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On systems of language equations
with Boolean operations

Alexander Okhotin*

Abstract

This paper reports preliminary results on language equations with explicit op-
erations of concatenation, union, intersection and complement. It turns out that
even defining the language denoted by such a system is a nontrivial task, and four
different methods of associating a single language with a system are consequently de-
veloped in this paper. A grammar representation for these systems, named Boolean
grammars, is introduced. Many important decision problems (such as the compli-
ance to each of the mentioned semantics) are shown to be undecidable, but still it
is argued that, under some restrictions, it could nevertheless be possible to develop
a computationally feasible theory of such systems.

1 Introduction

The characterization of context-free grammars with systems of language equations
containing the operations of union and concatenation is well-known [1]. It is based upon
the algebraic representation of formal languages as a semiring, with union and concate-
nation acting as addition and multiplication respectively, with zero @ and identity {e}; by
the general results on the algebraic properties of systems of equations of this kind one can
prove that such a system always has a least solution, and establish the correspondence
between the least solutions of these systems and the derivability in context-free grammars.

In a recent paper [5], more general systems of language equations that allow the use
of an additional intersection operation were investigated, and it was proved that such
systems have basically the same properties as the classical systems of language equations,
and that these systems characterize conjunctive grammars [4], an extension of context-
free grammars with an intersection operation, in the same way as the classical systems of
language equations characterize standard context-free grammars.

This paper reports on a preliminary investigation of the properties of systems of lan-
guage equations that, in addition to the concatenation, union and intersection, allow the
use of complement. The motivation for the study of these systems of equations is given by
the old question of developing a sufficiently potent and at the same time computationally
efficient tool for denoting formal languages (see the discussion and bibliography in [2]).
The proposed explicit negation operation is, perhaps, the next most natural thing to add
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to the formalism of context-free rules after the conjunction that came with conjunctive
grammars [4]. However, the explicit negation significantly complicates the state of affairs
in comparison with context-free and conjunctive grammars, because complement is not a
monotonous function, and thus the familiar fixed point approach is no longer applicable.
Some systems of this kind turn out to have multiple pairwise incomparable solutions and
some have no solutions at all; even worse, as proved in this paper, there is no algorithm
to determine the type to which a given system belongs.

In Section 2 the systems of language equations with Boolean operations are introduced,
and their basic properties, such as the issues of existence and uniqueness of solutions, are
investigated. In Section 3 the systems of equations are considered as a means of specifying
languages; it turns out that the question of associating a language with a system is quite
nontrivial, and four different semantics for them are proposed in this paper. Finally, in
Section 4 an attempt is made to reformulate the systems of equations as grammars, named
Boolean grammars. A normal form for these grammars is suggested and the questions of
transforming a grammar into this normal form are discussed.

2 Systems of equations

2.1 Formulae and equations

Definition 1 (A formula). Let T be a finite nonempty alphabet and let X = (X4, ... X5)
(n = 1) be a vector of language variables. A formula over ¥ in variables X is defined
inductively on its structure: the empty string € is a formula; any symbol from ¥ is a
formula; any variable from X is a formula; if ¢ and ¢ are formulae, then (o), (¢ V ¥),
(p&1)) and (—yp) are formulae as well.

For the convenience of notation, the parentheses will be omitted whenever possible:
concatenation, conjunction and disjunction are considered associative, and the default
precedence of operations is first concatenation, then negation, then conjunction and finally
disjunction.

Definition 2 (Value of a formula). Let ¢ be a formula over the alphabet ¥ in variables
X =(Xy,...,Xp). Let L= (Ln,...,Ly,) be a vector of languages over L.

The value of the formula ¢ on the vector of languages L, denoted as p(L), is defined
inductively on the structure of ¢:

e(L) = {e}.
a(L) = {a} for everya € .

X;(L) = L; for everyi (1<i<n).
(YE)(L) = »(L) - &(L).

(% VE(L) = (L) UE(L).
(¥&€)(L) = ¢(L) N&(L).

(—)(L) = Z* \ ¢(L).
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The value of a vector of formulae B = (p1,...,m) on the vector of languages L is a
vector of languages B(L) = (¢1(L), - .., om(L)).

Let us define the systems of equations we are going to study.

Definition 3 (Resolved system of equations). Let ¥ be an alphabet. Let n > 1.
Let X = (Xy,...,X,) be a set of language variables. Let ¢ = (¢1,...,pn) be vectors of
formulae in variables X over the alphabet ¥. Then

Xi = pi(Xy,...,Xn) (for alli) (1)
is called a resolved system of equations over ¥ in variables X.

Definition 4 (Solution of a resolved system). L = (Ly,...,Ly,) is said to be a
solution of a system (1), if for every i (1 < i < n) it holds that L; = ¢;(L).

Example 1. The following system of equations over the alphabet ¥ = {a, b}
Xl = ﬂX2X3&"'X3X2&X4
Xo=(aVvVbXs(aVb)Va
X3 = (aV b)Xg(G,V b) Vb
Xys=(aaVabVbaVbb)X,Ve

(2)

has the unique solution ({ww |w € {a,b}*}, {zay|=z,y € {a,b}*}, {zby | z,y €
{a,b}*}, {u|u € {a,b}*", n > 0}).

It we use the first variable as a kind of “start symbol”, then the grammar given in
Example 1 can be said to denote the language {ww|w € {a,b}*}. This abstract language
is often given as an example that captures the notion of “reduplication”, which is viewed
as an essential property of natural languages. The language {ww | w € {a,b}*} is co-
context-free, but not context-free; additionally, it is known not to be representable as a
finite intersection of context-free languages. Although conjunctive grammars can denote
a very similar language {wecw|w € {a,b}*} [4], it is not known whether {ww |w € {a,b}*}
is a conjunctive language (or, equivalently, whether it can be denoted using a system of
language equations containing concatenation, union and intersection, but not negation).

However, as we have just seen, it can be easily denoted using systems of language
equations with Boolean operations. Generally, being able to apply negation whenever it
is needed is a practically useful property in itself. But, as we shall see in the following,
this increase in expressive power has a substantial cost in terms in the vital theoretical
properties of the model: even defining the language denoted by such a system is a quite
nontrivial task that admits many different solutions, none of which seems perfect.

2.2 On the existence and uniqueness of solutions

Unlike the systems of language equations without negation, which always have at
least one solution, the newly introduced systems with arbitrary Boolean operations are
not guaranteed to have them:

Proposition 1. A system of equations does not necessarily have solutions.
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X; = =X, is an example of a system of language equations without solutions.
Since the systems without negation and conjunction already can have multiple solu-
tions, so can the systems with the full set of logical connectives:

Proposition 2. A system of equations that has solutions may have one or multiple solu-
tions.

The system X; = X; has continuum of solutions (in fact, every language is a solution
of this system), the system X; = X;&e has two solutions (§) and {¢}), while the system
X; = aX;bV € has the unique solution {a™b" | n > 0}.

In the case of context-free and conjunctive grammars, where the righthand sides of the
corresponding systems of equations are always monotonous, every system is guaranteed
to have the least solution under the partial order of componentwise inclusion. This does
not hold in the nonmonotonous case:

Proposition 3. A system of equations that has solutions does not necessarily have the
least solution.

Proof. Consider the system {X; = =X, X; = X}, which has the set of solutions
{(Z*\ L, L) | L C ¥*}, and all these solutions are pairwise incomparable. O

The mentioned properties of systems of language equations with Boolean operations
are not only all nontrivial, but also turn out to be all undecidable.

Theorem 1. The following properties of systems of equations are undecidable: ezistence
of solution, uniqueness of solution, ezistence of minimal solution.

Proof. We reduce Post correspondence problem to each of the three mentioned problems.
Let {(u;,v;)}s_,, where u;,v; € £*, be an instance of Post correspondence problem.

1. Existence of solution. Let b, ..., b; be symbols not in ¥ and consider the system
X1 = —‘XI&XZ&X3
Xo =0 Xou1 V...V b Xour Vbiuy V... brug (3)

Xy =0 Xsv V...V Xzu V bivi V...bug
Let L, and L3 be the languages uniquely defined by the equations for X, and Xj.
Every solution of the system (3) must be of the form (L, L,, L3) for some L C T*.

If Post correspondence problem has a solution, then the language L, N Lj is
nonempty, i.e., there exists a string w € LN L3. If there exists a solution (L, Lj, L3)
of the system (3), then, by the first equation of the system, w € L if and only if
w ¢ L, which is a contradiction.

If Post correspondence problem does not have solutions, then Ly N L3 = @ and the
triple (@, Ly, L3) is the unique solution of the system (3).

2. Uniqueness of solution.
X1 = X1 &X&X3
Xo=bXou; V...V Xoup Vbiu V... bpug (4)
Xa=0Xzv1 V...V Xaur Vv V... by
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(L, Ly, L3) is a solution of the system (4) if and only if L = L N (L, N L3), which is
true if and only if L C Ly N Ls.

If Post correspondence problem has a solution, then Ly N L3 # ( and there exist
more than one language L, such that (L, Lg, L3) is a solution of the system (4).
On the other hand, if Post correspondence problem has no solutions, then the only
solution of the system (4) is (@, Lo, L3).

3. Existence of a least solution. Let us augment the system (4) with two additional
equations.

X1 = X1&X2& X5
Xo=b Xou1 V...V Xour Vbiur V... bpug

Xs =0 Xav V...V X3up Vb V... by (5)
Xy =Xy

Now every quintuple (L, Ly, L3, L', ¥* \ L), such that L C Ly N L3, is a solution of
the system (5).

If Post correspondence problem has a solution, then there exist multiple solutions
of the system (5) and none of these solutions is the least. If Post correspondence
problem has no solutions, then the set of solutions of the system consists of all
quintuples (@, Lo, L3, L', =*), where L' C ¥*, and obviously (@, L, L3, 8, £*) is the
least among these solutions. a

2.3 Solutions modulo some language

Let us call two languages L;,L; C ¥* equal modulo the third language M C ¥*
(denoted L, = Ly (mod M)), if Ly N M = L, N M. This relation can be extended to the
vectors of languages by saying that L' = (Li,...,L}) equals L" = (LY,..., L;;) modulo
M if L} = L (mod M) for all 7.

Lemma 1. Let M C X* be an arbitrary language closed under substring, i.e., such that
for every string w € M all substrings of w are also in M. Let o(X;,...,X,) be a formula.

Then, if two vectors of languages, (L}, ...,L.) and (LY,...,L}), are equal modulo M,
then o(L},..., L) and o(LY,..., L) are also equal modulo M.

The proof is a straightforward induction on the structure of .

Definition 5. Let X = p(X) be a system of equations and let M be a language closed
under substring. A vector L = (L,,...,L,) is said to be a solution of the system X =
P(X) modulo M if for every i the language L; is a subset of M and ¢;(L) = L; (mod M).

Lemma 2. Let M' C M" C £* be two languages, each closed under substring. Let
L = (Ly,...,Ly,) be a solution of a system of equations X = B(X) modulo M". Then
L'=(LinM',...,L,N M) is a solution of the same system modulo M.
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Proof. Since L' = L (mod M'), then, by Lemma 1,
i(L') = ¢i(L) (mod M) (6)

Since L is a solution modulo M”, for every i it holds that @i(L) = L; (mod M"), which,
by the inclusion M’ C M", implies that

@i(L) = L; (mod M") (7

It is left to combine (6) and (7) to obtain
i(L') = @i(L) (mod M’), (8)
which, due to the arbitrary choice of ¢, means @(L') = (L) (mod M’). O

Lemma 3. If a system of equations X = B(X) over ¥ has a unique solution modulo
substrings(w) for any string w € £*, then it has a unique solution modulo every language
closed under substring.

3 Defining the semantics

In this section we consider systems of equations as a means of specifying languages.
A semantics for systems of equations is a certain law that associates a definite vector of
languages with every system of equations from a certain class of systems valid under this
semantics; if some variable is then designated as the start variable, this will give a single
language specified by the system.

3.1 Semantics of unique solution

The most obvious thing to do is to confine our consideration to the systems of equations
that have unique solution and then associate this solution with a system: with every
system of equations X = @(X) over an alphabet ¥ in variables X = (X;,...,X,) that
has a unique solution L = (Ly, ..., Ly,), this vector L is the vector specified by the system
under the semantics of unique solution.

Under this semantics, the decision problem we are interested in solving can be for-
mulated as “given a system of equations, a variable and a string, determine, whether the
component of the unique solution of the system corresponding to the given variable con-
tains the given string”. However, it turns out that this problem is quite difficult to solve.
Consider two instances of Post correspondence problem, P’ and P”, and the following
system of equations:

X5 = Xo&a

Xz = ‘1X1&a :

.X3 = —1X3&CLX5&X1X5

X4 = —lX4&aX5&X2X6 | (9)

X5 = language of PCP P’
X = language of PCP P”
... (variables and equations used to simulate PCPs)
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Under the assumption that exactly one of the Post correspondence problems P’ and P”
is solvable, the system (9) has a unique solution; that is (0, {a},0,0,...) if P’ is solvable
while P” is not, and ({a},0,0,0,...) if P" is solvable while P’ is not. If both PCPs will
turn to be solvable, then the system (9) will have no solutions, and if neither P’ nor P”
is solvable, then the system (9) will have multiple solutions.

In any case the system (9) has two solutions modulo {, a}, and in order to check the
membership of the string @ in the first component of the unique solution of the system it
is necessary to check the membership of strings of unbounded length in other components
of the system; if the solution is not unique, then this search will not terminate.

3.2 Semantics of unique solution in the strong sense

Let us impose an additional restriction upon the systems of equations that will make
them a more sensible generative device. Instead of the requirement that the system just
has a unique solution, we now require that the system has a unique solution modulo every
language closed under substring. This makes the membership of shorter strmgs in the
solution independent of the membership of the longer strings.

The following statement follows from Lemma 2:

Proposition 4. Let X = B(X) be a system of equations that has unique solution modulo
every language closed under substring. Let M be an arbitrary finite language closed under
substring, let u € L* be a string not in M, such that all of its substrings are in M, and
let L =(Ly,...,L,) be the unique solution of the system modulo M.

Then the unique solution of the system modulo M U {u} can be determined by trying
all 2™ vectors of languages L' = (L4,...,L}) (L; C {u} for all i), substituting L" =
(LyUL,...,LyULYL) into the system and checking it for being the solution of the system
modulo M U {u}. '

By letting M, = ¥* in Lemma 2, it can be determined that in order to check the
membership of a given string w in the unique solution of the system, it now suffices to
check its membership in the unique solution modulo the set of substrings of w, which can
be determined using the technique given in Proposition 4.

However, the problem of whether a given system complies to the semantics of unique
solution in the strong sense remains undecidable, as PCP could be reduced to it by
constructing the system

X1 = “1X1&X2&X3
Xz = b1X2"U,1 V...V kazuk \Y b1u1 V.. .bkuk ‘ (10)
X3 = b1X3’U1 \Y \% ka;;‘Uk \ bl’U1 V... bkvk

which has unique solution modulo every language iff PCP has no solutions.

3.3 Semantics of naturally reachable solution

Semantics of context-free grammars is the semantics of the least fixed point, which
well corresponds to the notion of derivability; semantics of conjunctive grammars [4, 5]
continues with this tradition.
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Things change once the nonmonotonous operation of negation is introduced: here the
possible absense of the least solution of a system well corresponds to the quite predictable
difficulties with developing a set of derivation rules equivalent to any denotational seman-
tics, such as the semantics of the unique solution of the system.

However, in order to maintain the connection with conjunctive and context-free gram-
mars, it would be highly desirable to find a way to choose, if possible, the most natu-
ral among multiple solutions of some system, which would be the least solution in the
monotonous case and something else in the general case. For that purpose we slightly
modify the iterative approach of Proposition 4 to define the semantics of naturally reach-
able solution, which has some traits of operational semantics:

Definition 6 (Naturally reachable solution). Let X = B(X) be a system of equations.
Naturally reachable solution modulo finite languages closed under substring is defined in-
ductively on the cardinality of the modulus.

Basis. Naturally reachable solution modulo @ is (9,...,0).

Induction step. Let M be an arbitrary finite language closed under substring, let u €
* be a string not in M, such that all of its substrings are in M, and let L = (L4, ..., L,)
be naturally reachable solution of the system modulo M. Consider an arbitrary finite
sequence of vectors of languages

{L(z) = (L?)’ RN L‘E:)) f:O’ (11)

such that (i) L = L, (ii) every nezt vector LY in the sequence is obtained from the
previous vector L) by substituting some j-th component with p;(LD) N (M U {u}), and
(iii) the last element of the sequence is a solution of the system modulo M U {u}. If there
ezists at least one such sequence, and all these sequences converge to a single vector, then
this vector is called naturally reachable solution of the system modulo M U{u}; otherwise,
the whole system of equations is said to be noncompliant to this semantics.

While this semantics does not have the same theoretical justifications as the semantics
of the unique solution does, the semantics of naturally reachable solution can be shown
to define the least fixed point of any system which does not make use of negation, and
thus ensures “backward compatibility” with conjunctive and context-free grammars.

The undecidability of compliance to this semantics is shown by the same construction
(10) as in the previous case.

3.4 Semantics of convergence

In this section we propose one more method of defining the semantics of language
equations with negation inspired by the fixed point semantics of the case of systems with
monotonous operations. We use notion of convergence of language sequences given in [3],
which says that {L,} — L iff {2~ ™=etaazlel} 5 0 where A means symmetric difference.
This notion of convergence is easily (componentwise) extended to sequences of vectors of
languages.

Let ¢ = (@1,---,¢n) be a vector of formulae over an alphabet ¥ and in variables
X = (X1,...,X,). If all these formulae do not contain negation, then, by the results of
[6], the system of language equations X = ¢(X) has a least solution given by

L=(L1,...,Ln)=7L1Lr{.1o<p"((0,...,(b), (12)
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This is basically proved as follows: since, without negation, ¢ is monotonous, the
sequence {¢™(0,...,0)}%2, is a monotonous sequence, i.e.,

©@,....0)<0®,....,0) S 0(p®,....0) < ... <" (0, 0) <, (13)

which can be proved by a straightforward induction on 7, and hence has a limit L.

On the other hand, since ¢ is continuous, then the sequence {p(¢™(0,...,0))}2,
necessarily converges to ¢(L). However, as {p(¢™(0,...,0))} and {¢™(0,...,0)} is in fact
the same sequence, they necessarily have the same limit, and therefore L = ¢(L).

This proves that the limit (12) is a solution of the system. Using again the monotonic-
ity of ¢, one can prove that for any L', such that ¢(L') = L', it holds that ©*(@,...,0) < L'
for any number n (using a simple induction on n), and then, using some properties of a
limit, conclude that L < L', which means that L is the least solution.

In the case when negation is allowed, ¢ may be a nonmonotonous function, and there-
fore this kind of proof is not seen to be possible. Already the first step, where the
convergence of the sequence (12) is established, can easily fail - for instance, consider the
system X = —X, for which this kind of sequence assumes the form

0,2%,0,5%,...,0,5", ..., (14)

and therefore diverges.

However, ¢ can be proved to remain a continuous function regardless of the use of
negation. Therefore, if for a certain system X = ¢(X) the sequence (12) happens to
converge, then it converges to a solution of the system. This fact can be used to define
the following semantics:

Definition 7. A system of language equations X = @(X) is said to be compliant to the
semantics of convergence if the sequence {¢™(®,...,0)} has a limit. This limit is then
taken as the semantical value of the system under the semantics of convergence.

This definition is accompanied with a customary undecidability result:

Theorem 2. [t is undecidable whether a given system complies to the semantics of con-
vergence.

Proof. As before, we reduce Post correspondence problem to the question of whether the
system of language equations (10). Denote the n-th term of the sequence {¢"(®,...,0)}
as L™ = (L{, L™, L$). The second and the third components of the terms of this se-
quence are computed by a monotonous function, and therefore we know that the sequences
{L2}2, and {L%}%, are monotonous and converge to some (context-free) languages Lo
and Lj respectively.

If Post correspondence problem does not have a solution, then Ly N Ly = @ and
therefore L™ N L{™ = @ for all n. Accordingly, the sequence {¢"(0,...,0)} peacefully
converges to (0, Lo, Ls).

However, if Post correspondence problem does have a solution, then L, N L3 # 0 and
therefore there exists a string w € X* and a number ng > 1, such that w ¢ L{™® VnL ™Y,
but w € L N LM for all n > no. As a result,

w ¢ L(lno), w e L(1"°+1),..., w ¢ Lgno+2k)’ we L(l'no+2k:+1),_._ (15)

and consequently the sequence {¢©™(0,...,0)}32, diverges. O
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4 Grammar representation

Now let us represent the systems of equations in the terms of grammars; two for-
malisms, negative and Boolean grammars, are being proposed.

Definition 8. A negative grammar is a quadruple G = (X, N, P, S), where

o ¥ and N are disjoint finite nonempty sets of terminal and nonterminal symbols-
respectively.

o P C Nx(ZUN)*xB is the set of rules. Formally, each rule is a triple (A, o, 0), in
which A is a nonterminal, the string o is the body of the rule, while o is a Boolean
variable that determines whether the rule is positive (0 = 1) or negative (0 = 0).
The rules (A, a,1) and (A, e, 0) are notated as

A—a and (16a)
A— o (16Db)

respectively.
e S € N is the start symbol of the grammar.

The right side of every rule is a formula, and ¢ grammar is interpreted as a system of
equations over X in variables N, having form

A= \/ ¢ (foralAeN) | (17)

A—rpcP

The language generated by a grammar is then defined using one of the semantics described
in Section 3.

Every context-free grammar is a negative grammar, in which all rules are of the form
(16a). Since de Morgan laws are immediately applicable to the semantics of unique
solution and the semantics of unique solution in the strong sense, for these semantics
there is no loss of generality in restricting the systems to be of the form (17) for some
negative grammar G. For the other two semantics the question of generality of negative
grammars ought to be studied.

~ If we combine the formalism of conjunctive grammars with that of negative grammars,
we obtain a class of Boolean grammars:

Definition 9. A Boolean grammar is a quadruple G = (X, N, P, S), where

e ¥ and N are disjoint finite nonempty sets of terminal and nonterminal symbols
respectively.

e P is the set of rules, each of the form
Ao o&. . &an&-bi&... & B, (m+n=1, a;,6 € (EUN)Y) (18)

Objects of the form A — «; and A — —f3; are called conjuncts, positive and negative
respectively. '
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e S € N is the start symbol of the grammar.

Boolean grammars are interpreted as systems of equations in the same way as negative
grammars are (17).

Every conjunctive grammar is a Boolean grammar, in which every rule (18) contains
only positive conjuncts, i.e., m > 1 and n = 0. Every negative grammar is a Boolean
grammar, in which every rule (18) contains a single conjunct, either positive (m = 1 and
n = 0), or negative (m = 0, n = 1). Every context-free grammar in a Boolean grammar,
in which every rule (18) contains a single positive conjunct (m =1, n = 0).

Consider the system of equations from Example 1, and let us use its general idea to
produce a Boolean grammar that will generate the language {ww |w € {a,b}*} under all
the semantics defined in this paper:

Example 2. Let G = ({a,b},{S,4,B,C, X}, P,S) be a Boolean grammar, where P
consists of the following rules:

S = "AB&-~BA&C

A— XAX C - XXC

A-a C—e (19)
B - XBX X —a

B—b X —b

Now let us generalize context-free Chomsky normal form for the case of Boolean
grammars:

Definition 10. A Boolean grammar G = (X, N, P, S) is said to be in the binary normal
form if every rule in P is of the form

A= BiCi&...&BnCn&-DiEi&. .. &~DyEn&—e (m+n 3> 0) (20a)
A—a ‘ (20b)
S — ¢ (only if S does not appear in right parts of rules) (20c)

It should not be hard to prove that every system in the binary normal form complies to
all the semantics defined in this paper and defines the same language under all given types
‘of semantics. The membership of strings in that language can be checked by a variation
of Cocke-Kasami-Younger algorithm that further generalizes the extended version of this
algorithm given in [4].

However, this positive result has an immediate negative implication: there cannot
exist an algorithm to transform a given Boolean grammar to binary normal form, because
as every grammar in this form is always semantically correct, this would require to test
the semantical correctness of the input grammar, which is known to be an undecidable
problem for all types of semantics considered in this paper.

Is there a way to overcome all these difficulties and to turn Boolean grammars into a
practical device for defining formal languages? The positive result obtained by the author
is that for the semantics of unique solution in the strong sense and for the semantics of
naturally reachable solution there exists a noneffective transformation procedure (i.e., a
procedure that involves solving undecidable problems in course of the transformation)
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to convert any given Boolean grammar that is compliant to one of the two mentioned
semantics to binary normal form. This procedure is basically a generalization of the similar
procedure for conjunctive grammars [4], which in turn extends the case of context-free
grammars, and consists of three stages:

e Removal of positive epsilon conjuncts and introduction of negative epsilon conjunct,
i.e., eliminating rules that contain conjuncts A — € and adding a conjunct A — —e to
every rule. Once it is known which components of the solution defined by the system
under the given semantics contain the empty string, this step can be effectively
performed using a variation of the corresponding context-free technique.

e Removal of both positive and negative unit conjuncts, i.e., getting rid of rules that
contain conjuncts A — B or A — —B. This step involves solving undecidable
problems.

e Shortening of long conjuncts and bringing the grammar to the final conformity to
(20). Once there are neither positive epsilon conjuncts nor unit conjuncts in the
rules of the grammar, this step is straightforward.

The existence of such a noneffective procedure implies that systems in the binary
normal form define the same class of languages as the whole family of systems compliant
to the two semantics mentioned above. This also means that by imposing some further
restrictions on systems of language equations one can obtain a sufficiently large subclass,
for which the transformation to the binary normal form is effective and computationally
feasible.

This leaves hope that, despite the omnipresent undecidability results, the new gen-
erative device might still have practical value. However, only a rigorous investigation of
their properties could determine whether this conjecture is true.
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