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Resolution of accessible singularities of a third
order differential equation

% ## (Yusuke Sasano)
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0. INTRODUCTION

In this paper, we study some third order differential equations and their space
of initial conditions. The most important property of the Painlvé equation is the
so called Painlevé property, namely, every solution of each Painlevé equation has
neither movable branch points nor movable essential singularities. Let E be the
set of the fixed singular points of Painlevé equation and let B = P! — E. The
Painlevé property is stated as: any local solutions z(¢) of Painlevé equation (they
are determined by an arbitary initial condition z(tp) = o, (dz/dt)(to) = x, with
to € B and with a certain condition on z,) can be meromorphically continued along
any curve in B. If (z(t),y(t)) is a solution which is determined by an arbitary
initial condition z(ty) = zo € C,y(to) = yo € C with to € B, then both (z(t),y(t))
can be meromorphically continued along any curve in B with a starting point %o.
K. Okamoto constructed a minimal fiber space in which every solution stays. The
fiber space S is constructed as follows. Firstly, we take the Hirzebruch surface T
as a minimal compactification of C2. Secondly, we apply a finite number of quadric
transformations to the space T' by carefully observing the forms of the Hamiltonian
systems in new variables transformed from the original system, and obtain a compact
space S. Lastly, we remove, from S, a finite number of divisors which consist of
vertical leaves and singular points of the foliation, and obtain S. (Here a vertical
leaf is a leaf which is completely included in §.) We can obtain the space of initial
conditions by adding spaces of codimension 1 to the original space. But in the case of
third order differential equations, we need to add codimension 2 spaces to the original
space in addition to codimension 1 spaces. And when we resolve the accessible
singularities of the third order differential equation or the Noumi-Yamada equation,
we blow up them and need to blow down. There is the reason why the codimension
of the meromorphic solutions extending through these accessible singular points may
be less than equal to two. Moreover we need to resolve for a pair of these accessible
singularities. In this paper, we shall explain the birational transformations which
gives the resolution of these accessible singularities.

1. STATEMENT OF MAIN RESULTS

Let us consider the system of Noumi-Yamada of type AW in the following.

(fo=folh—fot fa—fa)tao
fi=flfa—fzs+ fa— fo) + o
{ fa=falfs=fat fo—fi) +on (1)
fa=filfa—fo+ i—fi)+as
 fa=falfo— i+ fo— f3) + au,
where fi+ fi+ o+ i+t fi=aotantmptostas=1, ot it fot+fat+fa=t.




Setting fi =0,y = 0 and z := fy,y := f3,z := f4 , the system is reduced to the
following system

( dz

E=az(t—z—2z)+a2
d

J d—?:y(~t+y+2z)+a3 (2)
dz

‘—Jt-=z(t—2y—z)+a4.

The last two equations of this system (2) is equivalent to the fourth Painlevé equa-
tions with unkown variables (y, z). For each solution z(t) of the Painlevé equation,
the first equation of the system (2) gives a Riccati equation with unknown variable
. In order to consider the space of initial conditions for the system (2), let us the
compactification P? of C? with a natural embedding

(0% — p3
(z,y,2) — [20, 21,20, 23] =[1:z:y: z].

Moreover we denote by H = {2y = 0} ~ P? C P®. Fixing parameter o;, consider
the product P® x B and extend the regular vector field

0 0 0 0
V= -(,%+{z(t-—:1:——22)+a2}%+{y(—-t+y+2z+ag}5§+{z(t—2y—z)+a4}a—z

on C* x B to a rational vector field ¥ on P® x B. Then it is easy to see that
this rational vector field 4 has seven accessible singularities on the boundary divisor
H x {t} C P® x {t} for each t € B.

The purpose of this paper is to give an explicit resolutions of these accesible
singularities and to obtain a nice space of initial conditions on which the rational
vector field ¥ has no accessible singularity. The following is our main result.

Theorem 1.1. After a series of ezpricit blowings-up and blowings-down of P3 x
B, we obtain a smooth projective family of 3-fold # : X — B and a birational
morphism ¢ : X--- —P3 x B which make the following diagram commutative

x -5 mxB
mi \
B = B,
and satisfies the following conditions,

1. There ezists a flat divisor D over B such that the vector field ¥ associated to
the third order differential equation becomes a regular vector field on X\ D and

o € HY(X,0x(~log D)(D).

2. The vector field © has no accessible singularity along the boundary divisor D.
3. The inverse birational map ¢~ restricted to the open set C>*x B = (P*\ H)x B
is an isomorphism onto its image 1 : C3 x B = ¢~}(C?® x B) c X\ D.

4. The zariski open subset X\ D is a space of initial conditions for the vector field

¥ and X \ D can be covered by affine charts.
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FIGURE 1

5. Each fiber (X \ D); of the morphism 7 : X \ D — B has a stratification

(x\ D), =C*ucCtuciuctuciuctuctuc
where C3 is the original affine open subset P®\ H.

2. ACCESSIBLE SINGULARITIES

There exist 7 accessible singularities of this equation on the boundary divisor of

P3. They are listed as follows. (See Figure 1}.

Singular points P P, P Py
Coordinates [z, 21, 22, 23} 10,0,0,1][[0,-1,0,1]] [0,1,0,0] {[0,0,-1,0]
Type (dim. of sol.) o (dim. 1) [ e (dim. 2) | e (dim. 2) | e (dim. 2)
Singular points P Py P
Coordinates |20, 21, 22, 23] || 10,—1,1,0] [ 0,0,1,0] {[0,-3,-1,1]
Type (dim. of sol.) o (dim. 1) [ e (dim. 1) | * (dim. 2)

Here, we remark that there are 3 types of accessible singularities. We denote by
e an accessible singularity into which two dimensional meromorphic local solutions
flow, by o and * accessible singularities into which one dimensional meromorphic
local solutions flow. The difference of o and x can be distinguished by the process

of the resolutions. :




FIGURE 2

3. RESOLUTION OF THE ACCESSIBLE SINGULARITIES

3.1. Resolution of the accessible singularities P, : (u,%,w) = (0,1,0),P; :
(u,%,w) = (0,0,0), Ps : (p,q,7) = (0,0, 0), where 7 = v + 1.
Around P,: (u, %, w) = (0,0,0), the equation is given by the following.

4

\

du

dt

éﬁ
dt
dw

dt

u—u? — (2 — 2u)
= - + asw + avw — o uw

35(1 + )
w

= —2t9 + + agw — aydw , (3)

= —aquw? —tw+ 25+ 1

Around Pi: (u,v,w) = (0,0,0), the equation is given by the following.

[(du —u—u?+ 2w
—_— = + aw — aguw
dt w .
d 3v + 3v?
2= —2tv + vt v + azw — auvw (4)
dt w
dw 2

\E=1+2'v—tw—a4w

Around Pj: (p,q,7) = (0,0,0), the equation is given by the following.

r

\

dr _r(1+r—2q)

dp

— =—mp? —tp+2r+1

dt
dg  q(-2tp+q+4r+1)

4 ?d_t— = + azp — aspq (5)

p

— agpr + a
d p Qap 4D
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Blow up at '4‘/0 points P, Ps

FIGURE 3

Around the point P;: (u,v,w) = (0,0, 0), the equation is given by the following.

(du —u—u?+2uw
—d—t= " + W — oUW

d 3 30?2
ﬁ £=_2t0+__v1v + a3w — VW

d
\d—’t:=1+2v—tw—-a4w2

P =p

]

h =3

-

T =5

Around (p1,q1,71) = (0,0,0), the equation is given by the following.

[ d
_gt.l. =—tpy+1+4+2pr; — 012(1’1)2
* % =(a)" —ta +2qm +as
dr
{ 7;' =try — (r)? — 2q1m + oy

(6)

(7)

(8)
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Blow up along curve
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FIGURE 4

We blow up along curve P!, then we obtain a P! x P! in P? and denote it’s suface

F . The curve C = [(u;, v, w1)|u; = wy = 0] in F is (—1) curve when we restrict to

F. So we can blow down the suface F along a curve and we can obtain a smooth
rational variaty.

Uy =u
(%1 = ﬁ (9) .
w =w
d . _ 2
(& _ 2ugvy + Bl OV + Wy — oUWy
dt un
d’Ul 2”1
{ — = —t 2 —_ 10
o v+ (v1) + ” + a3 (10)
d v
{ % =1- twy + 2'0111)1 — a4(UJ1)2
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Blow dow# along curve

FIGURE 5

Let us blow up at two points P,, P; and blow up along a curve. Then we obtain
P! x P! and we can blow down along curve P!. As a results, we obtain a smooth
rational variety. In this way, we need to resolve a pair of some accessible singularities
when there are accessible singularities whose codimension are 2.

v =gy
v = (11)
w, =w
4 d 2 2
21— tup + Auafvz an(w2)” — aa(wn)”
dt 2
dv ) 2v
4 _(_122_ = —tvy + (v2)% + ‘;}‘3‘ + as (12)
dw
\ —dt—2 =1 twq + 21)2102 - a4(w2)2

We blow up along curve P! two times, then we can resolve the accessible singular-
ities P, P,. In the new coordinate, the right hand side of the equations is the form
of polynomials.
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Blow u;t along curve

us
FIGURE 6
Uz = Ug
__ vtazwy
W3 =Wy

Around (us, v3, ws) = (0,0,0), the equation is given by the following.

[ du
—d—ti =1 — tuz + 2(us)2vzws — az(uz)? — 2a3(us)2 — ay(u3)?
dv ’
< Tif = tuz — 3(v3)?(w3)? + dazvsws — (as)? + 204v3w;3 — Az (14)
dw
{ —dtg = —04(‘1.03)2 — t'w:; + 2('!1)3)2('03’(1)3 - 03) +1

3.2 Resolution of the accessible singularities P; : (I, m,n) = (0,—1,0), P : (I, m,n) =
(0,0,0)

We can resolve the accessible singularities P, P by the same way of 3.1.
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3.3 Resolution of the accessible singularities Py : (u,v,w) = (0,-1,0),P; :

(u,v,w) = (-3,-1,0)

h
m

+3
+1

z
z
LA
z
1
1 z

In the coordinate, the equation is given by the following.

( ﬂl . 3l1 - (11)2 - 6m1 + 2l1m1

+ njag + 3n1a4 - l1n1a4

dt n
d - 3(m)?* |,
S ™ _ 3ma + 3(ma) + 2t — 2tmy + niaz + n10y — MN 0y
dt n
dn
— = —142my — tn; — ag(n)?
L dt
L1 = ';E
M1 = g +1
N1 = %

In the coordinate, the equation is given by the following.

( dL —3L, — (L,)* + 2L, M
dtl = 1» ( ]ir)l 11 + a2N1 — a4L1N1
dM- —-3M 2
4 =1 =2t — 2tM1 + 3 1+ 3(Ml) + C!3N1 + (14N1 - a4M1N1
dt N,
dN- -
—Etl =-~-1+4+ 2M1 - tN1 - (14(N1)2

(15)

(16)

(17)

(18)
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Blow up along qurve and blow down along curve M2
FIGURE 8
12' = —llﬂfg
my =M (19)
ng =mn
In the coordinate, the equation is given by the following.
(dly 21, 2
—a—t— -——l—tl2+n—2—6¥2(l2)
d 3my — 2
3 _’I'Tl_% =2t — 2tm2 - ‘ﬂ*'i(nl‘z)—- + Q3ng + aamy — Q4MoNo (20)
dt Tig
dn
\ d_tz = —1+2my — tny — ay(ny)?
L, =4
My =M, (21)
Ny, =N

In the coordinate, the equation is given by the following.

( dL, 2 _ 2L,
= = tLy — (Ly) , + o
_ 2
VM _ o _otag,  3Ma+300)° asNz + 4Ny — e MpN; - (22)
dt N,
gc_l]%% =—1+42M; —tN, — 014(N2)2
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1i310w up along durve and blow dovL;)ng curve
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FIGURE 9
l3 = lg'ng
m3z =T
ng =n2

In the coordinate, the equation is given by the following.

([ d 2 — ay(l3)?
dls _ oty + =3 o2(ls) + n3 — aylsn;
dt n3
—_ 2 .
S dLn—S- = 2t — 2tmg — M + agng + ayng — a4mMm3ng
dt n3
d
\ —;? = —14 2m; — tnz — ay(ns)?
Ly =£
M; = M,
N3 = N2

In the coordinate, the equation is given by the following.

4

\

dL3 ~L3 - 2L3M3 + s

(23)

(24)

(25)

—&?- = 2tLs + N - (L3)2N3 + a4L3N3
—3M 2
‘_1%3 =2t — 2tM;3 + 3 ;3(M3) + agNs + agNs — ayMsN;  (26)
3
dN;

E- = —1+42M;3; — tN3 — 04(N3)2
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Blow up along éfurve and blow dowL along curve

FIGURE 10

— _lano
l4 - l—anl3
my =mg
ng =mng

In the coordinate, the equation is given by the following.

[ dl 4 2 2my — 2tan(ly)?
i, R —3tl, + 44Ty + 012(14) my ag( 4) N4 + Qaplams
dt (n4)2

+ (a2)*(la)? — aulyng — agay(ly)?
< ' _ 2
dt n4
d
T4 — 14 2my — tng — au(ng)?
\ dt
_ Lz—a
L = kg
M, =M;
Ny =N,

In the coordinate, the equation is given by the following.

(

\

dLy _ —4L4M Ny — 200 My Ny + 2ty N,
— =3tN, + oy
- (L4M4)2 - 202L4N4 — (0.’2)2 + 2a4L4n4 + a0y
- 2
dM4 =2t — 2tM4 + 3M4 + 3(M4) + 03N4 + C!4N4 - CY4M4N4
dt Ny
dNy

—r = =1+ 2M, — tN; — ay(Ny)?

(27)

(28)

(29)

(30)
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FiGURE 11
Is =1
—m

ms — .n_:
Ny = T4

In the coordinate, the equation is given by the following.

2a,(l5)%ms — 2t 2
%’l = —3tls + 4lsms + oa(ls) m; 10D + 2a3lsm5 + (a2)2(ls)2
5
— 2aulsns — aza4(ls)2
dm 2t — 2m :
W _Et_sz—tm5+(m5)2+-———n—5——3+a3+a4
{ %T-? = —1+ 2msns — tns — as(ns)?
Ly =1L,
M5 = '?v—l:
Ns =N,

In the coordinate, the equation is given by the following.

( dL5 —202M5 + 2ta2
bt -4
at 3tLs — 4ALs M5 + N,
- (L5M5)2 - 2&2L5N5 - (02)2 + 2(!4L5N5 + o0y
dM; 2t — 2M;
0 — M 2, 2 =0
o tMs + (Ms)* + N +az+ oy
L El% =-14 2M5N5 - tN5 - a4(N5)2

(31)

(32)

(33)

(34)



FIGURE 12
ls =I5
mﬁ — mnis—'t
Ng =Ny

In the coordinate, the equation is given by the following.

( dl
d—: = tlg + dlgmens + (ne)? + 205(ls)*ms + 202lens + (02)2(ls)?
- 2a4l6n5 - 02(14(16)2
y dm —mg— 14+ a3+« .
dts = & e 3 4 _ (m5)2n6 + Q4 MeNg
d
dits = -1+ 2m6(n6)2 +tng — a4(n5)2
\
Le =1L;s
NG = N5

In the coordinate, the equation is given by the following.

p
dd—I;S = “tLﬁ - 4L6M6N6 - (L5M5)2 - 202[16 -
202L6N6 - (02)2 + 204L6N6 + Qa0
< -1 -
M _ —(Ms)*Ns + Mo + 03+ a4 + ayMsNg
dt Ns
dNg

= -1+ 2M6N6 + th - 0{4(N6)2

\ dt

(35)

(36)

(37)

(38)
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FIGURE 13
l7 = lﬁ
my = mﬁ—ﬁ—-—Hl;: o
Ny =TMNg

In the coordinate, the equation is given by the following.

dl
Etl = tly + 4lmy + (n7)? + dlyma(ns)?

- 202(l7)2 + 2(12177’1:2 + 202 (l7)2m7n7
+ (02)2(l7)2 + 4a317n7 + 202&3 (17)2 + 2a4l7n7

) + 0204(17)2
- = —1 — tmy + 4myng — 3(m7)*(n7)” + 2a3 — 4azmong
- (03)2 + Q4 — 2a4m7n7 — Q304
d
| —gtz =-1+ 2m—,r(n-,)3 — 2(n7)? +tny + 203(n7)? + ay(nr)?

L; =1Ls
M7 — Mgil};:;—-ag
N =N

In the coordinate, the equation is given by the following.

(39)

(40)

(41)
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FiGURE 14

( dL

7227" = —tL7 + 4L7Ny — (L Ny)? — 4L; M7 (N7)? + 20y
- 202L7N7 - 2(!2M7N7 - (02)2 - 403L7N7
- 202(13 - 2a4L7N7 — gy

dM. ’

dt7 = —1—tM; +4M,N,; — 3(M7N7)2 + 2a3 — 4azM;N; — (C“3)2 (42)
+ o4 — 204 M7 N7 — azoy

dN.

d_t7 =—-14 2(M7)2 +tN; + 2.’\47(.[\[7)2 + 2&3(N7)2 + a4(N7)2
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