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In this paper, we perform the first application of the hybrid method (exact low modes plus
stochastically estimated high modes) for all-to-all propagators to the HAL QCD method. We
calculate the HAL QCD potentials in the I = 2 ππ scattering in order to see how statistical
fluctuations of the potential behave under the hybrid method.All of the calculations are performed
with the 2+1 flavor gauge configurations on a 163 × 32 lattice at the lattice spacing a ≈ 0.12
fm and mπ ≈ 870 MeV. It is revealed that statistical errors for the potential are enhanced by
stochastic noises introduced by the hybrid method, which, however, are shown to be reduced by
increasing the level of dilutions, in particular, that of space dilutions. From systematic studies,
we obtain a guiding principle for a choice of dilution types/levels and a number of eigenvectors
to reduce noise contamination to the potential while keeping numerical costs reasonable. We
also confirm that we can obtain the scattering phase shifts for the I = 2 ππ system by the hybrid
method within a reasonable numerical cost; these phase shifts are consistent with the result
obtained with the conventional method. The knowledge that we obtain in this study will become
useful for the investigation of hadron resonances that require quark annihilation diagrams such
as the ρ meson by the HAL QCD potential with the hybrid method.
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1. Introduction

Understanding hadronic resonances in terms of quantum chromodynamics (QCD) is one of the most
challenging subjects in both particle and nuclear physics. In order to study hadronic resonances in
QCD, we have to analyze hadron–hadron scatterings using non-perturbative methods such as lattice
QCD, where two methods have been employed so far. One is Lüscher’s finite volume method (and
the extensions thereof) [1–3], which has been mainly applied to meson–meson systems (reviewed
in Ref. [4]) including resonant states such as ρ [5–7] and σ [8,9]. The other one is the HAL QCD
method [10–13], in which non-local but energy-independent potentials are constructed from the
Nambu–Bethe–Salpeter (NBS) wave functions in lattice QCD, and then physical observables such
as scattering phase shifts are extracted by solving the Schrödinger equations with the potentials.
The HAL QCD method has been applied to a wide range of hadronic systems [14–24] including, in
particular, the candidate for the exotic state, Zc(3900) [25,26]. The consistency between Lüscher’s
method and the HAL QCD method for two-baryon systems is extensively studied in Refs. [27–30].
© The Author(s) 2019. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Recently, the first realistic calculation of baryon interactions with nearly physical quark masses was
performed with the HAL QCD method (a recent summary is given in Ref. [31]) and �� and N�
systems are found to form di-baryons located near the unitarity [32,33].

Although the HAL QCD method is a powerful method to study hadron–hadron scatterings, we still
do not have a mature way to treat scattering processes containing quark annihilation diagrams, due
to the need for all elements of propagators (so-called all-to-all propagators). Such quark annihilation
diagrams typically appear in resonant channels; thus, establishing an efficient technique to treat
them is an urgent issue for deeper understanding of hadronic resonances in the HAL QCD method.
A previous study [34], which utilized the LapH method [35] for the all-to-all propagator in the HAL
QCD method, revealed that non-locality in the definition of the Nambu–Bethe–Salpeter (NBS) wave
function introduced by the LapH smearing enhances higher-order contributions in the derivative
expansion of the potential, so that the leading-order potential suffers large systematic uncertainties
even at low energies.

In this study, we employ another technique to obtain the all-to-all propagator, namely the hybrid
method [36], with the HAL QCD method for the first time. This technique combines a low-mode
spectral decomposition of the propagator together with stochastic estimations for the remaining high
modes. In contrast with the LapH method, this method keeps the locality of quark fields and thus the
locality of hadron operators in the HAL QCD potential. In order to investigate how statistical errors
of potentials and physical observables behave under the hybrid method, we calculate potentials
for the I = 2 ππ S-wave scattering on gauge configurations at mπ ≈ 870 MeV with all-to-all
propagators. Since the calculation of quark annihilation diagrams is not necessary, this system is
suitable to benchmark the hybrid method. As a result, we find that the potential by the hybrid method
gives us reliable results as long as statistical errors caused by stochastic noises are kept sufficiently
small by noise dilution techniques. Our study also provides an optimal choice of parameters in the
hybrid method to calculate the potential, which will be useful for future studies.

This paper is organized as follows. In Sect. 2, after briefly explaining the HAL QCD method,
we introduce the hybrid method and discuss the application to the HAL QCD method. Simulation
details in this study are shown in Sect. 3. As main results of our study, we present systematic studies
on behaviors of the HAL QCD potentials with the hybrid method in Sect. 4, and a comparison with
previous results without all-to-all propagators in Sect. 5. Our conclusion is given in Sect. 6.

2. Method
2.1. HAL QCD method

A basic quantity in the HAL QCD method is the Nambu–Bethe–Salpeter (NBS) wave function,
which is given for the I = 2 two-pion system as

ψW (r) =
∑

x

〈0|π+(r + x, 0)π+(x, 0)|π+π+; k〉, (1)

where |π+π+; k〉 is an asymptotic state of the elastic π+π+ S-wave system in the center-of-mass
frame with a relative momentum k and an energy W = 2

√
m2
π + k2, k = |k|, and the positively

charged pion operator is given as π+(x, t) = d̄(x, t)γ5u(x, t) with up and down quark fields u(x, t)
and d(x, t).

For r = |r| > R with an interaction range R, the NBS wave function satisfies the Helmholtz
equation as

(∇2 + k2)ψW (r) = 0, (2)
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and its radial part with angular momentum l behaves as

ψ l
W (kr) = Ceiδl(k)

sin(kr − lπ
2 + δl(k))

kr
, (3)

where δl(k) is the scattering phase shift corresponding to the phase of the S-matrix constrained by
the unitarity [11,37] and C is a constant. An energy-independent and non-local potential U (r, r′) is
defined from

1

2μ
(∇2 + k2)ψW (r) =

∫
d3r′ U (r, r′)ψW (r′), (4)

where μ = mπ/2 is the reduced mass of the two-pion. Thanks to Eq. (3), this potential is faithful
to the scattering phase shifts by construction, but the potential depends on a scheme such as the
choice of operators in the definition of the NBS wave function [11,12]. In practice, we deal with the
non-locality of the potential in the derivative expansion as

U (r, r′) = (V LO(r)+ V N2LO(r)∇2 + O(∇4))δ(r − r′), (5)

whose convergence property depends on the scheme of the potential. In the previous study [34], it
was found that non-locality of the operator in the NBS wave function is a major factor that governs
the non-locality of the potential: A scheme with non-local (smeared) operators leads to a potential
with large non-locality and inclusion of V N2LO(r) is required to reproduce the I = 2 ππ scattering
phase shifts even at low energies, while the scheme with local operators leads to the potential with
small non-locality and V LO(r) alone is found to be sufficient. In this paper, we employ the scheme
with local operators and calculate the potential at the leading order (LO), V LO(r).

We define a four-point correlation function as

F(r, t − t0) =
∑

x

〈π+(r + x, t)π+(x, t)Jπ+π+(t0)〉, (6)

where a source operator Jπ+π+(t0) creates I = 2 π+π+ scattering states in the A+
1 representation. In

this paper, we employ a bi-local operator in which each pion operator is projected to zero momentum:

Jπ+π+(t0) =
∑
y,z

π−(y, t0)π
−(z, t0). (7)

We then normalize it as

R(r, t) ≡ F(r, t)

(e−mπ t)2
, (8)

which can be written as

R(r, t) =
∑

n

BnψWn(r)e
−	Wnt + (inelastic contributions), (9)

where 	Wn = Wn − 2mπ and Wn = 2
√

k2
n + m2

π is the energy of the nth elastic state. Since

(	Wn)
2 = 4k2

n − 4mπ	Wn, (10)
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the time-dependent HAL QCD method reads [13]

[∇2

mπ
− ∂

∂t
+ 1

4mπ

∂2

∂t2

]
R(r, t) =

∫
d3r′U (r, r′)R(r′, t), (11)

as long as t is large enough to suppress inelastic contributions in R(r, t). Thus the LO potential is
given by

V LO(r) =
[ ∇2

mπ
− ∂

∂t + 1
4mπ

∂2

∂t2

]
R(r, t)

R(r, t)
. (12)

2.2. The hybrid method for all-to-all propagators

In this paper, we employ the hybrid method for all-to-all propagators [36], where the dominant part
of the quark propagator is represented by low eigenmodes of the Dirac operators while the remaining
contributions from high eigenmodes are estimated stochastically.

The quark propagator can be expressed in terms of eigenmodes of the Hermitian Dirac operator
H = γ5D as

D−1(x, y) =
N−1∑
i=0

1

λi
v(i)(x)⊗ v(i)(y)†γ5, (13)

where λi and v(i) are the ith eigenvalue and eigenvector of H , respectively, and N is the total number
of eigenmodes. Color and spinor indices are implicit here. We approximate the propagator using the
low-lying Neig eigenmodes as

D−1
0 (x, y) =

Neig−1∑
i=0

1

λi
v(i)(x)⊗ v(i)(y)†γ5, (14)

which is expected to be a reasonable approximation for pions at low energies.
The rest,

M−1 ≡ D−1 − D−1
0 = H−1P1γ5, P1 ≡ 1 −

Neig−1∑
i=0

v(i) ⊗ v†(i), (15)

can be estimated stochastically as

M−1(x, y) = 〈〈ψ(x)⊗ η(y)†〉〉γ5, (16)

where a noise vector η satisfies

〈〈ηaα(x)⊗ ηbβ(y)
†〉〉 = δa,bδα,βδx,y (17)

|ηaα(x)|2 = 1 (no summation) (18)

for color indices a, b and spinor indices α,β, and ψ is the solution of H ·ψ = P1η. The symbol 〈〈 〉〉
indicates an expectation value over probability distribution of noise vectors.
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Fig. 1. Schematic figures of s2 dilution (left) and s4 dilution (right). Sites with different symbols belong to
different diluted noises. Pink lines connect sites that are referred to in the calculation of the Laplacian at the
central point.

In practice, the exact noise average is approximated by the finite sum, together with the variance
reduction by diluted noises as

M−1(x, y) ≈ 1

Nr

Nr−1∑
r=0

Ndil−1∑
i=0

ψ
(i)
[r](x)⊗ η

(i)
[r](y)

†γ5, (19)

where Nr is the total number of noises, Ndil is the total number of dilution, and ψ(i)[r] is the solution of

H ·ψ(i)[r] = P1η
(i)
[r]. Using diluted noises, parts of statistical errors that appear in off-diagonal elements

of the approximation of Eq. (17) become explicitly zero, and therefore the variance reduction is
achieved. In our study, color and spinor are fully diluted, while several types of dilutions are employed
for time and space. The time coordinate is either fully or J -interlace diluted by the noises as

η(i)(x, t) 
= 0, if t = i mod J , (20)

where i runs from 0 to J − 1; thus J = Nt corresponds to the full dilution. On the other hand, no
dilution, s2 (even/odd) dilution, or s4 dilution is employed for spatial coordinates. Noise vectors for
the s2 dilution are given by

η(i)(x, y, z, t) 
= 0, if x + y + z = i mod 2, (21)

while those for the s4 dilution read⎧⎪⎪⎪⎨
⎪⎪⎪⎩
η(0) 
= 0 if (nx, ny, nz) = (even,even,even) or (odd,odd,odd)
η(1) 
= 0 if (nx, ny, nz) = (odd,even,even) or (even,odd,odd)
η(2) 
= 0 if (nx, ny, nz) = (even,odd,even) or (odd,even,odd)
η(3) 
= 0 if (nx, ny, nz) = (odd,odd,even) or (even,even,odd)

. (22)

These space dilutions are schematically shown in Fig. 1. These dilutions are chosen so as to minimize
the off-diagonal noises from the neighbor sites. In particular, since the Laplacian is evaluated by
the second-order difference using one central site and six next-nearest-neighbor sites, we maximize
the number of independent noises assigned to these seven sites. Thus, the total number of dilutions
becomes Ndil = 3 × 4 × J × 2s/2 with s = 0 (no dilution), s = 2 (s2), or s = 4 (s4).
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In total, the all-to-all propagator in the hybrid method is given by

D−1 ≈ 1

Nr

Nr−1∑
r=0

Nhl−1∑
i=0

u(i)[r] ⊗ w†(i)
[r] γ5, (23)

where the hybrid lists u(i)[r], w(i)[r] are defined as

w(i)[r] =
{

v(0)

λ0
, . . . ,

v(Neig−1)

λNeig−1
, η(0)[r] , . . . , η(Ndil−1)

[r]

}
(24)

u(i)[r] =
{

v(0), . . . , v(Neig−1),ψ(0)[r] , . . . ,ψ(Ndil−1)
[r]

}
(25)

with Nhl = Neig + Ndil. The HAL QCD potential with the local operator can be constructed by using
this all-to-all propagator.

2.3. Correlation functions in the hybrid method

The two-point correlation function for the charged pion,

C(t) =
∑
x,y,t0

〈π+(x, t + t0)π
−(y, t0)〉, (26)

is expressed as

C(t) = − 1

N 2
r

∑
t0

∑
r,s

∑
i,j

O(j,i)
[s,r](t + t0)O

(i,j)
[r,s](t0), (27)

where

O(i,j)
[r,s](t) =

∑
x

O(i,j)
[r,s](x, t), O(i,j)

[r,s](x, t) ≡ w†(i)
[r] (x, t) · u(j)[s](x, t), (28)

and the dot · indicates an inner product in color and spinor indices.
The four-point correlation function defined by

F(r, t) =
∑

x,y1,y2,t0

〈π+(r + x, t + t0)π
+(x, t + t0)π

−(y1, t0)π
−(y2, t0)〉 (29)

leads to

F(r, t) = 1

N 4
r

∑
x,t0,r,s,p,q

∑
i,j,k ,l

[
O(i,j)

[r,s](r + x, t + t0)O
(j,i)
[s,r](t0)O

(k ,l)
[p,q](x, t + t0)O

(l,k)
[q,p](t0)

− O(i,j)
[r,s](r + x, t + t0)O

(j,k)
[s,p](t0)O

(k ,l)
[p,q](x, t + t0)O

(l,i)
[q,r](t0)

]
. (30)

3. Simulation details

We employ the same 2+1 flavor QCD ensemble as in the previous study [34], generated by the
JLQCD and CP-PACS Collaborations [38,39] on a 163 × 32 lattice with an Iwasaki gauge action
[40] at β = 1.83 and a non-perturbatively improved Wilson-clover action [41] at cSW = 1.7610 and
hopping parameters (κud , κs) = (0.1376, 0.1371), which correspond to the lattice spacing a = 0.1214
fm and the pion mass mπ ≈ 870 MeV.
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Table 1. Setups for the hybrid method. Neig is the number of low eigenmodes for the all-to-all propagator, and
the number of the noise vector for high eigenmodes is 1 for all cases. Color and spinor dilutions are always
used.

time dilution space dilution Neig Source Nconf

case1 full none 100 point 20
case2 full s2 (even/odd) 100 point 20
case3 16-interlace s2 (even/odd) 100 point 20
case4 16-interlace s2 (even/odd) 100 smear 20
case5 16-interlace s4 100 smear 20
case5a 16-interlace s4 100 smear 60
case6 16-interlace s2 (even/odd) 200 point 20
case7 16-interlace s2 (even/odd) 484 smear 20

In addition to the local quark source, we use the smeared quark source [27], qs(x, t) = ∑
y f (x −

y)q(y, t) with the Coulomb gauge fixing, where

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

ae−b|x| ( 0 < |x| < (L − 1)/2 )

1 ( |x| = 0 )

0 ( |x| ≥ (L − 1)/2 )

(31)

with a = 1.0, b = 0.47 in lattice units. Note that, regardless of the type of quark sources, all
calculations are made with wall sources at the hadron level (see Eq. (7)). The periodic boundary
condition is used in all directions.

The setups for the hybrid method in this study are presented in Table 1. In this study, we use a
single noise vector for each propagator (Nr = 1), and the noise vectors are generated by Z4 random
noises. Statistical errors are estimated by the jackknife method with a bin-size of 1 except for case5a,
where the bin-size is 6.

Figure 2 (left) shows the effective masses of the single pion, where effective masses are calculated
by solving the following equation:

C(t)

C(t + 1)
= cosh (meff (t + 1/2)(t − T/2))

cosh (meff (t + 1/2)(t + 1 − T/2))
. (32)

Note that we use a half-integer time convention for meff , whose convention is also used for the
effective energy shift. We find that the result from the smeared source reaches the plateau at earlier
time slices than the one from the point source. The fit to smeared data at t = 4–11 gives mπ = 870(4)
MeV, while the fit to point data at t = 8–11 leads to mπ = 874(8) MeV, and both agree with 870
MeV in the previous study [34].

Effective energy shifts for two pions from smeared and point sources are plotted in Fig. 2 (right),
where the energy shift is defined by 	Eππ = Eππ − 2mπ with the two-pion energy Eππ . In our
setup, an energy gap between the ground and the first excited states is estimated to be 	E1 ∼ 420
MeV in the non-interacting case; thus ground state saturation is expected to be achieved at roughly
t ∼ 1

	E1
∼ 3.8 in lattice units. Fits give 	Eππ = 9.7(0.7) MeV (t = 3–10) from the smeared

source, and 	Eππ = 11(1) MeV (t = 5–10) from the point source, which are consistent with
	Eππ = 14(5) MeV in the previous study [34]. These results suggest that R(r, t) is dominated by
the ground state actually at t ≥ 5, so that the leading-order potential obtained by the time-dependent
HAL QCD method becomes reliable at low energies.
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Fig. 2. (Left) Effective mass of the single pion from the point source (blue circles) and the smeared source
(red triangles). (Right) Effective energy shift of two pions, 	Eππ = Eππ − 2mπ , from the point (blue circles)
and smeared (red triangles) sources. Cyan and magenta solid lines with bands represent central values and
statistical errors from fits to point and smeared data in these intervals, respectively.

Fig. 3. The potential from the hybrid method with case1 (full, none, 100, point) at t = 6 (blue circles), together
with its breakdown to three contributions, the Laplacian (red triangles), the first time derivative (green squares),
and the second time derivative (yellow diamonds).

4. The hybrid method and the HAL QCD potential

In this section, we show how statistical errors of the HAL QCD potential for the I = 2 ππ system
depend on various setups of the hybrid method. We mainly discuss data at t = 6, which is sufficiently
large for the elastic state domination as discussed in the previous section. In the following, we use a
quartet (time dilution, space dilution, Neig, source type) to specify calculation setups.

Figure 3 shows the I = 2 ππ potential at t = 6 from the point source with the full time dilution
(case1), together with its decomposition into the first (Laplacian), the second (the first time deriva-
tive), and the third (the second time derivative) terms on the right-hand side of Eq. (12). Although
the bulk behavior of the potential agrees with the previous result [34], the potential obtained by the
hybrid method suffers from much larger statistical errors, which mainly come from the Laplacian
term.
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Fig. 4. (Left) Dependence of the potential on space dilutions at t = 6. (Right) Dependence of the effective
energy shift on space dilutions. Data with blue circles and red triangles are obtained from case1 (no space
dilution) and case2 (s2 space dilution), respectively.

4.1. Dilution in spatial directions

In order to reduce noise contamination in the Laplacian term, we introduce the s2 dilution for spatial
coordinates (case2) in addition to the full time dilution. Shown in Fig. 4 (left) is the corresponding
result together with that from the full time dilution only (case1) for comparison. As can be seen from
the figure, the statistical errors of the potential are much more reduced by the s2 dilution for spatial
coordinates. Although the numerical cost in case2 becomes approximately twice as large as that in
case1, the statistical errors decrease by a factor of ∼ 3, and therefore we can conclude that the space
dilution actually reduces the statistical noise.

On the other hand, as seen in Fig. 4 (right), which compares the effective energy shifts 	Eeff

between case1 and case2, their difference is moderate in contrast to the potentials, while the mag-
nitude of errors becomes smaller by space dilutions. This observation suggests that the summation
over spatial coordinates for the calculation of the energy shift reduces noise contamination, thanks
to cancellation among different spatial points. We thus conclude that noise reduction by dilutions in
spatial directions is more important for the HAL QCD potential than for the energy shift calculation,
as the potential is extracted from spatial as well as temporal dependences of correlation functions.

4.2. Dilution in a temporal direction

In order to compensate the increased numerical cost by the introduction of the space dilution, we
investigate a possibility to reduce the cost by employing fewer dilutions in a temporal direction. In
Fig. 5, we compare the 16-interlace time dilution (case3) with the full (32-interlace) time dilution
(case2) at various t (t = 4, 6, 8, 10) together with the s2 space dilution for both cases. We observe
that the statistical errors are comparable between the two cases at small t (t = 4, 6), while errors in
the 16-interlace time dilution (case3) become much larger than those in the full time dilution (case2)
at larger t (t = 8, 10).

These behaviors may be qualitatively explained as follows. If a quark propagator from t0 to t + t0 is
estimated by the hybrid method with the 16-interlace time dilution, signals propagated from t0 to t+t0
behave as exp[−Et], while noises contaminated from t0 + 16 to t + t0 decrease as exp[−E|t − 16|].
Therefore, the signals that we need are larger than this type of noise contamination at t < 8. On the
other hand, the signals are largely contaminated by the noises at t ≥ 8, so that the potential cannot
be reliably extracted.
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Fig. 5. A comparison of the potentials between full (case2) (red triangles) and 16-interlace (case3) (blue
circles) dilutions in a temporal direction at various time separations: t = 4 (top left), 6 (top right), 8 (bottom
left), and 10 (bottom right).

This observation suggests that one can reduce numerical costs by J -interlace time dilutions, which
reduce Ndil to Ndil × J/Nt , while keeping the quality of the potential, as long as the potential
is calculated at t < J/2. Therefore, the most efficient way to calculate the potential would be to
combine J -interlace time dilution with J as large as possible together with a lattice setup that enables
us to extract the potential at smaller t, such as the smeared source instead of the point source.

4.3. Effects of the smeared source

In this subsection, we investigate the behavior of the statistical fluctuations of the potential in the
case of the smeared source.

We first compare the potential from the smeared source (case4) with that from the point source
(case3), keeping 16-interlace time dilution and s2 space dilution in both cases. Figure 6 (left) shows
that the source smearing makes the potential noisier. This enhancement of noises by the smeared
source may be explained by the fact that spatial summations in the source smearing accumulate fluc-
tuations associated with noise vectors. In addition, the gauge fixing may make possible cancellations
among gauge-variant noises less effective. To reduce noise contamination due to source smearing,
we introduce finer space dilution, s4. We compare case5 (16-interlace, s4, 100, smear) with case3
(16-interlace, s2, 100, point) in Fig. 6 (right), which shows that a finer space dilution gives statistical
errors in the potential with the smeared source comparable to those in the point source calculation.

In Fig. 7, we compare the time dependence of the potential with the smeared source and that with
the point source. As seen in Fig. 7, while the potential from the point source (left) has a significant t
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Fig. 6. (Left) A comparison of the potential between the smeared source (case4) (blue circles) and the point
source (case3) (red triangles) with 16-interlace time and s2 space dilution at t = 6. (Right) A comparison
between the smeared source with 16-interlace time and s4 space dilution (case5) (blue circles) and the point
source with 16-interlace time and s2 space dilution (case3) (red triangles) at t = 6.

Fig. 7. (Left) Dependence of the potential on t in case2 (full, s2, 100, point). (Right) The same one in case5
(16-interlace, s4, 100, smear).

dependence at small t, the potential from the smeared source (right) is almost t-independent even at
t = 2. Therefore, the smeared source actually enables us to extract a reliable potential at an earlier
time than the point source. While the use of the smeared source may not be mandatory in the present
case, it becomes more useful when the potential from the point source shows slower convergences
in time.

4.4. Dependence on Neig

We finally investigate how the noises of the potential depend on a number of low modes Neig.
Naively, we expect that statistical errors become smaller for larger Neig, since the relative segment

of the propagator estimated exactly, D−1
0 , becomes larger. In order to confirm this point explicitly,

we compare potentials at t = 6 between Neig = 100 (case3) and 200 (case6) with (16-interlace,
s2, point) in Fig. 8 (left), which shows that the potential with Neig = 200 (red) has smaller noise
contamination than the one with Neig = 100 (blue). Therefore, we can confirm that our expectation
is indeed the case.
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Fig. 8. (Left) A comparison of the potential between case3, Neig = 100 (blue) and case6, Neig = 200 (red)
with the same (16-interlace, s2, point). (Right) A comparison of the potential between case5, (16-interlace, s4,
smear) with Neig = 100 (blue), and case7, (16-interlace, s2, smear) with Neig = 484 (red). Both correspond to
the same Nhl = Neig + Ndil = 868.

Next, in order to see which is more important for noise reductions, finer space dilution or larger
Neig, we compare (16-interlace, s2, Neig = 484, smear) (case7) with (16-interlace, s4, Neig = 100,
smear) (case5), keeping Nhl = Neig + Ndil = 868 the same for both cases. Note that, in our setup,
Nhl is effectively a good measure for numerical costs because the most time-consuming part of our
calculations is the contraction part, whose numerical costs are controlled by Nhl. Figure 8 (right)
indicates that a larger Neig (case7, red) is a little better for the potential to have smaller noise
contamination than a smaller Neig (case5, blue).

From these studies, taking larger Neig is slightly advantageous over finer space dilutions in our
case. However, this relative efficiency could depend on the actual value of Neig and the lattice setup
such as the size of the lattice volume. In particular, we cannot freely make Neig larger and larger,
since the numerical costs for the calculation of eigenmodes become non-negligible at some point.
Therefore, increasing Neig as long as the numerical cost for the eigenmodes remains subdominant
will be the first guiding principle before performing the detailed optimization on Neig.

4.5. Lessons in this section

In order to extract the HAL QCD potential with the hybrid method for all-to-all propagators, lessons
learned from the investigations in this section are summarized as follows.

(1) A finer space dilution should be used to reduce noise contamination to the potential, in addition
to full color and spinor dilutions.

(2) The smeared source accumulates noise contamination; thus additional dilutions in spatial direc-
tions are mandatory. We should take the smeared source to extract the potential at the smallest
possible t if potentials with the point source become reliable only at larger t.

(3) A J -interlace time dilution can be used for the potential to be extracted at t < J/2, to reduce Ndil

by a factor Nt/J .
(4) It is better to increase Neig until the costs for the calculation of eigenmodes become significant.

The total number of Nhl becomes Nhl = 12 × J × 2s/2 + Neig, where s corresponds to a level of
the space dilution, s = 0 (no dilution), s = 2 (s2), s = 4 (s4).
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Fig. 9. (Left) A comparison of the I = 2 ππ potentials, one from the hybrid method (blue circles) and the
other from the wall quark source (red triangles). (Right) The result of the fit (red line) of the potential from
the hybrid method (blue circles).

Table 2. Fit parameters for the potential, ai, and the corresponding χ 2/d.o.f .

a0 [MeV] a1 [fm] a2 [MeV] a3 [fm] χ 2/d.o.f .

2050(30) 0.113(0.002) 380(26) 0.316(0.008) 1.27

5. Comparison with the result without all-to-all propagators

In this section, we compare the I = 2 ππ potential and the corresponding scattering phase shifts
obtained in the hybrid method for all-to-all propagators with those in the standard method without
all-to-all propagators.

Figure 9 (left) compares the LO potential for the I = 2 ππ system obtained by the hybrid method
(16-interace, s4, Neig = 100, smear) with Nconf = 60 (case5a) at t = 6 with the one with the
conventional setup in the HAL QCD method (32 wall quark sources/conf with Nconf = 700) at
t = 10. Both results agree with each other within statistical errors.

Then the potential is fitted by

V (r) = a0e−(r/a1)
2 + a2e−(r/a3)

2
, (33)

from which the I = 2 ππ scattering phase shifts are extracted. Figure 9 (right) shows the fit line,
and Table 2 summarizes the fit parameters.

In Fig. 10, we present the I = 2 ππ scattering phase shifts δ0(k) (left) and k cot δ0(k) (right) as
a function of k2, together with results from the HAL QCD method with the wall quark source and
those from Lüscher’s finite volume method [34]. As expected from the agreement of the potential,
we confirm that the results by the hybrid method agree with the ones without all-to-all propagators
(wall quark source) and the results from Lüscher’s method.

6. Conclusion

In this paper, we employ the hybrid method of all-to-all propagators [36] for the HAL QCD method
and study the interaction of the I = 2 ππ system at mπ ≈ 870 MeV. Even though the hybrid
method brings extra statistical fluctuations for the results, we obtain a reasonably accurate potential
by increasing dilution levels, which gives I = 2 ππ scattering phase shifts consistent with the result
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Fig. 10. (Left) Scattering phase shifts δ0(k) as a function of k2. (Right) k cot δ0(k) as a function of k2. Blue
(red) bands correspond to the results from the HAL QCD method with the hybrid method (with the wall quark
source). Black bands in the right figure correspond to the results from Lüscher’s method [34].

using the conventional method. Our findings for appropriate choices of parameters in the hybrid
method to calculate the potentials are summarized in Sect. 4.5.

As the hybrid method works in the HAL QCD method, we will calculate the I = 1 ππ potential
using all-to-all propagators. It is interesting to see whether the ρ resonance is correctly reproduced
by the HAL QCD potential. A preparatory study has already been made, and the results will be
published in the near future. Future applications include unconventional hadrons such as σ /f0(500),
exotic X , Y , Z states [42], and pentaquark states Pc [43,44], whose natures are not yet understood.
The importance of first-principles lattice QCD study is increasing more than ever, and it is expected
that our future studies with a combination of the HAL QCD method and all-to-all propagators will
shed light on these unconventional states.

Acknowledgements

The main part of our calculation code is based on the Bridge++ code [45,46].We thank the JLQCD and CP-PACS
Collaborations for providing their 2+1 configurations [38,39]. All the numerical calculations were performed
on the Cray XC40 at the Yukawa Institute for Theoretical Physics (YITP), Kyoto University. This work is
supported in part by Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research,
Nos. JP19K03879, JP18H05236, JP18H05407, JP16H03978, JP15K17667, by a priority issue (Elucidation of
the fundamental laws and evolution of the universe) to be tackled by using the Post “K” Computer, and by the
Joint Institute for Computational Fundamental Science (JICFuS). The authors thank the members of the HAL
QCD Collaboration for fruitful discussions.

Funding

Open Access funding: SCOAP3.

References
[1] M. Lüscher, Nucl. Phys. B 354, 531 (1991).
[2] K. Rummukainen and S. Gottlieb, Nucl. Phys. B 450, 397 (1995) [arXiv:hep-lat/9503028] [Search

INSPIRE].
[3] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 86, 016007 (2012) [arXiv:1204.0826 [hep-lat]] [Search

INSPIRE].
[4] R. A. Briceño, J. J. Dudek, and R. D. Young, Rev. Mod. Phys. 90, 025001 (2018) [arXiv:1706.06223

[hep-lat]] [Search INSPIRE].

14/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2019/8/083B02/5546029 by Kyoto U

niversity Library user on 21 August 2020

https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(95)00313-H
http://www.arxiv.org/abs/hep-lat/9503028
http://www.inspirehep.net/search?p=find+EPRINT+hep-lat/9503028
http://www.inspirehep.net/search?p=find+EPRINT+hep-lat/9503028
https://doi.org/10.1103/PhysRevD.86.016007
http://www.arxiv.org/abs/1204.0826
http://www.inspirehep.net/search?p=find+EPRINT+1204.0826
http://www.inspirehep.net/search?p=find+EPRINT+1204.0826
https://doi.org/10.1103/RevModPhys.90.025001
http://www.arxiv.org/abs/1706.06223
http://www.inspirehep.net/search?p=find+EPRINT+1706.06223
http://www.inspirehep.net/search?p=find+EPRINT+1706.06223


PTEP 2019, 083B02 Y. Akahoshi et al.

[5] S. Aoki et al. [CP-PACS Collaboration], Phys. Rev. D 76, 094506 (2007) [arXiv:0708.3705 [hep-lat]]
[Search INSPIRE].

[6] D. J. Wilson, R. A. Briceño, J. J. Dudek, R. G. Edwards, and C. E. Thomas [Hadron Spectrum
Collaboration], Phys. Rev. D 92, 094502 (2015).

[7] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies, A. Pochinsky, G. Rendon,
and S. Syritsyn, Phys. Rev. D 96, 034525 (2017) and references therein.

[8] R. A. Briceño, J. J. Dudek, R. G. Edwards, and D. J. Wilson [Hadron Spectrum Collaboration], Phys.
Rev. Lett. 118, 022002 (2017) [arXiv:1607.05900 [hep-ph]] [Search INSPIRE].

[9] R. A. Briceño, J. J. Dudek, R. G. Edwards, and D. J. Wilson [Hadron Spectrum Collaboration], Phys.
Rev. D 97, 054513 (2018).

[10] N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett 99, 022001 (2007).
[11] S. Aoki, T. Hatsuda, and N. Ishii, Prog. Theor. Phys. 123, 89 (2010).
[12] S. Aoki [HAL QCD Collaboration], Prog. Part. Nucl. Phys. 66, 687 (2011).
[13] N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, K. Murano, H. Nemura, and K. Sasaki [HAL

QCD Collaboration], Phys. Lett. B 712, 437 (2012).
[14] H. Nemura, N. Ishii, S. Aoki, and T. Hatsuda, Phys. Lett. B 673, 136 (2009).
[15] K. Murano, N. Ishii, S. Aoki, and T. Hatsuda, Prog. Theor. Phys. 125, 1225 (2011).
[16] T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, and K. Sasaki [HAL

QCD Collaboration], Phys. Rev. Lett. 106, 162002 (2011).
[17] T. Inoue, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, N. Ishii, K. Murano, H. Nemura, and K. Sasaki [HAL

QCD Collaboration], Nucl. Phys. A 881, 28 (2012).
[18] T. Doi, S. Aoki, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, K. Murano, H. Nemura, and K. Sasaki [HAL

QCD Collaboration], Prog. Theor. Phys. 127, 723 (2012).
[19] K. Murano, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, H. Nemura, and K. Sasaki [HAL

QCD Collaboration], Phys. Lett. B 735, 19 (2014).
[20] Y. Ikeda, B. Charron, S. Aoki, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, K. Murano, H. Nemura, and

K. Sasaki, Phys. Lett. B 729, 85 (2014).
[21] F. Etminan, H. Nemura, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, K. Murano and

K. Sasaki [HAL QCD Collaboration], Nucl. Phys. A 928, 89 (2014).
[22] K. Sasaki, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, and K. Murano [HAL QCD

Collaboration], Prog. Theor. Exp. Phys. 2015, 113B01 (2015).
[23] M. Yamada, K. Sasaki, S. Aoki, T. Doi, T. Hatsuda,Y. Ikeda, T. Inoue, N. Ishii, K. Murano, and

H. Nemura [HAL QCD Collaboration], Prog. Theor. Exp. Phys. 2015, 071B01 (2015).
[24] T. Miyamoto et al. [HAL QCD Collaboration], Nucl. Phys. A 971, 113 (2018).
[25] Y. Ikeda et al. [HAL QCD Collaboration], Phys. Rev. Lett. 117, 242001 (2016).
[26] Y. Ikeda [HAL QCD Collaboration], J. Phys. G: Nucl. Part. Phys. 45, 024002 (2018)

[arXiv:1706.07300 [hep-lat]] [Search INSPIRE].
[27] T. Iritani et al. [HAL QCD Collaboration], J. High Energy Phys. 1610, 101 (2016) [arXiv:1607.06371

[hep-lat]] [Search INSPIRE].
[28] T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and K. Sasaki [HAL

QCD Collaboration], Phys. Rev. D 96, 034521 (2017) [arXiv:1703.07210 [hep-lat]] [Search INSPIRE].
[29] T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and

K. Sasaki [HAL QCD Collaboration], Phys. Rev. D 99, 014514 (2019) [arXiv:1805.02365 [hep-lat]]
[Search INSPIRE].

[30] T. Iritani, S. Aoki, T, Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and K. Sasaki [HAL
QCD Collaboration], J. High Energy Phys. 1903, 007 (2019) [arXiv:1812.08539 [hep-lat]] [Search
INSPIRE].

[31] T. Doi, Baryon interactions at physical quark masses in lattice QCD (2018) (available at:
https://indico.fnal.gov/event/15949/session/13/contribution/92). Talk at Lattice 2018 (East Lansing,
USA), July 22–28, 2018.

[32] S. Gongyo et al. [HAL QCD Collaboration], Phys. Rev. Lett. 120, 212001 (2018).
[33] T. Iritani et al. [HAL QCD Collaboration], Phys. Lett. B 792, 284 (2019) [arXiv:1810.03416 [hep-lat]]

[Search INSPIRE].
[34] D. Kawai, S. Aoki, T. Doi, Y. Ikeda, T. Inoue, T. Iritani, N. Ishii, T. Miyamoto, H. Nemura, and

K. Sasaki [HAL QCD Collaboration], Prog. Theor. Exp. Phys. 2018, 043B04 (2018).

15/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2019/8/083B02/5546029 by Kyoto U

niversity Library user on 21 August 2020

https://doi.org/10.1103/PhysRevD.76.094506
http://www.arxiv.org/abs/0708.3705
http://www.inspirehep.net/search?p=find+EPRINT+0708.3705
http://www.inspirehep.net/search?p=find+EPRINT+0708.3705
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.96.034525
https://doi.org/10.1103/PhysRevLett.118.022002
http://www.arxiv.org/abs/1607.05900
http://www.inspirehep.net/search?p=find+EPRINT+1607.05900
http://www.inspirehep.net/search?p=find+EPRINT+1607.05900
https://doi.org/10.1103/PhysRevD.97.054513
https://doi.org/10.1103/PhysRevLett.99.022001
https://doi.org/10.1143/PTP.123.89
https://doi.org/10.1016/j.ppnp.2011.07.001
https://doi.org/10.1016/j.physletb.2012.04.076
https://doi.org/10.1016/j.physletb.2009.02.003
https://doi.org/10.1143/PTP.125.1225
https://doi.org/10.1103/PhysRevLett.106.162002
https://doi.org/10.1016/j.nuclphysa.2012.02.008
https://doi.org/10.1143/PTP.127.723
https://doi.org/10.1016/j.physletb.2014.05.061
https://doi.org/10.1016/j.physletb.2014.01.002
https://doi.org/10.1016/j.nuclphysa.2014.05.014
https://doi.org/10.1093/ptep/ptv144
https://doi.org/10.1093/ptep/ptv091
https://doi.org/10.1016/j.nuclphysa.2018.01.015
https://doi.org/10.1103/PhysRevLett.117.242001
https://doi.org/10.1088/1361-6471/aa9afd
http://www.arxiv.org/abs/1706.07300
http://www.inspirehep.net/search?p=find+EPRINT+1706.07300
http://www.inspirehep.net/search?p=find+EPRINT+1706.07300
https://doi.org/10.1007/JHEP10(2016)101
http://www.arxiv.org/abs/1607.06371
http://www.inspirehep.net/search?p=find+EPRINT+1607.06371
http://www.inspirehep.net/search?p=find+EPRINT+1607.06371
https://doi.org/10.1103/PhysRevD.96.034521
http://www.arxiv.org/abs/1703.07210
http://www.inspirehep.net/search?p=find+EPRINT+1703.07210
http://www.inspirehep.net/search?p=find+EPRINT+1703.07210
https://doi.org/10.1103/PhysRevD.99.014514
http://www.arxiv.org/abs/1805.02365
http://www.inspirehep.net/search?p=find+EPRINT+1805.02365
http://www.inspirehep.net/search?p=find+EPRINT+1805.02365
https://doi.org/10.1007/JHEP03(2019)007
http://www.arxiv.org/abs/1812.08539
http://www.inspirehep.net/search?p=find+EPRINT+1812.08539
http://www.inspirehep.net/search?p=find+EPRINT+1812.08539
https://indico.fnal.gov/event/15949/session/13/contribution/92
https://doi.org/10.1103/PhysRevLett.120.212001
https://doi.org/10.1016/j.physletb.2019.03.050
http://www.arxiv.org/abs/1810.03416
http://www.inspirehep.net/search?p=find+EPRINT+1810.03416
http://www.inspirehep.net/search?p=find+EPRINT+1810.03416
https://doi.org/10.1093/ptep/pty032


PTEP 2019, 083B02 Y. Akahoshi et al.

[35] M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek, R. G. Edwards, B. Joó, H.-W. Lin,
D. G. Richards, and K. Jimmy Juge [Hadron Spectrum Collaboration], Phys. Rev. D 80, 054506 (2009).

[36] J. Foley, K. Jimmy Juge, A. Ó. Cais, M. Peardon, S. M. Ryan, and J.-I. Skullerud [TrinLat
Collaboration], Comput. Phys. Commun. 172, 145 (2005).

[37] S. Aoki, N. Ishii, T. Doi, Y. Ikeda, and T. Inoue [HAL QCD Collaboration], Phys. Rev. D
88, 014036 (2013).

[38] S. Aoki et al. [JLQCD Collaboration], Phys. Rev. D 65, 094507 (2002).
[39] T. Ishikawa et al. [CP-PACS and JLQCD Collaborations], Phys. Rev. D 73, 034501 (2006).
[40] Y. Iwasaki, Nucl. Phys. B 258, 141 (1985).
[41] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572 (1985).
[42] R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017)

[arXiv:1610.04528 [hep-ph]] [Search INSPIRE].
[43] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115, 072001 (2015) [arXiv:1507.03414 [hep-ex]]

[Search INSPIRE].
[44] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 122, 222001 (2019) [arXiv:1904.03947 [hep-ex]]

[Search INSPIRE].
[45] http://bridge.kek.jp/Lattice-code/
[46] S. Ueda, S Aoki, T. Aoyama, K. Kanaya, H. Matsufuru, S. Motoki, Y. Namekawa, H. Nemura,

Y. Taniguchi and N. Ukita, J. Phys.: Conf. Ser. 523, 012046 (2014).

16/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2019/8/083B02/5546029 by Kyoto U

niversity Library user on 21 August 2020

https://doi.org/10.1103/PhysRevD.80.054506
https://doi.org/10.1016/j.cpc.2005.06.008
https://doi.org/10.1103/PhysRevD.88.014036
https://doi.org/10.1103/PhysRevD.65.094507
https://doi.org/10.1103/PhysRevD.73.034501
https://doi.org/10.1016/0550-3213(85)90606-6
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/j.ppnp.2016.11.003
http://www.arxiv.org/abs/1610.04528
http://www.inspirehep.net/search?p=find+EPRINT+1610.04528
http://www.inspirehep.net/search?p=find+EPRINT+1610.04528
https://doi.org/10.1103/PhysRevLett.115.072001
http://www.arxiv.org/abs/1507.03414
http://www.inspirehep.net/search?p=find+EPRINT+1507.03414
http://www.inspirehep.net/search?p=find+EPRINT+1507.03414
https://doi.org/10.1103/PhysRevLett.122.222001
http://www.arxiv.org/abs/1904.03947
http://www.inspirehep.net/search?p=find+EPRINT+1904.03947
http://www.inspirehep.net/search?p=find+EPRINT+1904.03947
http://bridge.kek.jp/Lattice-code/
https://doi.org/10.1088/1742-6596/523/1/012046

