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It has been known that the time-dependent Hartree-Fock (TDHF) method, or the time-dependent density 
functional theory (TDDFT), fails to describe many-body quantum tunneling. We overcome this problem 
by superposing a few time-dependent Slater determinants with the time-dependent generator coordinate 
method (TDGCM). We apply this method to scattering of two α particles in one dimension, and 
demonstrate that the TDGCM method yields a finite tunneling probability even at energies below the 
Coulomb barrier, at which the tunneling probability is exactly zero in the TDHF. This is the first case in 
which a many-particle tunneling is simulated with a microscopic real-time approach.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the primary goals of nuclear reaction theory is to de-
velop a microscopic framework for nuclear reactions, starting from 
the nucleonic degrees of freedom. Such a framework will describe 
several complicated reaction processes in a unified way, not spe-
cialized in a certain reaction system. Ideally, such a framework 
will not contain any empirical parameter for reactions, once static 
nuclear properties or the nucleon-nucleon interaction are well in-
vestigated. This feature will be particularly important in applying 
the framework to unknown regions, in which experimental stud-
ies are difficult, e.g., reactions of neutron-rich nuclei and those for 
superheavy nuclei.

The time-dependent Hartree-Fock (TDHF) method is one of the 
promising microscopic frameworks for nuclear reactions, in which 
a many-body wave function is approximated by a single Slater 
determinant [1–5]. The TDHF has been successful in describing av-
erage behaviors of nuclear reactions, such as the energy-angle cor-
relation in heavy-ion deep inelastic collisions [6]. In recent years, 
many TDHF calculations have been successfully carried out with 
current powerful computers, in order to discuss the main process 
of reaction for a given initial condition [7–15].

However, it has been well known that the TDHF has a serious 
drawback, that is, it considerably underestimates quantum fluc-
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tuations and fails to describe minor processes, such as quantum 
many-body tunneling at energies below the potential barrier [3–5]. 
Notice that the TDHF can be formulated using the stationary phase 
approximation to the path integral representation of a many-body 
dynamics [3], and in this sense the collective path in the TDHF 
is classical. A tunneling probability in the TDHF therefore changes 
abruptly from 0 to 1 at a certain threshold energy. For this rea-
son, the TDHF method fails to describe fusion reactions at energies 
below the barrier [4] and fission dynamics before a saddle point 
[16].

Several schemes have been considered so far in order to go be-
yond the TDHF approximation [17–28]. Nevertheless none of them 
has been applied to the problem of quantum tunneling. For in-
stance, in the stochastic mean-field theory (SMF) [16,20,21], quan-
tum fluctuations are simulated as an ensemble of TDHF trajecto-
ries, but it is still difficult to describe many-body tunneling with 
this framework.

Since a TDHF trajectory shows a classical behavior, to describe 
quantum tunneling based on the TDHF and its extension has a 
common feature to a problem of how to simulate quantum tun-
neling using classical trajectories. This problem has been actually 
discussed also in the field of quantum chemistry, in which the 
entangled trajectory molecular dynamics (ETMD) has been devel-
oped [29–32]. In this method, the Winger function of a one par-
ticle wave function is represented as an ensemble of classical test 
particles. Those classical test particles are treated in a collective 
manner, rather than independently. By taking into account such 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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entanglement of test particles, that is, the influence of other test 
particles during the time evolution of a test particle, it has been 
demonstrated that the ETMD can simulate well quantum tunnel-
ing phenomena, despite that each test particle follows the classical 
equation of motion [29–32].

The success of ETMD would imply that quantum tunneling may 
be simulated by taking into account an entanglement of many 
TDHF trajectories. This would be equivalent to construct a many-
body wave function as a superposition of many Slater determi-
nants. This is nothing but the time-dependent generator coordinate 
method (TDGCM) [23,33]. The aim of this paper is to investigate 
whether the TDGCM method can describe in principle quantum 
tunneling phenomena. For such a proof of principle study, it would 
be ideal to choose a system which is as simple as possible. To this 
end, we consider a collision of two 4He particles in the one di-
mensional space. Based on the idea of ETMD, we superpose a few 
Slater determinants, which have different initial relative distances 
and relative momenta between the two 4He particles. During the 
time evolution, the trajectory of each Slater determinant is affected 
by the presence of other Slater determinants, and they are thus 
entangled as in the entangled classical trajectories in the ETMD 
method. We shall investigate in this paper whether such entan-
glement of Slater determinants improves the failure of the TDHF 
method.

2. Time-dependent generator coordinate method

In the TDGCM, one assumes that a many-body wave function is 
given as a superposition of many Slater determinants,

�(t) =
∑

a

fa(t)�a(t), (1)

where fa is a weight function and �a is a Slater determinant 
with single-particle wave functions {φai}. The index a distinguishes 
each Slater determinant to one another, and is referred to as a 
generator coordinate. In nuclear structure calculations, multipole 
moments are often taken as a generator coordinate, for which the 
Slater determinant �a is obtained with the constrained Hartree-
Fock method [1]. In the calculation shown below, we take the 
initial values of the relative distance and the relative momentum 
between two α particles as the generator coordinates.

The time evolution of the weight functions fa(t) and the Slater 
determinants �a(t) can be determined by the time-dependent 
variational principle,

δ

∫
dt

〈�|ih̄ ∂
∂t − H|�〉

〈�|�〉 = 0, (2)

where H is the total Hamiltonian of the system. In Refs. [23,33,34], 
the time evolution of the Slater determinants is replaced by TDHF 
trajectories, while the time evolution of the weight function is 
solved according to the variational principle. However, in an ap-
plication to quantum tunneling, it would be essential to take into 
account a deviation from TDHF in the evolution of the Slater deter-
minants. We therefore do not use TDHF trajectories, but determine 
the time-evolution of the Slater determinants under the influence 
of the other Slater determinants using the variational principle.

Notice that our method is conceptually different from the 
method developed in Refs. [35–39], even though the latter has of-
ten been called the time-dependent generator coordinate method. 
In Refs. [35–39], the Slater determinants �a are prefixed by nu-
clear structure calculations, often taken as the ground state for a 
given value of multipole moments, whereas the time evolution of 
the weight functions is determined by solving the time-dependent 
Hill-Wheeler equation. Since the Slater determinants are static 
in these calculations, it may be more appropriate to call such 
method as the time-dependent Hill-Wheeler method, rather than 
the time-dependent generator coordinate method. Even though 
non-adiabatic effects can in principle be taken into account in 
this method [37], the computational cost considerably increases 
when the number of configurations increases. In contrast, the 
non-adiabatic effects are automatically taken into account in our 
method by using time-dependent Slater determinants. This would 
be an important aspect of our method, especially in applications to 
nuclear reactions of heavy systems, in which excitations of collid-
ing nuclei during reaction play an important role [40].

3. Application to α+α scattering in one dimension

Let us now apply the TDGCM to the 4He+4He scattering in 
one dimension. In order to simplify the calculation, we parame-
terize the single-particle wave functions with a Gaussian function 
with a fixed width, as in the anti-symmetrized molecular dynamics 
(AMD) [41,42]. That is, we take the single-particle wave function 
φai as,

φai(x, t) = e
−ν

(
x− Zai (t)√

ν

)2

χσχτ , (3)

where χσ and χτ are the spin and the isospin wave functions, 
respectively. The Gaussian center, Zai , is a complex quantity, whose 
real and imaginary parts are related to the mean position and the 
mean momentum of the Gaussian wave function, respectively.

In this paper, we fix the spin and isospin wave functions and 
assume that the Gaussian center is identical for all the four nucle-
ons in each 4He particle. That is, we take Z p↑ = Z p↓ = Zn↑ = Zn↓
in each 4He particle. Moreover, we assume that there is no transfer 
of nucleons during a reaction, and the two 4He move symmetri-
cally with respect to x = 0. That is, when one 4He particle has a 
Gaussian center of Z(t), the other 4He particle has a Gaussian cen-
ter of −Z(t). With these approximations, there is only one single 
variational parameter, Za(t), in each Slater determinant, �a(t).

At t = 0, we construct each Slater determinant, �a(t), by 
putting the two 4He particles at x = xa0 and x = −xa0, with the 
momentum of p = −pa0 and p = pa0, respectively. This is equiva-
lent to take

Za(t = 0) = xa0
√

ν − i
pa0

2
√

νh̄
, (4)

for a given Gaussian width, ν .
We employ the same one dimensional Hamiltonian as the one 

in Ref. [23], to which we also add a soft-core Coulomb interaction 
between two protons in a form of [43–47]

vC (x, x′) = e2√
α2 + (x − x′)2

. (5)

With this Hamiltonian, one obtains [48],

〈�a|H|�a′ 〉
= 〈�a|�a′ 〉

∫
dx

{
h̄

2m
τ̃ (x) + t3

3
ρ̃3(x)

+ t0

2
ρ̃(x)

∫
dx′ρ̃(x′) b√

π
e
− (x−x′)2

b2

+e2

2
ρ̃p(x)

∫
dx′ρ̃p(x′) 1√

α2 + (x − x′)2

}
, (6)

with
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Fig. 1. The trajectory of the right α particle in α+α scattering in one dimension ob-
tained with the time-dependent Hartree-Fock with two different initial conditions. 
The two α particles are assumed to move symmetrically with respect to x = 0. The 
solid line is obtained with the initial condition of x0 = 30.0/2 fm and E = 0.113
MeV, while the dashed line is obtained with x0 = 30.1/2 fm and E = 0.100 MeV. 
The interaction is based on a Gaussian + density-dependent zero-range nuclear 
interaction together with a soft-core Coulomb interaction. The Coulomb barrier be-
tween the two α particles is located at x = 3.84 fm with the height of 0.13 MeV.

Fig. 2. Same as Fig. 1, but obtained with the time-dependent generator coordinate 
method with the same initial conditions.

τ̃ (x) =
∑
i, j

(
∂

∂x
φ∗

ai(x)

)(
∂

∂x
φa′ j(x)

)(
B−1)

ji

(7)

ρ̃(x) =
∑
i, j

φ∗
ai(x)φa′ j(x)

(
B−1)

ji , (8)

where the matrix B is defined as Bij = 〈φai |φa′ j〉. The overlap ker-
nel 〈�a|�a′ 〉 in Eq. (6) is given as 〈�a|�a′ 〉 = det(B). We follow 
Refs. [23,49] and use the parameters of t0 = −12.5 MeV fm−1, 
t3 = 8.8 MeV fm−2, and b = 2.0 fm. For the Coulomb interaction, 
we arbitrarily set α = 1.0 fm.

In order to derive the time-dependent equation for Za(t) ac-
cording to the variational principle, Eq. (2), one needs to evaluate 
the derivative of 〈�|H |�〉/〈�|�〉 with respect to Z∗

a (t). We carry 
it out numerically, that is, we calculate a change of this quantity 
when Z∗

a (t) is shifted to Z∗
a (t) +δZ∗

a (t) and divide it by δZ∗
a (t). No-

tice that the derivative does not depend on the direction of δZ∗
a (t)

in the complex plane, as long as the absolute value of δZ∗
a (t) is 

small.
In the calculations shown below, we use the Gaussian width of 

ν = 0.5 fm−2. This value is determined so that the internucleus po-
tential at x = 0 evaluated in the frozen density approximation with 
a single Slater determinant [12] becomes higher than the height of 
the Coulomb barrier. With the parameter set employed, the barrier 
in the frozen density approximation is located at 3.84 fm with the 
height of 0.13 MeV, while the potential at x = 0 is 7.1 MeV.

We first discuss the result of a superposition of two Slater de-
terminants. For the first Slater determinant, the initial positions 
of the α particles are set to be x0 = ±30.0/2 fm with the ini-
tial relative momentum of p0 = ∓√

2μE with E = 0.113 MeV, 
where μ is the reduced mass evaluated with the static calculation 
Fig. 3. The time-evolution of the fractions of each Slater determinant shown in 
Fig. 2. The dashed and the dotted lines show the reflected and the transmitted Slater 
determinant respectively.

for a single α particle, whereas for the second Slater determi-
nant we take x0 = ±30.1/2 fm and p0 = ∓√

2μE with E = 0.100
MeV. Fig. 1 shows the position of each Gaussian wave packet, 
x(t) = Re[Z(t)]/√ν , where Re[Z ] denotes the real part of Z , for 
the case where the Slater determinants are evolved independently 
to each other with the TDHF method. Since the initial energy is 
below the barrier for both the Slater determinants, they are both 
reflected at the barrier located at 3.84 fm.

Fig. 2 shows the result of the TDGCM with two Slater deter-
minants, for which the initial conditions are taken to be the same 
as those in the independent TDHF calculations in Fig. 1. In this 
calculation, we initially take equal weights for the two Slater de-
terminants, that is, f1 = f2.

The average initial relative energy, Erel ≡ 〈�|H |�〉/〈�|�〉 −
2Eg.s. , where Eg.s. is the ground state energy of the α particle, is 
calculated to be 0.099 MeV, which is still below the Coulomb bar-
rier. Yet, one can clearly see that one of the trajectories overcomes 
the barrier and undergoes the fusion process, while the other tra-
jectory is reflected at the barrier. This is in marked contrast to the 
TDHF case shown in Fig. 1, in which both of the trajectories are 
reflected at the barrier. That is, the tunneling probability of the 
Coulomb barrier is zero in the TDHF, but it is finite in the TDGCM, 
even though the exact value of the tunneling probability is difficult 
to evaluate only with two Slater determinants. Fig. 3 shows the 
time-evolution of the probabilities of each trajectory in the wave 
function. Here, the probabilities are defined as (see Eq. (1)),

Pi(t) = | f i(t)|2 〈�i(t)|�i(t)〉
〈�(t)|�(t)〉 . (9)

Notice that we only plot the long-time behavior, for which the 
overlap between the two Slater determinant is small, that is, 
〈�1(t)|�2(t)〉 ∼ 0. The fraction for the transmitted trajectory be-
comes from 0.5 at t = 0 to 0.489 at t = ∞. This value might be 
identified with the tunneling probability.

In the case of ETMD, a finite tunneling probability is explained 
as that the energy of individual test particles is not conserved, 
and some of test particles can “borrow” an energy from an en-
semble of the other test particles in order to overcome the bar-
rier [29–32]. We anticipate that the same argument applies to the 
TDGCM as well, even though it is difficult to visualize the energy 
of each Slater determinant as a function of time due to the non-
orthogonality of the Slater determinants.

Fig. 4 shows the behavior of the energy of each trajectory after 
the overlap of the Slater determinants becomes appreciably small. 
At such t , we can define the energy of each trajectory as

Ea(t) = 〈�a(t)|H|�a(t)〉 (10)
〈�a(t)|�a(t)〉
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Fig. 4. The energy of each Slater determinant in the time-dependent generator co-
ordinate method (the thick dashed and the dotted lines) and that for the TDHF 
trajectories (the thin dashed line (−30.95 MeV) and the dotted line (−30.96 MeV)). 
The total energy is also shown by the solid line. While the total energy is conserved, 
the energy of each trajectory changes as a function of time.

As compared to the energies for the independent Slater determi-
nants (see the thin dashed and dotted lines), the energy of one of 
the trajectories (the trajectory 1; the thick dashed line) increases 
while that of the other trajectory (the trajectory 2; the thick dotted 
line) decreases, even though the total energy of the system,

Etot =
∑

ab fa(t)∗ fb(t) 〈�a(t)|H|�b(t)〉∑
ab fa(t)∗ fb(t) 〈�a(t)|�b(t)〉 , (11)

remains a constant at any time (see the solid line). Notice that the 
trajectory 1 corresponds to the transmitted fraction in Fig. 3, while 
the trajectory 2 corresponds to the reflected fraction in Fig. 3. This 
indicates that the trajectory 1 borrows the energy from the trajec-
tory 2 and passes the barrier.

We next discuss the result with 10 Slater determinants. To this 
end, we take the same weight factor fa for each Slater determi-
nant at t = 0 and randomly generate the initial conditions for xa0
and pa0 around a central value assuming a Gaussian distribution. 
For the initial distances, we take the central value of 30.0/2 fm 
with the Gaussian width of 0.1 fm. On the other hand, for the ini-
tial energies, we take the central value of 0.1 MeV with the width 
of 0.02 MeV. We use a particular ensemble where all the 10 Slater 
determinants have an energy below the barrier so that they are 
all reflected at the barrier when they are evolved individually. The 
average energy of this ensemble is computed to be 0.11 MeV. By 
taking into account the entanglement among the Slater determi-
nants with the TDGCM method, we find that 3 Slater determinants 
undergo fusion, whereas the other 7 Slater determinants are re-
flected at the barrier. As in the case of a superposition of 2 Slater 
determinants, it is remarkable that the tunneling phenomenon is 
simulated using “classical” TDHF trajectories. Evidently, the TDGCM 
provides a promising microscopic framework to describe many-
particle tunneling phenomena.

4. Summary

In summary, we have applied the time-dependent generator 
coordinate method (TDGCM) to the 4He+4He scattering in one di-
mension at energies below the Coulomb barrier. To this end, we 
have used the initial relative distance and the initial relative mo-
mentum between the two 4He particles as generator coordinates 
which characterize each Slater determinant. We have shown that, 
by superposing Slater determinants, a many-body tunneling can be 
simulated with this method, whereas the time-dependent Hartree-
Fock (TDHF) method yields the tunneling probability of either 0 or 
1. That is, even when individual TDHF trajectories are all reflected 
at the barrier, some of them undergo fusion in the TDGCM. It is 
thus evident that the TDGCM provides a promising means to mi-
croscopically describe many-body tunneling.
Since the aim of this paper was to carry out a proof-of-principle 
study of the TDGCM framework, for simplicity we have parame-
terized single-particle wave functions in a Gaussian form with a 
fixed width. Similar wave functions may be employed in applica-
tions of the TDGCM to scattering of heavier nuclei in the more 
realistic three-dimensional space. That is, if one assumes that the 
single-particle wave functions in the colliding nuclei are given by 
pre-fixed mean-field potentials, those single-particle wave func-
tions are characterized only by the time-dependent centers of the 
mean-field potentials. TDGCM calculations can thus be carried out 
in the same way as what we have done in this paper for scattering 
of two α particle in one-dimension.

Of course, one can improve the performance of the TDGCM 
method by using less restricted single-particle wave functions, 
even though this would be numerically challenging, especially in 
applications to reactions in the three-dimensional space. More-
over, we remark that an application of the TDGCM is not restricted 
to nuclear reactions, but it can also be applied to several phe-
nomena, such as a decay of unstable states, including nuclear 
fission, and chemical reactions. These will be interesting future 
works.
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