
Original research 1 

Cultivar discrimination of litchi fruit images using deep learning 2 

 3 

Yutaro Osako1, Hisayo Yamane1, Shu-Yen Lin2, Po-An Chen3, Ryutaro Tao1 4 

1Graduate School of Agriculture, Kyoto University, Kyoto, Japan 5 

2Department of Horticulture and Landscape, National Taiwan University, Taipei, Taiwan 6 

3Plant Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, 7 

Taiwan 8 

 9 

Corresponding author 10 

Hisayo Yamane 11 

hyamane@kais.kyoto-u.ac.jp 12 

Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-13 

8502, Japan 14 

 15 

  16 

mailto:hyamane@kais.kyoto-u.ac.jp


ABSTRACT 17 

 Litchi (Litchi chinensis Sonn.) originated from China and many of its cultivars 18 

have been produced in China so far during the long history of cultivation. One problem 19 

in litchi production and research is the worldwide confusion regarding litchi cultivar 20 

nomenclature. Because litchi cultivars can be described in terms of cultivar-dependent 21 

fruit appearance, it should be possible to discriminate cultivars of postharvest fruits. In 22 

this study, we explored this possibility using recently developed deep learning technology 23 

for four common Taiwanese cultivars ‘Gui Wei’, ‘Hei Ye’, ‘No Mai Tsz’, and ‘Yu Her 24 

Pau’. First, we quantitatively evaluated litchi fruit shapes using elliptic Fourier 25 

descriptors and characterized the relationship between cultivars and fruit shapes. Results 26 

suggest that ‘Yu Her Pau’ can be clearly discriminated from others mainly based on its 27 

higher length-to-diameter ratio. We then fine-tuned a pre-trained VGG16 to construct a 28 

cultivar discrimination model. Relatively few images were sufficient to train the model 29 

to classify fruit images with 98.33% accuracy. We evaluated our model using images of 30 

fruits collected in different seasons and locations and found the model could identify ‘Yu 31 

Her Pau’ fruits with 100% accuracy and ‘Hei Ye’ fruits with 84% accuracy. A Grad-CAM 32 

visualization reveals that this model uses different cultivar-dependent regions for cultivar 33 

recognition. Overall, this study suggests that deep learning can be used to discriminate 34 



litchi cultivars from images of the fruit.  35 

 36 
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1. Introduction 41 

 Litchi (Litchi chinensis Sonn.) is a subtropical fruit tree species that belongs to 42 

Sapindaceae. It originated in the region between southern China, northern Vietnam, and 43 

Myanmar (Mitra and Pathak, 2010). China has the longest history of litchi cultivation, 44 

which was confined to southern China and possibly northern Vietnam until the late 17th 45 

century. Litchi cultivation then spread to other Asian countries such as Myanmar, India, 46 

Nepal, Bangladesh, Thailand, the Philippines, and Indonesia (Huang et al., 2005). From 47 

the 1800s to 1900s, litchis were introduced to other regions around the world such as 48 

South Africa, Australia, North America, South America, and Israel (Huang et al., 2005). 49 

China accounts for nearly 80% of the global plantings, with production concentrated in 50 

the Guangdong, Guangxi, Fujian, and Hainan provinces. In China, over 200 cultivars, 51 

lines, or individuals with unique features have been identified so far (Wu, 1998). Nearly 52 



all the cultivars grown throughout the world originated in China, although artificial cross 53 

breeding programs have recently begun in some countries (Huang et al., 2005). Litchi 54 

was introduced to Taiwan from the Fujian Province of China nearly 300 years ago and 55 

commercial cultivation started in the 1950s (Chang, 1961). Commercial cultivation 56 

rapidly increased in Taiwan and reached a peak production with 14,682 ha of production 57 

area in 1988, and then declined (Chang et al., 2005). In Taiwan, litchi is an important fruit 58 

crop after citrus, mango, and pineapple (Taiwan Agricultural Statistic Year Book, 2015). 59 

In Taiwan, more than 30 cultivars have been reported to be under cultivation, and a few 60 

cultivars are under large-scale commercial production (Chang et al., 2009). ‘Hei Ye’ 61 

(‘Haak Yip’ or ‘Black leaf’), ‘Yu Her Pau’ (‘Fei Zi Xiao’ or ‘Fay Zee Siu’), and ‘No Mai 62 

Tsz’ are the top three cultivars in Taiwan (Chang et al., 2017). 63 

 One problem in litchi production and research is that there is worldwide 64 

confusion regarding litchi cultivar nomenclature. Different names are assigned to the 65 

same cultivar (synonyms) and the same (or similar) names are used for different cultivars 66 

(homonyms). These confusions may be caused by misidentification (Khurshid et al., 67 

2004) and/or different Chinese dialects as well as different translations from the Chinese 68 

to English (Aradhya et al., 1995). To overcome the problem, molecular-level approaches 69 

have been used to discriminate genotypes, including isozyme fingerprinting (Aradhya et 70 



al., 1995), random amplified polymorphic DNA (Anuntalabhochai et al., 2002), 71 

microsatellite DNA (Viruel and Hormaza, 2004; Sun et al., 2012; Madhou et al., 2013), 72 

and single nucleotide polymorphism markers (Liu et al., 2015). However, it is very 73 

difficult for retailers, exporters, importers, and consumers to obtain the molecular genetic 74 

information needed to discriminate the cultivar origin of postharvest fruits. Because litchi 75 

cultivars can be described in terms of cultivar-dependent fruit appearance and several 76 

fruit characteristics (Menzel et al., 2005), the cultivar discrimination of postharvest fruits 77 

itself may be desirable, especially for consumers in countries that rely mainly on imported 78 

litchi fruit such as Japan. Traditionally, morphological traits such as fruit shape, 79 

appearance, and harvest season were used to discriminate the genotypes of the fruits (Wu, 80 

1998). As for fruit characteristics, not only fruit morphological index such as whole fruit 81 

shape (round, egg, oblong, ellipse or heart), fruit shoulder shape (smooth or uneven), fruit 82 

apex shape (round, obtuse, or pointed), fruit skin protuberance type (sharp pointed, wedge, 83 

obtuse, or smooth), but also fruit physiological index such as fruit weight, seed size, sugar 84 

contents, flesh recovery rate and maturation period were used to describe litchi cultivars 85 

(Koul and Singh, 2017; Singh et al., 2012). The usefulness of this approach has been 86 

limited because these traits depend on environmental conditions (Khurshid et al., 2004). 87 

Thus, morphological traits have not been widely used as genotype indicators. However, 88 



the recently developed machine learning technology known as deep learning (DL) could 89 

enable us to establish models for precise image classification (Nasiri et al., 2019). DL 90 

provides a hierarchical representation of the data by means of various convolutions, which 91 

increases learning capabilities and thus performance and precision in image classification. 92 

However, little research has been reported on the discrimination of cultivars of litchi fruit 93 

images. In this study, we first investigated whether fruit appearance represents a cultivar-94 

specific feature. For this purpose, we evaluated fruit shapes (fruit contours) quantitatively 95 

using elliptic Fourier descriptors (EFDs) and determined the differences in fruit shapes 96 

across different cultivars. Then, taking advantage of newly developed DL-based image 97 

recognition and processing technology, we developed a model to discriminate the 98 

cultivars in fruit images. 99 

  100 

2. Materials and Methods 101 

2.1. Plant materials 102 

Litchi fruits were obtained from commercial fruit markets in Taipei city and an 103 

orchard located in Hsinchu city, Taiwan (24°46’37.0’’N, 120°58’21.3’’E) during the 2018 104 

season. Mature fruits were harvested from the trees of four cultivars, ‘Gui Wei’ (GW), 105 

‘Hei Ye’ (HY), ‘No Mai Tsz’ (NMT), and ‘Yu Her Pau’ (YHP), all of which are major 106 



cultivars in Taiwan (Chang et al., 2017). Smaller seed size, early harvesting period and 107 

greater sugar-to-acidity ratio in YHP (data not shown) were consistent with the cultivar 108 

description in Chang et al. (2017). Flesh recovery rate of NMT and YHP fruits were 78% 109 

whereas those of GW and HY fruits were 75% and 73%, respectively. Higher flesh 110 

recovery rate of NMT and YHP was also consistent with previous reports (Chang et al. 111 

2017; Koul and Singh, 2017). HY fruits used in this study were heart-shaped with smooth 112 

fruit skin and without raised protuberances as described in Singh et al. (2012). YHP and 113 

HY, imported from Taiwan to Japan through a commercial retailing company, were also 114 

obtained during the 2019 season. Flesh recovery rate of YHP was 79%, higher than HY 115 

(74%), which was similar to the cultivar identification characteristics described in Chang 116 

et al. (2017) and the 2018 season samples. The fruits obtained in 2019 were used for 117 

further validation tests to evaluate the robustness of the developed classification model in 118 

this study. 119 

 120 

2.2. Acquisition of fruit appearance images 121 

The image data were taken by a digital camera (Nikon D7100). To photograph 122 

all fruits under the same conditions, they were placed on a black sheet and illuminated 123 

with an LED light. Two pictures were taken, one from the suture-line side and one from 124 



the opposite side (the non-suture-line side), of each fruit (Fig. 1).  125 

 126 

2.3. Comparison of the quantitative descriptions of fruit shapes and colors across litchi 127 

cultivars 128 

 We selected 10 fruits of each cultivar that were free from any abnormal features 129 

in appearance. We used the SHAPE program (Iwata and Ukai, 2002) to evaluate the fruit 130 

shapes quantitatively. Two images were taken of 10 fruits; thus, a total of 20 fruit images 131 

were obtained for each cultivar tested in this study. In total, 80 fruit images were used for 132 

the quantitative evaluation of fruit contours and colors.  133 

 The SHAPE program converts color images into binary images based on a 134 

default settings. From these binary images, the closed contours of the samples were 135 

extracted and converted into a chain code (Freeman, 1974). The EFD coefficients were 136 

then calculated using the chain code data (Kuhl and Giardina, 1982), and we 137 

approximated the shape of each fruit using the first 20 harmonics. Thus, we calculated 80 138 

(20 × 4) standardized EFDs per sample. Then, Principal Component Analysis (PCA) was 139 

conducted to summarize the information contained in these EFD coefficients. To 140 

determine the shape represented by each principal component (PC), we recalculated the 141 

EFD coefficients with the score of a particular PC equal to the mean ± 2 standard 142 



deviations (SD) while using the means of the remaining components. Finally, we used 143 

these PC scores for an analysis of variance (ANOVA) and identified the PCs with 144 

significant differences among cultivars. Those PCs (suture-line side: PC1 and PC2; non-145 

suture-line side: PC1, PC2, PC4, and PC5) were used to evaluate the relationship between 146 

cultivars and fruit shapes. All of the calculation and statistical analysis were completed 147 

using the SHAPE program ver. 1.3 (Iwata and Ukai, 2002) and R ver. 3.5.2 (R Core Team, 148 

2018). 149 

 The RGB color index was extracted from each fruit image. The RGB image was 150 

divided into three grayscale 8-bit images (Red, Green, and Blue) by ‘split channels’ 151 

function of Image J (Rasband, 2012). The mean gray value from each image was used to 152 

evaluate the relationship between cultivars and fruit colors. 153 

 154 

2.4. Model construction using a convolutional neural network and model validation  155 

To construct a deep convolutional neural network (CNN) model, we used the 156 

Keras platform (Chollet, 2015), which is a well-known neural network application 157 

programming interface based on Python ver. 3.6 and TensorFlow ver. 1.13.1 (Abadi et al., 158 

2015). It was run under an Ubuntu 18.04 operating system.  159 

We used 110 images of each cultivar, so a total of 440 images were processed. 160 



The test fruit images in each cultivar were randomly divided into three subsets: a training 161 

data set, validation data set, and test data set. Eighty fruit images of each cultivar were 162 

used for training, 15 images were used for validation, and the remaining 15 images were 163 

reserved for final accuracy verification. Before the model was constructed, data 164 

augmentation was applied using ImageDataGenerator, which is an optional function in 165 

Keras (Chollet, 2015). The number of images in the training dataset was increased by 166 

shift along the X- and Y-axes, vertical and horizontal flip, zoom in, zoom out, and rotation 167 

of the images.  168 

 To develop the litchi cultivar discrimination model, we employed a fine-tuning 169 

method based on a VGG16 (Simonyan and Zisserman, 2014) that was pre-trained on the 170 

ImageNet data set. The model was trained with RGB image data 256 × 256 pixels in size. 171 

VGG16 initialized the network weights and transferred the learned features to a new task 172 

so that the parameters of the model were continuously updated by our litchi fruit image 173 

dataset. VGG16 consists of 13 convolutional layers with 3 × 3 kernels and five 2 × 2 max-174 

pooling layers (Simonyan and Zisserman, 2014), which implement the transformation of 175 

data in a deep CNN. The model was validated through statistical parameters such as 176 

accuracy and loss. For model validation, the images not used for training were evaluated 177 

the percentage of correct and incorrect classifications were counted. Fifty each of the 178 



2019 season YHP and HY fruit images from the imported fruits were classified for further 179 

model validation. 180 

  181 

2.5. Model performance evaluation by Grad-CAM 182 

 To evaluate the classification performance of the model, the last layer before the 183 

final layer was extracted. Using the Gradient-weighted Class Activation Mapping (Grad-184 

CAM) technique, areas used to extract features for the prediction of cultivar classes in 185 

each image were visualized by a heatmap (Selvaraju et al., 2017). 186 

 187 

3. Results  188 

3.1. Description of litchi fruit shapes using SHAPE 189 

 The SHAPE program was used to describe the fruit shape of each image. After 190 

PCA analysis, 6 and 5 PCs were obtained from the image on the suture-line and non-191 

suture-line side, respectively (data not shown). ANOVA (p < 0.05) test revealed that PC1 192 

and PC2 from suture-line side and PC1, PC2, PC4, and PC5 from non-suture line side 193 

showed significant differences among four cultivars (Fig. 2). Thus, this program detected 194 

several significant differences in fruit shapes across cultivars. Each suture-line side PC1 195 

mean score (± SE) was -0.06546 (± 0.01058), -0.01306 (± 0.00730), -0.02881 (± 0.00933), 196 



and 0.10712 (± 0.01146) for GW, HY, NMT and YHP, respectively. Each non-suture-line 197 

side PC1 mean score (± SE) was 0.08211 (± 0.01142), 0.03063 (± 0.01088), 0.01529 (± 198 

0.01346), -0.12792 (± 0.01418) for GW, HY, NMT and YHP, respectively. The PC1 scores 199 

from suture-line side and non-suture-line side are much higher and lower, respectively, in 200 

YHP compared to other cultivars. PC1 from both suture-line and non-suture-line sides 201 

mainly represents length-to-diameter ratio (Fig. 2), which suggests that YHP fruits tend 202 

to have higher LD ratio than other cultivars. Among PCs with significant difference across 203 

cultivars, PC1 represents fruit length-to-diameter (LD) ratio and accounts for more than 204 

60% of the contribution. Although other PCs also had significant differences across 205 

cultivars, these differences could not be easily perceived by the naked eye, such as the 206 

difference in fruit width in lower lateral side as indicated in PC2 (Fig. 2). These results 207 

suggest that the SHAPE program can detect not only major fruit shape differences but 208 

also several minor fruit shape differences that are not easy for humans to see. To evaluate 209 

the relationship between fruit shapes and cultivars, PCA was conducted using all PCs 210 

with significant difference among cultivars. As shown in Fig. 3, all YHP fruits tend to be 211 

grouped together and have a distant relationship with other cultivars, which suggests that 212 

YHP may be unique in terms of fruit shape among 4 cultivars tested in this study. For 213 

other 3 cultivars, although GW and NMT tended to be grouped together, HY fruits were 214 



mixed together with some GW and NMT fruits. Thus, our fruit shape analysis suggested 215 

HY, GW and NMT have relatively close relationships with each other in terms of fruit 216 

shape. On the other hand, we also evaluated the relationship between fruit color and 217 

cultivars. In contrast to fruit shape, cultivar-dependent fruit color tendency was not found, 218 

suggesting that fruit color itself may not be as much effectively used for cultivar 219 

discrimination in litchi as fruit contour (Fig. S1). 220 

 221 

3.2. Image recognition by DL and construction of the cultivar discrimination model 222 

For the proposed cultivar discrimination model, the accuracy and loss values of 223 

training and validation at each epoch are shown in Fig. 4. The curves of validation 224 

accuracy and loss during training and validation reached a plateau after approximately 70 225 

epochs. Moreover, when 68 epochs were used for each training session, the validation 226 

accuracy and loss were 1.0000 and 0.0046, respectively (Fig. 4). To evaluate the 227 

performance of the constructed model (epochs = 68), cultivar discrimination accuracy 228 

was evaluated using the test image dataset. Overall, the fruit images were classified as 229 

one of four cultivars with 98.33% accuracy (Table 1). The GW, NMT, and YHP images 230 

were correctly classified with an accuracy of 100%. In contrast, one of HY images was 231 

misclassified as GW. 232 



We further tested whether this model discriminates the images of fruits collected 233 

from a different year and location (the 2019 season YHP and HY images). In this 234 

validation, 50 images were selected randomly from each cultivar. All YHP images were 235 

recognized as YHP (50/50). For HY images, the model correctly identified 82% of the 236 

HY fruits (41/50), and the remaining nine fruit images were recognized as GW (7/50) or 237 

YHP (2/50). 238 

 239 

3.3. Evaluation of the model by Grad-CAM 240 

A visualization of the prediction of correctly classified and misclassified fruit 241 

images was obtained using Grad-CAM (Selvaraju et al., 2017). In the case of correctly 242 

classified images, our discrimination model recognized the region of the fruit itself in the 243 

images (Figs. 5A, B, C, and D). Interestingly, the area of focus of the model was similar 244 

within a cultivar but different across cultivars. The model recognized whole areas of HY 245 

fruits, whereas specific areas were the focus for other cultivars. The main recognition 246 

areas of GW, NMT, and YHP were shoulder, lower lateral, and apex areas, respectively 247 

(Fig. 5). In misclassified images, the model recognized shoulder and background areas of 248 

HY fruit images, which may have caused the HY fruit to be misclassified as GW (Fig. 5 249 

E) 250 



 251 

4. Discussion 252 

 In this study, the fruit images of four major litchi cultivars in Taiwan were 253 

acquired and used for image analysis. First, we quantitatively evaluated litchi fruit shape 254 

using EFDs and characterized the relationship between cultivars and fruit shapes. We also 255 

employed DL for image recognition and developed a model to discriminate the cultivars 256 

of litchi fruit from images.   257 

 258 

4.1. Characterization of cultivar-dependent fruit shapes using EFDs and PCA analysis 259 

 Fourier descriptors and statistical approaches have been used to discriminate 260 

biological objects including fruits such as oranges (Costa et al., 2009), apples (Currie et 261 

al., 2000), tomatoes (Visa et al., 2014), and persimmons (Maeda et al., 2018) on the basis 262 

of the morphological differences in their contours. Here, the EFDs of each fruit image 263 

were obtained and PCA analysis was performed. Our analysis suggests that, of the four 264 

cultivars, YHP has most distant relationship with other three cultivars, whereas HY have 265 

fruit shapes that are similar to NMT and GW (Fig. 3). In fact, many YHP fruit had an 266 

oblong shape whereas the other cultivars had round shapes (Fig. 1). Thus, EFDs could 267 

describe each litchi fruit shape precisely and quantitatively. Moreover, some fruit 268 



contours represent cultivar-specific features in litchi.  269 

 270 

4.2. Our DL image recognition method to discriminate cultivars of fruit images 271 

 To consider not only fruit contours but also whole fruit appearance factors such 272 

as peel color and texture for cultivar discrimination, we employed DL using a deep CNN 273 

in this study. In this approach, intact RGB fruit images are recognized. The VGG16 274 

architecture was fine-tuned to construct a cultivar discrimination model. To do this, we 275 

used the non-suture-line side images (Fig. 1-ii) because they showed more fruit shape 276 

differences across cultivars than suture-line side images (Fig. 2). We successfully 277 

developed a model to discriminate cultivars of fruit images with 98.33% accuracy. 278 

Moreover, we demonstrated that this model could identify YHP fruits collected from 279 

different season with 100% accuracy and HY fruits with 82% accuracy, which suggests 280 

that the model using DL image recognition technology can identify genotype-dependent 281 

litchi fruit images, especially for YHP fruits.  282 

Grad-CAM (Selvaraju et al., 2017) revealed that our model was well trained 283 

because it recognizes similar regions within the same cultivars and different regions 284 

across the cultivars (Fig. 5), which may increase the accuracy of a cultivar discrimination 285 

model. DL-based fruit quality classification has been previously proposed in agriculture 286 



and fishery research. For instance to assess the fruit quality of dates (Pheonix dactylifera 287 

L.), more than 1,300 images were used to develop a classification model that had a 288 

validation accuracy and loss of 0.9846 and 0.0522, respectively (Nasiri et al., 2019). A 289 

shrimp quality recognition model was developed using more than 10,000 images (Liu, 290 

2020), and three different squid classification models were developed using 600 images 291 

(Hu et al., 2020). Our model, in contrast, used only 380 images for training and could 292 

discriminate for cultivars with values of 1.0000 and 0.0046 for the validation accuracy 293 

and loss, respectively (Fig. 4), which are higher and lower, respectively, than the date fruit 294 

quality classification model (Nasiri et al., 2019). This implies that the litchi fruit 295 

appearance tested in this study may contain distinct cultivar-dependent characteristics, 296 

such as variation of local skin color and texture, which might enable us to construct high-297 

accuracy cultivar classification model using fewer training images.  298 

However, our classification model classified one HY fruit image as a GW image 299 

(Table 1) and could not recognize 18% of HY fruit images collected from different years 300 

and sites. The Grad-CAM analysis suggests that the model focused on the shoulder region 301 

in misclassified images, which is the typical region of focus for GW (Fig. 5). Indeed, our 302 

analysis on fruit shapes suggested that HY may have close relationship with other 303 

cultivars in terms of fruit shapes (Fig. 3). Therefore, although our CNN model may 304 



potentially be capable of discriminating litchi cultivars using RGB fruit images, further 305 

model improvement will be required for practical use. SHAPE analysis conducted in this 306 

study suggested that fruit contour represents minor but significant differences among 307 

cultivars (Fig. 2). On the other hand, the Grad-CAM analysis suggests that our model 308 

might not use fruit contour effectively for cultivar discrimination (Fig. 5). Thus, combined 309 

use of cultivar-dependent fruit contour and fruit inside structures such as texture and color 310 

may possibly improve our model. The Grad-CAM analysis further suggests that, in the 311 

case of misclassified fruit images, the model tends to consider non-fruit areas for cultivar 312 

discrimination (Fig. 5). Therefore, training with a higher number of fruit images and using 313 

fruit images with various backgrounds may be another appropriate strategy to improve 314 

our model.   315 

  316 

5. Conclusion 317 

 The aim of this study was to develop a cultivar discrimination model for litchi 318 

fruit images. We first characterized fruit shape diversity across cultivars using EFDs and 319 

PCA analysis. Our fruit shape characterization revealed that YHP can be easily 320 

discriminated from other cultivars due to its higher length-to-diameter ratio. We then 321 

employed DL to discriminate litchi cultivars. Intact RGB fruit images were recognized 322 



using DL based on VGG16, which is a CNN architecture. As a result, we developed a 323 

cultivar discrimination model with high accuracy. This is the first report that DL can be 324 

effectively applied for litchi fruit image recognition and cultivar discrimination. Our 325 

model perfectly recognized YHP fruit images collected from a different season and 326 

location. Furthermore, Grad-CAM visualization analysis suggests a relatively small 327 

number of images are sufficient to train the model to discriminate cultivars with high 328 

accuracy. However, further model evaluation and improvement will be necessary for 329 

practical use. The model accuracy should be further evaluated by using more images of 330 

fruits collected in different climate, cultural practices and ripening stages. To expand the 331 

model to other cultivars in future, model improvement will be required especially when 332 

discriminating the fruit images of cultivars that look very similar.  333 
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Table 1. Discrimination accuracy for images not used for model construction. 448 

 449 
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 452 

  453 

GW HY NMT YHP
GW 15 0 0 0
HY 1 14 0 0

NMT 0 0 15 0
YHP 0 0 0 15

Predicted cultivars

True
cultivars



Figure legends 454 

Figure 1. Examples of images of each cultivar. A: GW. B: HY. C: NMT. D: HYP. i: Fruit 455 

image taken from the suture-line side. ii: Fruit image taken from non-suture-line side. The 456 

scale bar indicates 1cm. Each fruit was placed under the direction of stem end at upper 457 

side and fruit apex at lower side. Arrows indicate suture lines of each fruit. 458 

 459 

Figure 2. Fruit shape diversities in suture-line side and opposite (non-suture-line) side 460 

images as visualized by contours based on PCs that show significant differences across 461 

cultivars based on ANOVA (p < 0.05). Each shape was reconstructed from the EFD 462 

coefficients, which were calculated using the score for a PC equal to the mean ± 2 SD. 463 

Percentages indicate the contribution rates of each PC and p indicates the p-value of each 464 

PC for the ANOVA result across cultivars. Each fruit shape was drawn under the direction 465 

of stem end at upper side and fruit apex at lower side. 466 

 467 

Figure 3. PCA plot of analysis using all PCs with significant difference in fruit contour 468 

among 4 cultivars based on SHAPE program and ANOVA (p < 0.05). Each ellipse 469 

indicates the normal confidence ellipse of each cultivar at a level of 0.95 confidence. 470 

 471 



Figure 4. Classification accuracy (A) and loss (B) over 150 training epochs. 472 

 473 

Figure 5. Prediction visualization using the Grad-CAM technique. Here, the 474 

“block5_conv3” layer is visualized as a heatmap. Warm colors suggest that the region 475 

more strongly contributes to the prediction. A: GW image predicted as GW, B: HY image 476 

predicted as HY, C: NMT image predicted as NMT, D: YHP image predicted as YHP, E: 477 

HY image predicted as GW. i: RGB image inputted to the CNN model. ii: Heat-map 478 

image created by the Grad-CAM technique. Each fruit was places under the direction of 479 

stem end at upper side and fruit apex at lower side. 480 

 481 

Figure S1. The relationship between fruit color and cultivars. 'Red_Mean' and 482 

'Green_Mean' values indicate gray-scale value obtained from 8-bit red and green images, 483 

respectively, generated by ImageJ software. 484 
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