that X(0) has infinitely many
e1-direction regenerations when X(0) · ej > 0 and infinitely many when X(0) · ej < 0.
All of these regenerations are at points that all subsequent walks must pass through,
which proves the first claim of (1). For the second part of (1), note that a.s. there
exists some finite random Y such that supn n

−2/3X(0)
n · ej ≤ Y . On the other hand

there exists some ε > 0 and a random N0 such that X(0)
n · e1 > εn for all n ≥ N0

almost surely. This means that, almost surely, for all m sufficiently large, after walk
i has made m > N0 steps, its first coordinate can be at most m, and therefore its
second coordinate X(i)

m · ej can be at most supk≤m/εX
(0)

k · ej ≤ Y (m/ε)2/3. Therefore

X(i)
m /m → 0 almost surely.
To prove (2), note that by assumption n−1X(i)

n · e1 = ε1 > 0 almost surely. Let
Mn = inf{m : X(0)

m = X(i)
n }. Then Mn → ∞ since X(i) is transient, and

X(i)
n

n
· e1 =

X(0)

Mn

Mn
· e1

Mn

n
.

13



The left hand side converges a.s. to ε1 and
X

(0)
Mn
Mn

· e1 → δ(0)

1 a.s., so Mn
n → ε1/δ

(0)

1 a.s.
Thus,

X(i)
n

n
=

X(0)

Mn

Mn

Mn

n
→

ε1

δ(0)

1

δ(0).

It remains to prove (3). Since δ(0) · e1 > 0 there exists δ > 0 and a random
N1 such that X(0)

n · e1 > δn for every n > N1. Let ε ∈ (0, 1). Then there exists
N2 such that |X(i)

n · e1| < εδn for every n ≥ N2. Let N = N2 ∨ (N1/ε). Then for
every n > N ≥ N2, |X

(0)

Mn
· e1| = |X(i)

n · e1| ≤ εδn. This implies that Mn ≤ εn so

|X(i)
n · ej | = |X(0)

Mn
· ej | ≤ Mn ≤ εn. This establishes that lim supn→∞ n−1|X(i)

n · ej | ≤ ε,
P-a.s. for every ε ∈ (0, 1), and therefore completes the proof. �

Next, let L(i) = (L(i)

1 , L(i)

2 , . . . ) denote the (ordered) set of strictly positive levels
that are regeneration levels for every one of the walks X(0), . . . ,X(i). The elements
of L(i) are called i-uber-regeneration levels. The following regeneration result is an
easy consequence of the definition of the model. To state it, we use the notation
T (i)
n = inf{k : X(i)

k · e1 = n} to denote the first hitting time of level n in the e1 direction

by walk i. Let L̂(i) = {x ∈ Z
d : x = X(i)

T
(i)
L

for some L ∈ L(i)} denote the corresponding

uber-regeneration points.

Lemma 3.2. Fix i ∈ Z+. If L ∈ L(i), then ((X(r)

n+T
(r)
L

−X(r)

T
(r)
L

)n≥0)r≤i:

• is independent of ((X(r)
n )

n≤T
(r)
L

)r≤i, and

• has the same law as ((X(r)

n+T
(r)
1

−X(r)

T
(r)
1

)n≥0)r≤i conditional on {1 ∈ L(i)}.

If we can show that P(L(i) is infinite) = 1 then repeatedly applying Lemma 3.2
yields a common regeneration structure for the first i walks, i.e. that

(

(

(X(r)
n −X(r)

T
(r)

L
(i)
j

)
n∈[T (r)

L
(i)
j

,T
(r)

L
(i)
j+1

]

)

r≤i

)

j∈N
are i.i.d. over j. (13)

This common regeneration structure will allow us to prove Theorem 1(b). Therefore
our current goal is to prove that L(i) is almost surely infinite. To this end, we start
by checking that uber-regeneration levels occur at any natural number with strictly
positive probability. As in the proof of Theorem 1(a), our argument depends on the
almost-sure finiteness of

∑∞
n=0 r

(i)(X(0)
n ,X(0)

n+1).

Lemma 3.3. For each i ∈ Z+, there exists an εi > 0 such that P(k ∈ L(i)) = εi for
every k ≥ 1.

Proof. Firstly, the directional transience of Theorem 1(a) and the strong Markov prop-
erty imply the result in the case i = 0. So, now suppose i, k ≥ 1. We then have that

P
(

k ∈ L(i)
)

= P
(

k ∈ L(0)
)

i
∏

j=1

P
(

k ∈ L(j) k ∈ L(j−1)
)

.
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Conditioning on the graph Z(j) (and noting that, on the event k ∈ L(j−1), X(0)

T
(0)
k

is a

measurable function of Z(j)), we have that

P
(

k ∈ L(j) k ∈ L(j−1), Z(j)
)

= P (j)

X
(0)

T
(0)
k

(

X(j) does not return to X(0)

T
(0)
k

)

=
1

c(j)
(

X(0)

T
(0)
k

)

R(j)

(

X(0)

T
(0)
k

,∞

)

≥
1

c̄(j)
(

X(0)

T
(0)
k

)

∑∞
m=T

(0)
k

r(j)
(

X(0)
m ,X(0)

m+1

)

,

where c̄(i)(x) :=
∑

y∈Zd:y∼x c
(i)(x, y). Note that we have applied [2, Theorem 2.11] for

the second inequality, and bounded the resistance to infinity as in the proof of Theorem
1(a). We thus obtain that

P
(

k ∈ L(j) k ∈ L(j−1)
)

≥ E









1

c̄(j)
(

X(0)

T
(0)
k

)

∑∞
m=T

(0)
k

r(j)
(

X(0)
m ,X(0)

m+1

)

k ∈ L(j−1)









= E









1

c̄(j)
(

X(0)

T
(0)
1

)

∑∞
m=T

(0)
1

r(j)
(

X(0)
m ,X(0)

m+1

)

1 ∈ L(j−1)









,

where the equality follows from Lemma 3.2. Now, as was observed in the proof of
Theorem 1(a), the random variable

∑∞
m=0 r

(j)(X(0)
m ,X(0)

m+1) is P-a.s. finite. Hence the
above expectation is strictly positive. In particular, this confirms that

ρj := P
(

k ∈ L(j) k ∈ L(j−1)
)

> 0. (14)

Setting ρ0 := ε0 > 0, we thus have established the result with εi =
∏i

j=0 ρj . �

The above result allows us to establish the following lemma, which in view of
Lemma 3.2 confirms that there are indeed almost-surely an infinite number of i-uber-
regeneration levels. In the proof, we write

τ (r,i)

j = inf
{

n : X(r)
n · e1 = L(i)

j

}

to represent the first hitting time of level L(i)

j ∈ L(i) by walk X(r).

Lemma 3.4. For each i ∈ Z+,

(0) P(L(i)

1 = 1) > 0, and

(1) L(i)

1 is almost surely finite, and
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(2) given that L(i)

1 = 1, L(i)

2 is almost surely finite.

For an interval I ⊂ Z write Z(i)

I := Z(i) ∩ (I × Z
d−1), and let E (i)

I denote the set of
edges of Z(i)

I such that at least one of the end vertices x has x · e1 in the interior of I.
To prove Lemma 3.4(2) we first consider the probability that a given level ℓ ∈ L(j−1)

is also a j-uber regeneration level conditional on a particular ℓ′ < ℓ being an j-uber
regeneration level. For this, first note that if G is a connected graph with at least one
edge then the graph can be identified with its set of edges. Given a finite connected
graph H ⊂ Z

d with at least two edges, a unique right-most vertex u, and a unique
left-most vertex 0, we let EH = {E (j)

[0,u·e1] = H} and

qH = P

(

u ∈ L̂(j)

∣

∣

∣EH , u ∈ L̂(j−1), 1 ∈ L(j)

)

.

Note that on the event that u ∈ L̂(j−1) we have that u ∈ L̂(j) if and only if (X(j)
n −u)·e1 ≥

0 for every n ≥ τu, where τu is the first hitting time of u by X(j).

Lemma 3.5. For every H, qH ≥ ρj , where ρ· was defined at (14).

Proof. Define R = {u ∈ L̂(j)}, R′ = {u ∈ L̂(j−1)}, F = {X(j)
n · e1 ≥ 1, ∀n ∈ [1, τ ]} and

F ′ = {X(j)
n · e1 ≥ 1, ∀n > τ}, where τ is the hitting time of level u · e1 by X(j). Then,

qH = P

(

R
∣

∣

∣EH , R′, F, F ′
)

=
P (R,EH , R′, F, F ′)
P (EH , R′, F, F ′)

=
P (R,EH , R′, F )

P (F ′, EH , R′, F )

=
P(R,EH , F |R′)
P(F ′, EH , F |R′)

.

Given R′, the event R only depends on the environment E (j)

[u·e1−1,∞) = Z(j)

[u·e1,∞) ∪{(u−

e1, u)} and the behaviour of the walker X(j) on this graph from the first hitting time
of u onwards. Given R′, EH only depends on E (j)

(−∞,u·e1], and F only depends on the

behaviour of the walker X(j) on that graph until the first hitting time of u. Hence R
is conditionally independent of EH , F given R′ and

P(R,EH , F |R′)
P(F ′, EH , F |R′)

=
P(R |R′)P(EH , F |R′)

P(F ′, EH , F |R′)
≥ P(R |R′),

The result follows since P(R |R′) = ρi. �

Proof of Lemma 3.4. For i = 0 the result holds trivially. We will prove (1) and (2) of
the lemma for i ∈ Z+ by induction on i.

Suppose that (1) and (2) hold for a fixed i ∈ Z+. Then by Lemma 3.2, L(i) is infinite
almost surely, and therefore (13) holds. Let A = {1 ∈ L(i)} and B = {1 ∈ L(i+1)}.
Then P(B) = εi+1 > 0 and P(B|A) = ρi+1 > 0.

Let us prove that claim (1) of the Lemma holds for (i+ 1). When the walk X(i+1)

first reaches L(i)

j for some j ≥ 1, it has not viewed the environment to the right
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L(i)

2 L(i)

3 L(i)

4L(i)

1 = 1

Figure 3: A pictorial example where 1 = L(i)

1 /∈ L(i+1). Here the edges traversed by the walker
X (i+1) before returning to level L(i)

1 − 1 = 0 are represented by the (pink) shaded part of the
graph, and M1 = 13 and L(i+1)

1 ≥ M̄1 = L(i)

4 = 14.

(which by Lemma 3.2 is independent of the environment to the left) and therefore by
Lemma 3.3 the walk X(i+1) has probability exactly equal to ρi+1 = εi+1/εi > 0 of never
backtracking from its current location. Let M̄0 = L(i)

1 . If this non-backtracking event
occurs with j = 1 then L(i+1)

1 = M̄0 ∈ L(i+1). If it does not occur for j = 1 then the
walk X(i+1) reached some maximal level M1 before returning to level 0, and the walk
has not viewed the environment to the right of M̄1 := inf{n > M1 : n ∈ L(i)} (note
that M̄1 is finite since L(i) is an infinite set). See for example Figure 3. Thus when the
walk reaches level M̄1 ∈ L(i) we again have probability exactly ρi+1 that the walk X(i+1)

never backtracks from level M̄1 (and if this occurs then L(i+1)

1 = M̄1). If the walk does
backtrack from level M̄1 then it reached some maximal level M2, before backtracking
and we can repeat the above. We succeed in finding an (i+ 1)-uber-regeneration level
after a geometric(ρi+1) number of attempts, verifying part (1) of the lemma.

We can now prove part (2) of the Lemma. From part (1) we know that there is
some finite L(i+1)

1 ∈ L(i+1), and we want to show that L(i+1)

2 ∈ L(i+1) is almost surely
finite. By Lemma 3.2 applied to L(i+1)

1 ∈ L(i+1) we may assume that L(i+1)

1 = 1 and
X(i+1)

τ
(i,i+1)
1

= e1 (i.e. without loss of generality we can fix the first (i+1)-uber-regeneration

point to be e1, and this point was therefore reached from 0). When the walk X(i+1)

reaches level N̄0 := inf{n > 1 : n ∈ L(i)} for the first time at some point u0 (whose
first coordinate is N̄0) we can apply Lemma 3.5 (with j = i+1) to conclude that with
probability (depending on E (i+1)

[0,u0·e1] but) at least ρi+1 > 0 the walk never backtracks

from u0. If this non-backtracking event occurs then L(i+1)

2 = N̄0 ∈ L(i+1) and we are
done. Otherwise there is some maximal distance N1 < ∞ reached by the walk before
it returns to level N̄0 − 1. Let N̄1 := inf{n > N1 : n ∈ L(i)}. See Figure 4. When
the walk first reaches level N̄1 at some point u1 then we can again apply Lemma 3.5
to get that with probability (depending on E (i+1)

[0,u1·e1] but) at least ρi+1 the walk never

backtracks from u1 and if this occurs then L(i+1)

2 = N̄1 ∈ L(i+1) and we are done. We
can repeat this procedure until we succeed in finding L(i+1)

2 ∈ L(i+1) after no more than
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L(i)

2 L(i)

3 L(i)

4L(i+1)

1 = 1

Figure 4: A pictorial example where 1 = L(i+1)

1 = L(i)

1 . The edges traversed by the walk
X (i+1) after first reaching level L(i)

2 = 5 until returning to level L(1)

2 −1 are represented by the
(pink) shaded part of the graph. This walk cannot return to level L(i+1)

1 − 1 by definition of
L(i+1)

1 . Here N1 = 13 and L(i+1)

2 ≥ N̄1 = L(i)

4 = 14. When the walk X (i+1) reaches level N̄1 it
has probability at least ρi+1 of succeeding in never visiting level N̄1 − 1 again.

a geometric(ρi+1) number of attempts. �

The final ingredient we need to deduce the existence of velocities is the finiteness
of the expectation of the inter-regeneration distance.

Lemma 3.6. For each i ∈ Z+,

E[L(i)

2 − L(i)

1 ] = ε−1
i < ∞.

Proof. This closely follows the proof of [22, Lemma 3.2.5] (attributed to Martin Zerner),
but note that we deal with the (common) regeneration levels rather than the regener-
ation times (since these are not common to all walks).

By Lemma 3.3, εi = limℓ→∞ P(ℓ ∈ L(i)). On the other hand,

lim
ℓ→∞

P(ℓ ∈ L(i)) = lim
ℓ→∞

P(∃k ≥ 2 : ℓ = L(i)

k )

= lim
ℓ→∞

∑

n≥1

P(L(i)

1 = n,∃k ≥ 2 : L(i)

k − L(i)

1 = ℓ− n)

= lim
ℓ→∞

∑

n≥1

P(L(i)

1 = n)P(∃k ≥ 2 : L(i)

k − L(i)

1 = ℓ− n).

By the renewal theorem and the fact that P(L(i)

2 − L(i)

1 = m) > 0 for each m ∈ N we
have

lim
ℓ→∞

P(∃k ≥ 2 : L(i)

k − L(i)

1 = ℓ− n) = E[L(i)

2 − L(i)

1 ]−1.

It is then easy to show that

lim
ℓ→∞

∑

n≥1

P(L(i)

1 = n)P(∃k ≥ 2 : L(i)

k − L(i)

1 = ℓ− n) = E[L(i)

2 − L(i)

1 ]−1,

and the result follows. �
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Proof of Theorem 1(b). It now follows from standard arguments invoking the law
of large numbers for the i.i.d. sequence of processes between inter-regeneration levels
that, almost surely,

X(i)
n

n
· e1 →

E[L(i)

2 − L(i)

1 ]

E[τ (i,i)

2 − τ (i,i)

1 ]
,

where the right hand side is deterministic, and is equal to zero if and only if E[τ (i,i)

2 −
τ (i,i)

1 ] = ∞. If v(i) · e1 > 0 then Lemma 3.1(2) applies, and otherwise Lemma 3.1(3)
applies to give the result. �

4 Ballistic phase

The aim of this section is to prove part (a) of Theorem 2, which characterises the
ballistic phase. This will be done by estimating the expected time for the ith random
walkX(i) to progress a unit distance in the ℓ(i) direction (see Lemma 4.2). First, though,
we confirm that t(i), as introduced below (2), is well-defined and can be used to control
the backtracking probability for the original random walk X(0) in the direction ℓ(i). We
recall the notation ϕ(i)(t) = E[exp{−tX(0)

1 · ℓ(i)}] from (2).

Lemma 4.1. Assume Condition 1. For each i ∈ N ∪ {∞}, there exists a unique
solution t(i) > 0 to the equation ϕ(i)(t) = 1. Moreover, for all h ≥ 0,

P

(

−min
n≥0

X(0)
n · ℓ(i) ≥ h

)

≤ e−t(i)h.

Proof. Fix i ∈ N∪{∞}. Clearly ϕ(i)(0) = 1. Since ℓ(i) 6= 0, we have ℓ(i) · e > 0 for some
e ∈ {±ej : j = 1, . . . , d}. Moreover,

ϕ(i)(t) ≥ p(0)(−e) exp{te · ℓ(i)},

so ϕ(i)(t) → ∞ as t → ∞. Next, as the sum of convex functions, at least one of which is
strictly convex, we have that ϕ(i) is a strictly convex function. Thus to check the first
claim of the lemma it will suffice to show that ϕ′

(i)(0) < 0. To this end, we compute
the relevant derivative directly,

ϕ′
(i)(0) = −E[X(0)

1 · ℓ(i)] = −δ(0) · ℓ(i),

and observe that this is strictly negative by Condition 1(c). Given the existence of
t(i) > 0, the remaining claim of the lemma is an immediate application of Lundberg’s
inequality [1, Corollary II.3.4]. �

To state the next lemma, we define the stopping times

T (i,j)
n := inf

{

m : X(i)
m · ℓ(j) ≥ n

}

,

which under Condition 1 are almost surely finite by Theorem 1(a), and recall that
α(i) := et(i) > 1.
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Lemma 4.2. Assume Condition 1. For each i ∈ N ∪ {∞}, if β(i) < α(i), then

sup
n≥0

E
[

T (i,i)

n+1 − T (i,i)
n

]

< ∞.

Proof. For n ∈ R, define Z(i)
n := {x ∈ Z(i) : x · ℓ(i) ∈ [n, n+ 1)}. We then have that

E
[

T (i,i)

n+1 − T (i,i)
n

]

≤ E

[

max
x∈Z(i)

n

E(i)
x

[

T (i,i)

n+1

]

]

,

where E(i)
x denotes expectation with respect to the law P (i)

x of a p
(i) random walk on

Z(i) starting from x ∈ Z(i). Now, setting

T (i,j)

−m,n := inf
{

k : X(i)

k · ℓ(j) 6∈ (−m,n)
}

,

the monotone convergence theorem yields that, for P-a.e. realisation of Z(i), and every
x in the finite set Z(i)

n , we have that

E(i)
x

[

T (i,i)

n+1

]

= lim
m→∞

E(i)
x

[

T (i,i)

−m,n+1

]

.

Moreover, applying well-known estimates for random walks on electrical networks (e.g.
characterisations of the Green’s function in terms of effective resistance from [2, The-
orem 1.31 and Proposition 2.55]), we have that

E(i)
x

[

T (i,i)

−m,n+1

]

≤ R(i)(x,Z(i)

n+1)

n
∑

l=−m+1

∑

y∈Z(i)
l

c(i)(y),

where R(i)(x,Z(i)

n+1) is the effective resistance from x to Z(i)

n+1 in Z(i) (equipped with
the conductances c(i)(·, ·)). Hence (with c̄ as in the proof of Lemma 3.3) we obtain that

E
[

T (i,i)

n+1 − T (i,i)
n

]

≤ E






max
x∈Z(i)

n

R(i)(x,Z(i)

n+1)
∑

m≤n

∑

y∈Z(i)
m

c(i)(y)







≤ E





T̄
(0,i)
n
∑

l=T
(0,i)
n

r(i)(X(0)

l ,X(0)

l+1)
∑

m≤T̄
(0,i)
n

c̄(i)(X(0)
m )1{X(0)

m ·ℓ(i)<n+1}



 , (15)

where T̄ (0,i)
n is the time of the last visit by X(0) to the set Z(i)

X
(0)

T
(0,i)
n

·ℓ(i)
. We will estimate

this expectation by decomposing into various pieces. Firstly, define

a(i),n := β
X

(0)

T
(0,i)
n

·ℓ(i)

(i) ,

and then set

Υ := a(i),n

T̄
(0,i)
n
∑

m=T
(0,i)
n

r(i)(X(0)
m ,X(0)

m+1),
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Γ1 := a−1
(i),n

∑

m≤T
(0,i)
n −1

c̄(i)(X(0)
m ),

and

Γ2 := a−1
(i),n

T̄
(0,i)
n
∑

m=T
(0,i)
n

c̄(i)(X(0)
m )1{X(0)

m ·ℓ(i)<n+1}.

Note that Υ only depends on the path (X(0)

T
(0,i)
n +m

−X(0)

T
(0,i)
n

)m≥0, and so is independent

of Γ1. Letting ‖X‖p := E[|X|p]1/p, we see that for any p, q > 1 such that p−1+q−1 = 1,
the expectation at (15) is bounded above by

E [Υ (Γ1 + Γ2)] = E [ΥΓ1] + E [ΥΓ2] ≤ E [Υ]E [Γ1] + ‖Υ‖p ‖Γ2‖q .

To bound the terms involving Υ, observe that, for some C > 1,

sup
n≥0

P

(

max
m∈{T (0,i)

n ,...,T̄
(0,i)
n }

a(i),nr
(i)(X(0)

m ,X(0)

m+1) ≥ λ

)

≤ sup
n≥0

P



 max
m∈{T (0,i)

n ,...,T̄
(0,i)
n }

Cβ

(

X
(0)

T
(0,i)
n

−X
(0)
m

)

·ℓ(i)

(i) ≥ λ



 .

Taking logs and using the Markov property and Lemma 4.1, for all λ > C this is at
most

P

(

−min
m≥0

X(0)
m · ℓ(i) ≥

log(λ/C)

log β(i)

)

≤ e
−

t(i) log(λ/C)

log β(i) ≤ cλ
−

logα(i)
log β(i) .

In particular, for p sufficiently close to 1,

sup
n≥0

∥

∥

∥

∥

∥

max
m∈{T (0,i)

n ,...,T̄
(0,i)
n }

a(i),nr
(i)(X(0)

m ,X(0)

m+1)

∥

∥

∥

∥

∥

p

< ∞.

Since

‖Υ‖p ≤

∥

∥

∥

∥

∥

max
m∈{T (0,i)

n ,...,T̄
(0,i)
n }

a(i),nr
(i)(X(0)

m ,X(0)

m+1)

∥

∥

∥

∥

∥

p2

∥

∥T̄ (0,i)
n + 1− T (0,i)

n

∥

∥

pq
,

to complete the proof that supn≥0 ‖Υ‖p < ∞, it will thus be sufficient to check that

sup
n≥0

∥

∥T̄ (0,i)
n − T (0,i)

n

∥

∥

q
< ∞ (16)

for arbitrary q ≥ 1, as we will do below. We continue for the moment, however, by
dealing with Γ1, which satisfies

Γ1 ≤ C
∑

m≤T
(0,i)
n −1

β

(

X
(0)
m −X

(0)

T
(0,i)
n

)

·ℓ(i)

(i)
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≤ C
∑

m≤n

βm+1−n
(i) #

{

l ≥ 0 : X(0)

l ∈ Z(i)
m

}

.

Thus, taking expectations, we find that

sup
n≥0

E[Γ1] ≤ C sup
n∈Z

E
[

#
{

l ≥ 0 : X(0)

l ∈ Z(i)
n

}]

≤
C supn≥0 E

[

T̃ (0,i)
n − T (0,i)

n

]

P
(

minm≥0 X
(0)
m · ℓ(i) ≥ 0

) , (17)

where T̃ (0,i)
n is the first time m after T (0,i)

n such that (X(0)
m − X(0)

T
(0,i)
n

) · ℓ(i) ≥ 1. We

have obtained the expression in the right-hand side here by considering the number of
returns by X(0) from Z(i)

n+1 to Z(i)
n – since X(0) is simply a biased random walk on Z

d,

this number is stochastically dominated by a geometric P(minm≥0 X
(0)
m ·ℓ(i) ≥ 0) random

variable, and noting that the duration of each excursion back into Z(i)
n is stochastically

dominated by T̃ (0,i)
n − T (0,i)

n . Now, [11, Theorem II] implies that

sup
n≥0

P

(

T̃ (0,i)
n − T (0,i)

n ≥ λ
)

≤ Ce−cλ, (18)

which in turn yields the numerator on the right-hand side of (17) is finite. Moreover,
we also have that P(minm≥0 X

(0)
m · ℓ(i) ≥ 0) > 0, and so we have established the desired

bound for Γ1. Finally, the definition of Γ2 implies

Γ2 ≤ C

T̄
(0,i)
n
∑

m=T
(0,i)
n

β

(

X
(0)
m −X

(0)

T
(0,i)
n

)

·ℓ(i)

(i) 1{X(0)
m ·ℓ(i)<n+1} ≤ C

(

T̄ (0,i)
n − T (0,i)

n

)

.

Now, arguing as in the previous paragraph, we have that T̄ (0,i)
n − T (0,i)

n is stochastically
dominated by

∑G
i=1 ξi, whereG is a geometric P(minm≥0 X

(0)
m ·ℓ(i) ≥ 0) random variable,

and (ξi)i≥1 are independent copies of T̃ (0,i)
n − T (0,i)

n , independent of G. We thus obtain,
by a simple adaptation of the argument leading to Wald’s identity, that, for integers
q ∈ N,

sup
n≥0

E[Γq
2] ≤ CE[Gq]E[ξq],

and hence we obtain from the finiteness of the moments of the geometric distribution
and (18) that supn≥0 ‖Γ2‖q < ∞ for arbitrary q ≥ 1. Since the latter part of the
argument also implies (16), the proof is complete. �

Proof of Theorem 2(a). From Theorem 1 and the definition of T (i,i)
n , we have

X(i)

T
(i,i)
n

· ℓ(i)

T (i,i)
n

→ v := v(i) · ℓ(i),

and
X(i)

T
(i,i)
n

· ℓ(i)

n
→ 1

almost surely. If v = 0, then from the above we have that n−1T (i,i)
n → ∞ almost surely,

so for any M ,
P(n−1T (i,i)

n > M) → 1.
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as n → ∞. However, by Lemma 4.2 there exists C > 0 such that E[T (i,i)
n ] ≤ Cn for

every n. Together with Markov’s inequality, this gives

P(n−1T (i,i)
n > M) ≤

E[n−1T (i,i)
n ]

M
≤

C

M
.

For M > 2C this is less than 1/2, and hence we conclude that v 6= 0. �

5 Sub-ballistic phase

In this section, we describe conditions under which the walkX(i) is sub-ballistic, namely
we prove Theorem 2(b). Throughout we work under the assumption that Condition
1 holds. To establish the main result, we consider a regeneration structure for X(0) in
the direction ℓ(i) for each i, as defined above Lemma 2.1. Moreover, we need to define
what it means to have a trap of height h for the walk X(i) in the jth regeneration block
for X(0) with respect to the direction ℓ(i). In particular, let E (i)

j (h) be the event that

there exist m,n with T ℓ(i)
j ≤ m ≤ n ≤ T ℓ(i)

j+1 such that X(0)
m and X(0)

n are cut-points for

X(0) (i.e. for n′ ∈ {m,n} we have that {X(0)

m′ : m′ ≤ n′} ∩ {X(0)

m′ : m′ > n′} = ∅) and

⌊(

X(0)
m −X(0)

n

)

· ℓ(i)
⌋

= h. (19)

The key ingredient of the argument to demonstrate sub-ballisticity is the following,
which reveals that the probability of creating a trap in a regeneration block decays at
an exponential rate no greater than that of the backtracking probability for X(0) · ℓ(i)

(recall Lemma 4.1). (NB. Establishing the reverse inequality is much easier, but we do
not need it in what follows.)

Lemma 5.1. Assume Condition 1. For each i ∈ N ∪ {∞},

lim sup
h→∞

− log P
(

E (i)

j (h)
)

h
≤ t(i),

where t(i) was defined below (2). (NB. By the fact regeneration blocks are identically
distributed, the left-hand side is independent of j ≥ 1.)

Before proving this result, we explain how it is used to establish Theorem 2(b). To
this end, for n ∈ N and ε ∈ (0, 1), we introduce a parameter

h(i)
n,ε =

(1− ε) log n

t(i)

that will be used to define what it means for a trap to be big for X(i) at scale n. In
particular, we set

N (i)
n,ε := #

{

j ∈ {1, . . . , n− 1} : E (i)

j (h(i)
n,ε) occurs

}

.

The following lemma tells us that this random variable grows polynomially with n.
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Lemma 5.2. Assume Condition 1, and let i ∈ N ∪ {∞}. For any ε ∈ (0, 1), it holds
that

lim
n→∞

P

(

N (i)
n,ε ≥ nε/2

)

= 1.

Proof. Recall the definition of α(i) from (3). Lemma 5.1 gives us that, for large n,

P

(

E (i)

j (h(i)
n,ε)
)

≥ α
−
(

1−3ε/4
1−ε

)

h
(i)
n,ε

(i) = n−1+3ε/4.

Hence, applying the i.i.d. structure of regeneration blocks of Lemma 2.1, and writing
Bin(n, p) for a binomial random variable with parameters n and p,

P

(

N (i)
n,ε < nε/2

)

≤ P

(

Bin
(

n− 1, n−1+3ε/4
)

< nε/2
)

≤
Var

(

Bin
(

n− 1, n−1+3ε/4
))

(

(n− 1)n−1+3ε/4 − nε/2
)2

≤ Cn−3ε/4,

which completes the proof. �

We next present a lemma which gives a lower bound for the probability of the time
we spend in a trap being small. We introduce the notation σ(i)

j to represent the hitting

time of X(0)

T ℓ(i)

j

by X(i), and recall the notation P (i)
x from the proof of Lemma 4.2.

Lemma 5.3. Assume Condition 1, and let i ∈ N ∪ {∞}. There exists a deterministic
constant c such that, on the event E (i)

j (h) with h ≥ 1,

P (i)

X
(0)
Tj

(

σ(i)

j+1 ≥ βh
(i)

)

≥ c.

Proof. Suppose E (i)

j (h) holds, and let x = X(0)
m and y = X(0)

n be the two vertices
appearing in the definition of this event. (These are not necessarily uniquely defined,
but that is unimportant for the proof.) Let

p = pZ(i) := P (i)
x

(

X(i) hits y before returning to x
)

,

and note that, with u = X(0)

Tj ,

P (i)
u

(

σ(i)

j+1 ≥ βh
(i)

)

≥ P

(

Geo (p) ≥ βh
(i)

)

= (1− p)
βh
(i) ,

where (given Z(i)) Geo(p) is a geometric random variable taking values in N with
parameter p = pZ(i) . We thus are motivated to find an upper bound for p. For this,
we observe from [16, Exercise 2.62], for example, that with z := X(0)

m+1,

p ≤ P (i)
z

(

X(i)

0 hits y before x
)

=
r(i) (x, z)

r(i) (x, z) +R(i) (z, y)
=

r(i) (x, z)

R(i) (x, y)
,
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where we note there is a single edge (with resistance r(i) (x, z)) between x and z in the
graph Z(i), and we apply the series law for the second equality. Now,

r(i) (x, z) = c(i) (x, z)−1 ≤ Cβ−x·ℓ(i)
(i) ,

and

R(i) (x, y) ≥ R(i) (y, {w : w ∼(i) y}) ≥
minw: w∼(i)y r

(i) (y,w)

#{w : w ∼(i) y}
≥ Cβ−y·ℓ(i)

(i) ,

where we use the notation w ∼(i) y to mean that w is a neighbour of y in Z(i). Com-
bining these estimates with (19) thus yields

p ≤ Cβ
−(x−y)·ℓ(i)
(i) ≤ Cβ−h

(i) .

Hence we obtain that

P (i)
u

(

σ(i)

j+1 ≥ βh
(i)

)

≥
(

1− Cβ−h
(i)

)βh
(i)

,

which is clearly bounded away from 0 as h → ∞, and the result follows. �

We use the previous two lemmas to establish that the random walk X(i) takes a
super-linear time to reach the nth regeneration level.

Lemma 5.4. Assume Condition 1, and let i ∈ N∪{∞}. If β(i) > α(i), then there exists
a deterministic constant δ > 0 such that

lim
n→∞

P

(

σ(i)
n ≥ n1+δ

)

= 1.

Proof. On the event that N (i)
n,ε ≥ nε/2, Lemma 5.3 implies that σ(i)

n is stochastically

bounded below by a random variable of the form β
h
(i)
n,ε

(i) Bin(nε/2, c). Note that the
multiplying constant here is given by

β
h
(i)
n,ε

(i) = n

(1−ε) log β(i)
t(i) ,

which, by our assumption that β(i) > α(i) = et(i) , can be made greater than n by
choosing ε > 0 suitably small. Hence for all such ε we have that

P

(

σ(i)
n ≥ n1+δ

)

≥ P

(

σ(i)
n ≥ n1+δ

∣

∣N (i)
n,ε ≥ nε/2

)

P

(

N (i)
n,ε ≥ nε/2

)

≥ P

(

Bin(nε/2, c) ≥ nδ
)

P

(

N (i)
n,ε ≥ nε/2

)

. (20)

Taking δ < ε/2 and applying Lemma 5.2, we see that (20) converges to 1 as n → ∞,
which establishes the desired conclusion. �

From the preceding result, the proof of Theorem 2(b) is straightforward.
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Proof of Theorem 2(b). By Lemma 5.4, we have that

lim
n→∞

P

(

X(i)

n1+δ · ℓ
(i) ≤ X(0)

T ℓ(i)
n

· ℓ(i)
)

= 1.

However, we also know from Lemma 2.1 that there exists finite constant C such that

lim
n→∞

P

(

X(0)

T ℓ(i)
n

· ℓ(i) ≤ Cn

)

= 1.

Hence we conclude that

lim
n→∞

P
(

X(i)

n1+δ · ℓ
(i) ≤ Cn

)

= 1,

which yields
n−1X(i)

n · ℓ(i) → 0

in probability. Since we also know the almost-sure limit of the left-hand side exists (by
Theorem 1), we in fact have that the above convergence holds almost-surely. Moreover,
recalling Condition 1(c) and the fact that v(i) must be a scalar multiple of δ(0) (i.e.
Theorem 1(b)), we conclude that v(i) = 0. �

To complete the section, we need to prove Lemma 5.1. Towards deducing an appro-
priate lower bound for the probability of E (i)

j (h), we will present a collection of events
that together ensure the existence of a trap, and for which we can suitably estimate
the probability of their intersection. At the heart of the proof is the application of
a large deviations result, the usefulness of which depends on the identification of the
direction in which X(0) is most likely to drift, conditional on the projection X(0) · ℓ(i)

backtracking. In particular, the latter direction transpires to be described by

δ̂(i) := E

[

e−t(i)X
(0)
1 ·ℓ(i)X(0)

1

]

.

(Note that, from the properties of ϕ(i) set out in the proof of Lemma 4.1, it holds that

δ̂(i) · ℓ(i) = −ϕ′
(i)(t(i)) < 0,

and so if X(0) follows the direction δ̂(i), then X(0) · ℓ(i) is indeed decreasing.)

Remark 5.5. Although we will not need this fact in the proof of Lemma 5.1, we observe
that δ̂(i) is the drift of the Markov process with transition probabilities given by the Doob
transform

p̂(0)(y − x) =
p(0)(y − x)h(i)(y)

h(i)(x)
,

where h(i) is the X(0) harmonic function given by h(i)(x) := e−t(i)x·ℓ(i). At least in cases
where X(0) can only enter the region {x : x · ℓ(i) ≤ −h} by hitting the hyperplane
Lh := {x : x · ℓ(i) = −h} (as is the case in Example 1.2), the transition probabilities
p̂(0) precisely describe the law of X(0) conditioned to hit Lh up to this hitting time (from
which time the process proceeds with transition probability p(0)).

26



Proof of Lemma 5.1. Given ε ∈ (0, 1) and h ≥ 1, we start by defining a sequence of
eight events. In understanding their definition, it will aid the reader to refer to Figure
5. First, let

xa = X(0)

T ℓ(i)

j

,

and consider three cylinders C1, C2, C3, as shown in Figure 5. In particular, C1 has
straight sides parallel to δ(0), radius εh, is positioned so that its centre line runs through
xa, and it has height chosen so that it just touches the planes

P1 :=

{

x : x · ℓ(i) = X(0)

T ℓ(i)

j

· ℓ(i)
}

and

P2 :=

{

x : x · ℓ(i) = X(0)

T ℓ(i)

j

· ℓ(i) + h

}

.

We define C2 similarly, but parallel to δ̂(i), and positioned so that the ends of C1 and
C2 closest to the plane P2 are separated by a distance of εh. The cylinder C3 is also
defined in the same way, again parallel to δ(0), and positioned so that the ends of C2

and C3 closest to the plane P3 are separated by a distance of εh. It is moreover possible
to complete the above construction in such a way that the three cylinders are disjoint.
In addition to these sets, we define points:

• xb, to be the lattice point closest to the point yb,ε, where yb,ε is the point on the
centreline of C1 at distance 2εh from the end nearest to P1;

• xc, to be a lattice point lying within distance 2εh of both C1 and C2, but separated
by at least one lattice step from one of these sets, and satisfying (xc − xa) · ℓ

(i) ∈
[h(1 + ε/4), h(1 + 3ε/4)];

• xd, to be the lattice point closest to the point yd,ε, where yd,ε is the point on the
centreline of C2 at distance εh from the end nearest to P2;

• xe, to be a lattice point lying within distance 2εh of both C2 and C3, but separated
by at least one lattice step from one of these sets, and satisfying ⌊(xc−xe)·ℓ

(i)⌋ = h;

• xf , to be the lattice point closest to the point yf,ε, where yf,ε is the point on the
centreline of C3 at distance εh from the end nearest to P1;

• xg, to be a lattice point that lies within distance 4εh of C3, and satisfies xg · ℓ
(i) ≥

X(0)

T ℓ(i)

j

· ℓ(i) + h(1 + 3ε).

We next define the events of interest (Ek)
8
k=1.

• E1 = {After T ℓ(i)
j , X(0) follows a shortest lattice path to xb, follows the same path

back to xa, and then returns again along that path to xb}. (The recrossing of the
path ensures that none of the points on it are regenerations.)

• E2 = E1 ∩ {From xb, X
(0) stays inside C1 until it reaches a distance ≤ εh from

the end of C1 closest to P2}.

• E3 = E2∩{From the previous stopping time, X(0) follows a shortest simple lattice
path that passes through xc and eventually reaches xd}.
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• E4 = E3 ∩ {From xd, X
(0) stays inside C2 until it reaches a distance ≤ εh from

the end of C2 closest to P1}.

• E5 = E4 ∩ {From the previous stopping time, X(0) follows a shortest, simple
lattice path that passes through xe and eventually reaches xf , whilst satisfying
(X(0) − xa) · ℓ

(i) ≥ 0}.

• E6 = E5 ∩ {From xf , X
(0) stays inside C3 until it reaches a distance ≤ εh from

the end of C3 closest to P2}.

• E7 = E6 ∩ {From the previous stopping time, X(0) follows a shortest lattice path
to xg}.

• E8 = E7 ∩ {From xg, X
(0) · ℓ(i) never drops below xg · ℓ

(i)}.

By construction, for any fixed ε ∈ (0, 1/4) and large enough h, we have that E (i)

j (h) ⊇
E8, with xc and xe giving the relevant cut-points for X(0). Hence we immediately
obtain that

lim sup
h→∞

− log P(E (i)

j (h))

h
≤

8
∑

k=1

lim
ε→0

lim sup
h→∞

− log pk
h

,

where p1 := P(E1) and pk := P(Ek Ek−1) for k = 2, . . . , 8. Note that, from xa, the
process X(0) continues as under its original law, but conditioned so that X(0) · ℓ(i) does
not fall below xa · ℓ

(i). However, since the event E8 is contained within the latter event,
which has strictly positive probability, it will be enough to estimate the probabilities
(pk)

8
k=1 for X(0) under its original law (conditional on starting at xa).
For k = 1, 3, 5, 7, since Ek = Ek−1 ∩ E′

k where E′
k only requires the random walk

X(0) to follow an exact path of ≤ Cεh steps, it follows that

lim
ε→0

lim sup
h→∞

− log pk
h

≤ lim
ε→0

(

−Cε logmin
e

p(0)(e)
)

= 0.

Next, note the strong law of large numbers and some basic calculations yields that, for
η > 0,

lim
n→∞

P

(∣

∣

∣

∣

1

n
X(0)

⌊nt⌋ − tδ(0)

∣

∣

∣

∣

≤ η for all t ∈ [0, 1]

)

= 1.

Applying the change of parameter n = h/(δ(0) · ℓ(i)) and η = εδ(0) · ℓ(i), the event within
the above probability ensures that the process (X(0)

⌊th/(δ(0) ·ℓ(i))⌋)t∈[0,1] stays within a

distance εh of the linear function (thδ0/(δ(0) · ℓ(i)))t∈[0,1], which at time 1 in particular
has traversed a distance h in the ℓ(i) direction. From this observation, we easily obtain
that

lim
ε→0

lim sup
h→∞

− log pk
h

= 0, for k = 2, 6.

Moreover, it is also straightforward to check from the directional transience of X(0)

that p8 ≥ C. Hence the previous limit also holds with k = 8.
To complete the proof, it is thus sufficient to establish that

lim
ε→0

lim sup
h→∞

− log p4
h

≤ t(i). (21)
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P1 P2

C1

C2

C3

ℓ(i)

δ(0)

δ̂(i)

h

Figure 5: A possible realisation of the path of X (0) on the event E8, as defined in the proof
of Lemma 5.1. The black dots mark the positions of xa (top left), xb, xc, xd, xe, xf and xg

(bottom right).

In this direction, we start by appealing to a sample path large deviations principle of
Mogul′skĭı[17] (see also [10, Theorem 5.1.2 and the following remark (b)]) to deduce
that

lim
η→0

lim sup
n→∞

− logP
(∣

∣

∣

1
nX

(0)

⌊nt⌋ − tδ̂(i)

∣

∣

∣ ≤ η for all t ∈ [0, 1]
)

n
= Λ(δ̂(i)),

where
Λ(δ̂(i)) := sup

x∈Rd

(

x · δ̂(i) − logE
[

eX
(0)
1 ·x

])

.

Thus, by considering the change of parameter n = h/(−δ̂(i) · ℓ(i)) and η = ε(−δ̂(i) · ℓ(i)),
we obtain that

lim
ε→0

lim sup
h→∞

− log p4
h

≤
Λ(δ̂(i))

−δ̂(i) · ℓ(i)
,

and hence it will be enough for our purposes to show that the right-hand side here is
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equal to t(i). Now, observe that

∂

∂xj

(

x · δ̂(i) − logE
[

eX
(0)
1 ·x

])

∣

∣

∣

∣

x=−t(i)ℓ(i)

=



δ̂(i)

j −
E

[

eX
(0)
1 ·xX(0)

1 · ej
]

E

[

eX
(0)
1 ·x

]





∣

∣

∣

∣

∣

∣

x=−t(i)ℓ(i)

= δ̂(i)

j −
δ̂(i)

j

ϕ(i)(t(i))

= 0,

and so x = −t(i)ℓ
(i) is a stationary point for x · δ̂(i) − logE[eX

(0)
1 ·x]. Moreover, since

the latter expression is strictly concave as a function of x (see, for example the second
lemma of [18]), the value x = −t(i)ℓ

(i) must be its unique maximiser. It follows that

Λ(δ̂(i)) = −t(i)ℓ
(i) · δ̂(i) − logϕ(i)(t(i)) = −t(i)ℓ

(i) · δ̂(i),

which confirms (21). �

6 The limiting path

To complete the article, in this section we prove Theorem 3, which we recall concerns
the simplicity of Z(∞).

Proof of Theorem 3(a). For convenience, in this proof we will suppose that p
(i) is

constant for all i ≥ 1. To adapt the argument to the more general assumption of the
theorem, one can just use an appropriate subsequence.

Let (Tj)j≥1 be the regeneration times of X(0) in direction e1. Then, for every i ≥ 1,
Z(i) necessarily contains each edge of the form (X(0)

Tj−1,X
(0)

Tj ) for j ≥ 2. Now, conditional

on Z(i), the probability that the random walk X(i) started from X(0)

Tj never hits X(0)

Tj−1

is given by

pi,j :=
r(i)(XTj−1,XTj )

R(i)(XTj−1,∞)
.

(To check this, one can apply [2, Theorem 2.11], for example.) We can bound the
denominator above uniformly in i by the almost-surely finite random variable that
appears on the left-hand side of (7). The numerator is constant by assumption. Hence
pi,j ≥ pj for some P-a.s. strictly positive random variable pj.

Now, fix j ≥ 2. Given X(0), the configuration of Z(i) between the vertices X(0)

Tj−1

and X(0)

Tj is given by one of a finite collection of graphs (each containing a simple path

between X(0)

Tj−1
and X(0)

Tj ). From this observation and the conclusion of the previous
paragraph, we deduce that there exists a strictly positive random variable p̃j depending
only on X(0) such that, conditional on Z(i), the probability that the random walk X(i)

started from X(0)

Tj−1
creates a simple path from X(0)

Tj−1
to X(0)

Tj , after which it never
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returns to X(0)

Tj−1, is bounded below p̃j. Since, conditional on Z(i), X(i) is independent
of the earlier walks, it readily follows from the latter observation that P-a.s. eventually
one of the walks X(i) will create a simple path between X(0)

Tj−1
and X(0)

Tj , and clearly

this will remain as the unique path connecting these two vertices in Z(∞).
Since the regeneration times of interest occur infinitely often along the path of X(0),

we obtain that the part of the graph Z(∞) from X(0)

T2−1 to ∞ is a simple path. Since T2
is a finite random variable, essentially the same argument yields that eventually one
of the walks X(i) will create a simple path from 0 to X(0)

T2 , and never return to X(0)

T2−1.
From this, we obtain the result. �

Proof of Theorem 3(b). Suppose e 6∈ {−e1, e1} is an edge satisfying the assumption
of the relevant part of the theorem, and let E = E0 be the event that X(0)

1 = e1,
X(0)

2 = e1 + e, X(0)

3 = e1, X
(0)

4 = 2e1, and 4 is a regeneration time for X(0) in the
direction e1. Moreover, for i ≥ 1, let Ei be the event that Ej holds for j < i and
also (e1, e1 + e) ∈ Z(i+1), i.e. the vertex e1 + e is visited by X(i). A standard result for
random walks (apply [2, Theorem 2.11] with x = e) then gives that

P
(

Ei | Ei−1, Z
(i)
)

= 1−
r(i)(e1, e1 + e)

R(i)(e1,∞) + r(i)(e1, e1 + e)
≥ 1−

r(i)(e1, e1 + e)

R(i)(e1,∞)
. (22)

Now, on Ei−1, we have that R(i)(e1,∞) ≥ r(i)(e1, 2e1), and so the above bound yields

P (Ei | Ei−1) ≥ 1−
c(i)(e1, 2e1)

c(i)(e1, e1 + e)
= 1−

c(i)(0, e1)

c(i)(0, e)
. (23)

On the other hand, similarly to the proof of Lemma 2.2, we have that

R(i)(e1,∞) ≥ r(i)(e1, 2e1)

∞
∑

j=2

β
−(X

(0)
Tj

−e1)·ℓ(i)
(i) ,

where (Tj)j≥1 are the regeneration times of X(0) in direction e1. Hence, using the
obvious adaptation of the strong law of large numbers that appears at (10), we deduce
that there exists a deterministic constant c and finite random variable N ≥ 2 such
that, P-a.s.,

R(i)(e1,∞) ≥ r(i)(e1, 2e1)
∞
∑

j=N

β−cjδ(0)·ℓ(i)
(i) =

r(i)(e1, 2e1)β
−cN
(i)

1− β−cδ(0)·ℓ(i)
(i)

.

Thus, applying this bound in conjunction with (22) and (23) yields

P (Ei | Ei−1, N) ≥ 1−
c(i)(0, e1)

c(i)(0, e)
min

{

1,
(

βcδ(0)·ℓ(i)
(i) − 1

)

βcN
(i)

}

.

Since the event that Z(∞) is not simple contains ∩i≥0Ei, it follows that

P
(

Z(∞) is not simple E0, N
)

≥ cN :=

∞
∏

i=1

(

1−
c(i)(0, e1)

c(i)(0, e)
min

{

1,
(

βcδ(0)·ℓ(i)
(i) − 1

)

βcN
(i)

}

)

,
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which is strictly positive whenever

∞
∑

i=1

c(i)(0, e1)

c(i)(0, e)
min

{

1,
(

βcδ(0) ·ℓ(i)
(i) − 1

)

βcN
(i)

}

< ∞.

By the assumption of the theorem and the fact that N is a finite random variable, the
above sum is P-a.s. finite. It is further easy to check that P(E0) > 0, and hence we
have demonstrated that

P
(

Z(∞) is not simple
)

≥ E (cN1E0) > 0,

which completes the proof in the case e 6∈ {−e1, e1}.
If e = −e1, essentially the same argument works, but we need to modify E = E0

to be the event that X(0)

1 = e2, X
(0)

2 = e2 − e1, X
(0)

3 = e2, X
(0)

4 = e2 + e1, and 4 is a
regeneration time for X(0) in the direction e1. �

Acknowledgements

The authors thank an anonymous referee for suggestions that helped us improve the
paper. The work of MH was supported by Future Fellowship FT160100166, from the
Australian Research Council. DC would like to thank the School of Mathematics and
Statistics at the University of Melbourne for its generous support during a visit to
Melbourne in August 2018, which is when the majority of the work on this article was
completed, and also acknowledge the support of his JSPS Grant-in-Aid for Research
Activity Start-up, 18H05832. MH thanks Ross Ihaka for providing the main R code
used to perform simulations.

References

[1] S. Asmussen and H. Albrecher, Ruin probabilities, second ed., Advanced Series on
Statistical Science & Applied Probability, vol. 14, World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ, 2010.

[2] M. T. Barlow, Random walks and heat kernels on graphs, London Mathematical
Society Lecture Note Series, vol. 438, Cambridge University Press, Cambridge,
2017.

[3] M. Barma and D. Dhar, Directed diffusion in a percolation network, J. Phys. C
16 (1983), no. 8, 1451.

[4] G. Ben Arous and A. Fribergh, Biased random walks on random graphs, Probabil-
ity and statistical physics in St. Petersburg, Proc. Sympos. Pure Math., vol. 91,
Amer. Math. Soc., Providence, RI, 2016, pp. 99–153.

[5] G. Ben Arous, A. Fribergh, N. Gantert, and A. Hammond, Biased random walks
on Galton-Watson trees with leaves, Ann. Probab. 40 (2012), no. 1, 280–338.

[6] N. Berger, N. Gantert, and Y. Peres, The speed of biased random walk on perco-
lation clusters, Probab. Theory Related Fields 126 (2003), no. 2, 221–242.

32



[7] A. Bowditch, Escape regimes of biased random walks on Galton-Watson trees,
Probab. Theory Related Fields 170 (2018), no. 3-4, 685–768.

[8] D. A. Croydon, Slow movement of a random walk on the range of a random walk
in the presence of an external field, Probab. Theory Related Fields 157 (2013),
no. 3-4, 515–534.

[9] D. A. Croydon, A. Fribergh, and T. Kumagai, Biased random walk on critical
Galton-Watson trees conditioned to survive, Probab. Theory Related Fields 157
(2013), no. 1-2, 453–507.

[10] A. Dembo and O. Zeitouni, Large deviations techniques and applications, second
ed., Applications of Mathematics (New York), vol. 38, Springer-Verlag, New York,
1998.

[11] R. A. Doney, On the asymptotic behaviour of first passage times for transient
random walk, Probab. Theory Related Fields 81 (1989), no. 2, 239–246.

[12] Peter G. Doyle and J. Laurie Snell, Random walks and electric networks. [elec-
tronic resource]., Carus mathematical monographs: no. 22, Washington, D.C. :
Mathematical Association of America, c1984., 1984.

[13] W. Feller, An introduction to probability theory and its applications. Vol. II, Sec-
ond edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971.

[14] A. Fribergh and A. Hammond, Phase transition for the speed of the biased random
walk on the supercritical percolation cluster, Comm. Pure Appl. Math. 67 (2014),
no. 2, 173–245.

[15] R. Lyons, R. Pemantle, and Y. Peres, Biased random walks on Galton-Watson
trees, Probab. Theory Related Fields 106 (1996), no. 2, 249–264.

[16] R. Lyons and Y. Peres, Probability on trees and networks, Cambridge Series in
Statistical and Probabilistic Mathematics, vol. 42, Cambridge University Press,
New York, 2016.
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