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A formalism is given to hermitize the HAL QCD potential, which needs to be non-Hermitian
except for the leading-order (LO) local term in the derivative expansion as the Nambu–Bethe–
Salpeter (NBS) wave functions for different energies are not orthogonal to each other. It is shown
that the non-Hermitian potential can be hermitized order by order to all orders in the derivative
expansion. In particular, the next-to-leading order (NLO) potential can be exactly hermitized
without approximation. The formalism is then applied to a simple case of ��(1S0) scattering,
for which the HAL QCD calculation is available to the NLO. The NLO term gives relatively
small corrections to the scattering phase shift and the LO analysis seems justified in this case.
We also observe that the local part of the hermitized NLO potential works better than that of the
non-Hermitian NLO potential. The Hermitian version of the HAL QCD potential is desirable for
comparing it with phenomenological interactions and also for using it as a two-body interaction
in many-body systems.
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1. Introduction

Lattice quantum chromodynamics (QCD) is a successful non-perturbative method to study hadron
physics from the underlying degrees of freedom, i.e., quarks and gluons. Masses of single stable
hadrons obtained from lattice QCD show good agreement with the experimental results, and even
hadron interactions have been recently explored in lattice QCD. Using the Nambu–Bethe–Salpeter
(NBS) wave function, linked to the S-matrix in QCD [1–9], the hadron interactions have mainly
been investigated by two methods: the finite volume method [1] and the HAL QCD potential method
[5–7]. Theoretically the two methods in principle give the same results for the scattering phase
shifts between two hadrons, while in practice they sometimes show different numerical results for
two-baryon systems, whose origin has been clarified recently in Refs. [10,11].

The HAL QCD method utilizes the NBS wave function in the non-asymptotic (interacting) region,
and extracts the non-local but energy-independent potentials from the space and time dependences
of the NBS wave function. Physical observables such as phase shifts and binding energies are then
calculated by solving the Schrödinger equation in infinite volume using the obtained potentials, since
the asymptotic behavior of the NBS wave function is related to the T-matrix element and thus to the
phase shifts [9]. In practice, the non-local potential is given by the form of the derivative expansion,
which is truncated by the first few orders [12].
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While the HAL QCD method has been successfully applied to a wide range of two- (or three-)
hadron systems at heavy pion masses [13–28] as well as at the nearly physical mass [29–35], there
are some subtleties or issues in the method. One is the theoretical treatment of the bound states in this
method, which has been recently clarified in Ref. [36]. In this paper, we consider the other issue, the
non-hermiticity of the potential in the HAL QCD method. We show in Sect. 2 that the non-Hermitian
potential defined in the derivative expansion can be made Hermitian order by order in the derivative
expansion. In particular, a non-Hermitian potential that contains the second derivative at most can be
made exactly Hermitian, while non-Hermitian potentials with higher-order derivatives than second
order can be shown to be made Hermitian potentials, using the mathematical induction for the order
of the derivative expansion. In Sect. 3, we apply our method to a non-Hermitian HAL QCD potential
for �� in lattice QCD [12], which consists of local and second- or first-order derivative terms. We
show that the exactly hermitized potential gives the same scattering phase shifts as those from the
original non-Hermitian potential but the contribution from its derivative term is smaller than that
from the original derivative term. A summary and the conclusion to this paper are given in Sect. 4.

2. Hermitizing the non-Hermitian potential

In this section, we propose a method to hermitize the non-Hermitian Hamiltonian order by order in
terms of derivatives. We consider the non-Hermitian Hamiltonian for the relative coordinate of two
identical particles without spin, which is given by

H = H0 +
∞∑

n=0

Vn, H0 = − 1

m
∇2, (1)

where Vn is the potential with n-derivatives, and m is the mass of the particle, so that the reduced
mass is given by m/2. The explicit form of Vn is denoted as

Vn := 1

n!V
i1i2···in
l ∇i1∇i2 · · · ∇in , (2)

where the local function V i1i2···in
l is symmetric under exchanges of indices i1i2 · · · in and summations

over repeated indices are implicitly assumed. In this paper, we assume that the above derivative
expansion is convergent. See Appendix A for some arguments. Except the local potential V0, the
other Vn>0 are non-Hermitian. Note also that the �r-dependence of Vn is implicit.

Since H0 + V0 is Hermitian, we first consider V1 and V2, which is the next-to-leading (first) order,
and more generally V2n−1 and V2n as the nth order, for the hermitizing problem, and introduce

Un := V2n + V2n−1. (3)

The reason to treat V2n and V2n−1 together will be clear later. In terms of the derivative expansion
for the potential, V0 is of leading order while V1 and V2 are of next-to-leading, so that V0 is much
larger in size than V1 or V2 at low energies.

2.1. n = 1 case

At n = 1, the Hamiltonian is given by

H (1) = H0 + V0 + U1, (4)
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where the n = 1 potential U1 is rewritten as

U1 = Ṽ2 + Ṽ1, Ṽ2 := 1

2
∇iV

ij
2 ∇j, Ṽ1 := Ṽ i

1∇i, Ṽ i
1 := V i

1 − 1

2

(
∇jV

ji
2

)
. (5)

Here Ṽ2 is Hermitian, while Ṽ1 is not.
The corresponding Schrödinger equation is given by

H (1)ψ = Eψ , (6)

which transforms to

H̃ (1)φ = Eφ, H̃ (1) = R−1
1 H (1)R1, (7)

by the change of the wave function that ψ := R(1)φ with a local function R(1) = R1, where

H̃ (1) = H0 + Ṽ0 + Ṽ2 +
{

Ṽ i
1 − 2

m
R−1

1 ∇ iR1 + V ij
2 R−1

1 ∇jR1

}
∇i, (8)

Ṽ0 = V0 − 1

m
R−1

1 ∇2R1 + V i
1R−1

1 ∇iR1 + 1

2
V ij

2

(
R−1

1 ∇i∇jR1

)
. (9)

By demanding the condition that

Ṽ i
1 − 2

m
R−1

1 ∇ iR1 + V ij
2 R−1

1 ∇jR1 = 0, (10)

H̃ (1) becomes Hermitian as H̃ (1) = H0 + Ṽ0 + Ṽ2, where

Ṽ0 = V0 − 1

2

(
∇iṼ

i
1

)
+ m

4
Ṽ i

1

(
δij − m

2
V ij

2

)−1
Ṽ j

1, (11)

R−1
1 ∇iR1 = m

2

(
δij − m

2
V ij

2

)−1
Ṽ j

1 . (12)

In the rotationally symmetric case such that

Ṽ i
1(�r) := r̂iṼ1(r), V ij

2 (�r) := V2a(r)r̂
i r̂j + V2b(r)δ

ij, R1(�r) := R1(r) (13)

with r := |�r| and r̂i := ri/r, we have

d R1(r)

d r
= m

2

Ṽ1(r)

1 − m

2
V2(r)

R1(r), V2 := V2a + V2b, (14)

which can be solved as

R1(r) = exp

⎡
⎢⎣m

2

∫ r

r∞

Ṽ1(s)

1 − m

2
V2(s)

d s

⎤
⎥⎦ , (15)

where we assume V1(r) = 0 and R1(r) = 1 at sufficiently large r ≥ r∞. Thus the Hermitian local
potential Ṽ0 becomes

Ṽ0 = V0 − Ṽ1

r
− 1

2
Ṽ ′

1 + m

4

Ṽ 2
1

1 − m

2
V2

, Ṽ1 := V1 − V2a

r
− V ′

2a + V ′
2b

2
, (16)

where the prime ′ means the derivative with respect to r.
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2.2. n = 2 case

In the previous subsection, we show that the non-Hermitian potential at n = 1 can be made Hermitian
without any approximations. In this subsection, we proceed to the next order, the n = 2 case, where
some truncations are required for a number of derivatives, as we will see.

The n = 2 Hamiltonian is given by

H (2) = H (1) + U2, (17)

where the n = 2 potential U2 can be written as

U2 = 1

4!∇i∇j U ijkl
2,4 ∇k∇l + 1

3!U
ijk
2,3∇i∇j∇k + 1

2!∇i U ij
2,2∇j + U i

2,1∇i (18)

:= U2,4 + U2,3 + U2,2 + U2,1, (19)

and U2,4 and U2,2 are Hermitian, while U2,3 and U2,1 are not. In terms of the original V4 and V3, we
have

U ijkl
2,4 := V ijkl

4 , U ijk
2,3 := V ijk

3 − 1

2
∇lV

ijkl
4 , U ij

2,2 := − 2

4!(∇k∇lV
ijkl
4 ), U i

2,1 := 1

4!(∇j∇k∇lV
ijkl
4 ). (20)

2.2.1. General case
The change of the wave function ψ = R(2)φ at n = 2 is given by

R(2) = R1(1 + R2), R2 := R2,0 + R2,2, (21)

where the n = 1 term R1 has already been determined in the previous subsection, while the n = 2
term R2 contains the local function R2,0 without derivatives and R2,2 with second derivatives as

R2,2 := 1

2!R
ij
2,2∇i∇j. (22)

As will be seen later, we can make H (2) Hermitian without the first derivative term, R2,1.
The transformed Hamiltonian H̃2 is given by

H̃ (2) := (R(2))−1H (2)R(2) � (1 − R2)R
−1
1 (H (1) + U2)R1(1 + R2)

� H̃ (1) + R−1
1 U2R1 +

[
H̃ (1), R2

]
, H̃ (1) = H0 + Ṽ0 + Ṽ2 := Ṽ0 + H1,2, (23)

where H̃ (1) is already made Hermitian by R1 and we neglect higher-order terms such as O
(
R2

2

)
and

O (R2H2 ).
We first consider Ũ2 := R−1

1 U2R1, which is evaluated as

Ũ2 = U2,4 + Ũ2,3 + Ũ2,2 + Ũ2.1 + Ũ2,0, (24)

where Ũ2,n consists of nth derivative terms, and Ũ2,2 can be taken to be Hermitian while Ũ2,0 is
always Hermitian. (Note that U2,4 is defined to be Hermitian.) Explicit forms of Ũ2,n in terms of U2,l

are too complicated and unnecessary for our argument hereafter.
Similarly we can write

X0 :=
[
H̃ (1), R2,0

]
= X0,1 + X0,0, (25)

X2 :=
[
H̃ (1), R2,2

]
= X2,3 + X2,2 + X2.,1 + X2,0, (26)
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where n in Xk ,n represents the number of derivatives, and Xk ,2n is taken to be Hermitian. Explicitly,
we have

X2,3 := 1

3!X
ijk
2,3∇i∇j∇k , X2,2 := 1

2!∇iX
ij
2,2∇j, X2,1 := X i

2,1∇i, (27)

X ijk
2,3 =

[
H il

1,2(∇lR
jk
2,2)− Ril

2,2(∇lH
jk
1,2)
]

+ 2 permutations, (28)

X ij
2,2 = −Ril

2,2(∇k∇lH
kj
1,2)+ 1

2

{
H kl

1,2(∇k∇lR
ij
2,2)+ (∇kH kl

1,2)(∇lR
ij
2,2)− Rkl

2,2(∇k∇lH
ij
1,2)
}

, (29)

X i
2,1 = −Rij

2,2(∇jṼ0)− 1

4
Rkl

2,2(∇j∇k∇lH
ij
1,2)− 1

2
(∇jX

ij
2,2), (30)

X2,0 = −1

2
Rij

2,2(∇i∇jṼ0), (31)

and

X0,1 = H ij
1,2(∇jR2,0)∇i, X0,0 = 1

2
H ij

1,2(∇i∇jR2,0)+ 1

2
(∇iH

ij
1,2)(∇jR2,0), (32)

where H1,2 is defined in Eq. (23).
The transformed Hamiltonian becomes

H̃ (2) = H̃ (1) + U2,4 + Ũ2,3 + Ũ2,2 + Ũ2,1 + Ũ2,0 + X2,3 + X2,2 + X2,1 + X2,0 + X0,1 + X0,0. (33)

To remove non-Hermitian third derivative terms, R2,2 must satisfy

Ũ ijk
2,3 + X ijk

2,3 = 0, (34)

which becomes a linear first-order partial differential equation for R2,2. Once R2,2 is determined from
this equation, X2,2, X2,1, and X2,0 are completely fixed. To remove non-Hermitian first derivative
terms, R2,0 must satisfy

Ũ i
2,1 + X i

2,1 + H ij
1,2(∇jR2,0) = 0, (35)

which again becomes a linear first-order partial differential equation for R2,0, so that we can easily
solve it to fix X0,0.

We finally obtain

H̃ (2) = H̃ (2) + U2,4 + Ũ2,2 + Ũ2,0 + X2,2 + X2,0 + X0,0, (36)

which is manifestly Hermitian at n = 2.

2.2.2. R2.2 and R2.0 for the rotationally symmetric case
In order to demonstrate that the equations for R2,2 and R2,0 can be solved, we explicitly determine
R2,2 and R2,0 for the rotationally symmetric case.

For this case, we have

Ũ ijk
2,3 := V3a(r)r̂

i r̂j r̂k + V3b(r)
{

r̂iδjk + r̂jδki + r̂kδij
}

, Ũ i
2,1 := V1(r)r̂

i, (37)

H ij
1,2 := H2a(r)r̂

i r̂j + H2b(r)δ
ij, Rij

2,2 := R2a(r)r̂
i r̂j + R2b(r)δ

ij, R2,0 := R2,0(r), (38)
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which lead to

X ijk
2,3 = 3X3a(r)r̂

i r̂j r̂k + X3b(r)
{

r̂iδjk + r̂jδki + r̂kδij
}

, (39)

X3a := (H2a + H2b)R
′
2a − (R2a + R2b)H

′
2a − 2

r
(R2aH2b − H2aR2b), (40)

X3b := (H2a + H2b)R
′
2b − (R2a + R2b)H

′
2b + 2

r
(R2aH2b − H2aR2b). (41)

Thus Eq. (34) gives

H2+R′
2a − H ′

2aR2+ − 2

r
(R2aH2b − H2aR2b) = V3a

3
, (42)

H2+R′
2b − H ′

2bR2+ + 2

r
(R2aH2b − H2aR2b) = V3b (43)

with R2+ := R2a + R2b and H2+ := H2a + H2b, which is simplified as

H2+R′
2+ − H ′

2+R2+ = V3+
3

, V3+ := V3a + 3V3b. (44)

This equation can be easily solved as

R2+ = C(r)H2+(r), C(r) :=
∫ r

r∞
ds

V3+(s)
3H2+(s)2

, (45)

where we assume the s-integral to be finite. In other words, singularities of the integrand between
0 < s < r∞ are all integrable. From the original equations, individual terms are given by

R2a(r) = C(r)H2a(r)+ r2

3

∫ r

r∞
ds

H2b(s)V3a(s)− 3H2a(s)V3b(s)

s2H 2
2+(s)

, (46)

R2b(r) = C(r)H2b(r)+ r2

3

∫ r

r∞
ds

3H2a(s)V3b(s)− H2b(s)V3a(s)

s2H 2
2+(s)

. (47)

Once R2,2(�r) is determined, Eq. (30) fixes X i
2,1 and Eq. (35) becomes

V1(r)+ X1(r)+ H2+(r)R′
2,0(r) = 0, (48)

which can be solved as

R2,0(r) = −
∫ r

r∞
ds

V1(s)+ X1(s)

H2+(s)
, (49)

where

X i
2,1 := X1(r)r̂

i, (50)

and X1(r) is expressed in terms of Ṽ0, H2a, H2b, V3a, and V3b.

2.3. All orders

We now argue that we can make the total Hamiltonian Hermitian order by order in the derivative
expansion. The total Hamiltonian is given in the derivative expansion as

H = H0 + V0 +
∞∑

l=1

Ul , Ul := V2l + V2l−1, (51)
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while the nth-order Hamiltonian is denoted as

H (n) = H0 + V0 +
n∑

l=1

Ul . (52)

In previous subsections, we have already shown that H (1) and H (2) can be made Hermitian. As
before, we make the even-derivative terms Hermitian by introducing lower derivative terms, so that

Un =
2n∑

k=1

Un,k , Un,2k : Hermitian, (53)

where k of Un,k represents the number of derivatives in these terms, while n corresponds to the order
of this term. Throughout this subsection, we use similar notations for other quantities such as Fn,k ,
which is the nth-order term with k derivatives, and is Hermitian for even k .

The transformation operator R is expanded as

R = R1

(
1 +

∞∑
l=2

Rl

)
, (54)

where Rn is expanded in terms of even numbers of derivatives as

Rn :=
n−1∑
k=0

Rn,2k . (55)

In order to prove that H can be made Hermitian order by order, we use mathematical induction.
We have already seen that H1 and H2 can be made Hermitian by R1 and R1(1 + R2), respectively.

We next assume that Hn can be made Hermitian by R(n) = R1(1 +∑n
l=2 Rl) at the nth order as

H̃ (n) := (R(n))−1H (n)R(n) �
n∑

k=0

H̃ (n)
2k +�H̃n+1, (56)

where H̃ (n)
2k are all Hermitian with 2k derivatives and contain terms whose orders are less than or

equal to n, while �H̃n+1 is non-Hermitian at (n + 1)th order and consists of terms such as(
s∏

i=1

Rki

)
× R−1

1 UlR1 × (1 or Rm), s = 0, 1, 2, . . . ,

for 1 < ki, l, m ≤ n with the constraint
s∑

i=1

(ki −1)+ (l −1)+ (m−1) = n. Therefore, the maximum

number of derivatives in�H̃ (n+1) is 2
s∑

i=1

(ki − 1)+ 2l + 2(m − 1) = 2(n + 1), so that we can write

�H̃n+1 =
2(n+1)∑

k=0

�H̃n+1,k , (57)

where k denotes the number of derivatives in �H̃n+1,k , which is Hermitian for even k .
We now consider the transformed Hamiltonian at the (n + 1)th order as

H̃ (n+1) :=
(

R(n+1)
)−1

H (n+1)R(n+1) �
(

R(n)
)−1

H (n)R(n) + Ũn+1 +
[
H̃ (1), Rn+1

]
, (58)
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where the second term is evaluated as

Ũn+1 := R−1
1 Un+1R1 =

2(n+1)∑
k=0

Ũn+1,k , (59)

while the third term becomes

[
H̃ (1), Rn+1

]
=

n∑
k=0

Xn+1[k], Xn+1[k] :=
[
H̃ (1), Rn+1,2k

]
=

2k+1∑
l=1

Xn+1,l[k]. (60)

Using the assumption of mathematical induction in Eq. (56), we have

H̃ (n+1) =
n∑

k=0

(
H̃ (n)

2k +
k∑

l=1

Xn+1,2l[k]
)

+
n+1∑
k=0

(
�H̃n+1,2k + Ũn+1,2k

)

+
n∑

k=0

(
�H̃n+1,2k+1 + Ũn+1,2k+1 +

k∑
l=0

Xn+1,2l+1[k]
)

. (61)

Using n + 1 unknown Rn+1,2k with k = 0, 1, . . . , n, we can remove non-Hermitian contributions in
H̃ (n+1) (the second line in Eq. (61)), as shown below.

We first remove (2n + 1)th-order derivative terms in the second line by requiring

�H̃n+1,2n+1 + Ũn+1,2n+1 + Xn+1,2n+1[n] = 0, (62)

which fixes Rn+1,2n.
The next condition becomes

�H̃n+1,2n−1 + Ũn+1,2n−1 + Xn+1,2n−1[n] + Xn+1,2n−1[n − 1] = 0, (63)

where Xn+1,2n−1[n] is already determined completely from Rn+1,2n. Therefore, the above equation
determines Rn+1,2n−2 in Xn+1,2n−1[n − 1].

Repeating this procedure, we can remove all non-Hermitian contributions as follows. For general
k = 0, 1, 2, . . . , n, we have

�H̃n+1,2k+1 + Ũn+1,2k+1 +
n∑

l=k+1

Xn+1,2k+1[l] + Xn+1,2k−1[k] = 0, (64)

where
n∑

l=k+1

Xn+1,2k+1[l] has already been determined from Rn+1,2l with l = n, n−1, n−2, . . . , k+1.

Thus the above condition fixes Rn+1,2k in Xn+1,2k−1[k]. Therefore it is shown that H (n+1) can be
made Hermitian as

H̃ (n+1) =
n∑

k=0

(
H̃ (n)

2k +
k∑

l=1

Xn+1,2l[k]
)

+
n+1∑
k=0

(
�H̃n+1,2k + Ũn+1,2k

)
. (65)

The proof that non-Hermitian H can be made Hermitian order by order is thus completed by
mathematical induction.

We note here that the nth-order Hamiltonian, given by Eqs. (2) and (3), contains 2n+1 new unknown
functions to be extracted from the NBS wave functions generated by lattice QCD calculations. Thus,
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Fig. 1. NLO potentials without V1 (NLOA): (Left) V NLOA
0 (r) (black open diamonds), together wth V LO

0 (r) from
the wall source (red open circles) and the smeared source (blue open squares). (Right) V NLOA

2 (r)multiplied by
m2
π (green open crosses).

in order to perform the nth-order analysis, we need a total of (n + 1)2 NBS wave functions, which
must be independent beyond numerical uncertainties. This may give rise to severe limitations in
applying the present formalism to the cases where the higher-order terms are important. In the next
section we will see that, in the case of ��(1S0) scattering, the LO potential already gives a good
approximation for the scattering phase shift, while the NLO corrections to the phase shift gradually
appear as the energy increases.

3. Hermitizing the NLO potential for the ��(1S0) system

In this section, we actually apply the method in Sect. 2 to lattice QCD data. We consider the��(1S0)

system, whose potential is much more precise than those for NN or N� thanks to the presence of
more strange quarks in the system, in order to make the NLO analysis numerically possible. The
potential for the ��(1S0) was calculated on 2+1 flavor QCD ensembles [37] at a = 0.09 fm on a
644 lattice with heavy up/down quark masses and the physical strange quark mass, mπ = 0.51 GeV,
mK = 0.62 GeV, mN = 1.32 GeV, and m� = 1.46 GeV. See Ref. [12] for more details.

The rotationally symmetric potential in the previous section for the n = 1 case can be rewritten as

V (�r, ∇) = V0(r)+ V1(r) r̂i∇i + V2(r)∇2 + V3(r)�L2, (66)

where the expression in the previous section is recovered by replacing

V1(r) → V1(r)− V2a(r)

r
, V2(r) → 1

2
(V2a(r)+ V2b(r)), V3(r) → V2a(r)

2r2 . (67)

Since the V3(r) term does not contribute to the S-wave scattering, we ignore this term in the present
analysis. Having only two NBS wave functions, one from the wall source, the other from the
smeared source, available from the previous calculation [12], we consider two different extrac-
tions of potentials, one with V1(r) = 0 (NLOA), the other with V2(r) = 0 (NLOB), in the present
analysis.

3.1. NLOA: NLO analysis without V1

We first consider the NLOA potential for ��(1S0),

V NLOA(�r, ∇) = V NLOA
0 (r)+ V NLOA

2 (r)∇2, (68)
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Fig. 2. (Left) Ṽ NLOA
0 (r) (blue dashed line) for ��(1S0) together with V NLOA

0 (r) (red solid line). (Right) Scat-
tering phase shifts for ��(1S0) from V NLOA

0 (red solid line), Ṽ NLOA
0 (blue dashed line), V NLOA(�r, ∇) (green

dotted line), and Ṽ NLOA(�r, ∇) (yellow solid line).

where V NLOA
0 (r), together with V LO(wall)

0 (r) from the wall source and V LO(smeared)
0 (r) from the

smeared source, are plotted in Fig. 1 (left), and m2
πV NLOA

2 (r) is given in Fig. 1 (right). Small differ-
ences between V NLOA

0 (r) and V LO(wall)
0 (r) are observed at short distance, due to contributions from

V NLOA
2 (r), which is non-zero only at r < 1 fm.
According to the procedure in Sect. 2, we can make this non-Hermitian potential Hermitian as

Ṽ NLOA(�r, ∇) = Ṽ NLOA
0 (r)+ ∇ iV NLOA

2 (r)∇i, (69)

where

Ṽ NLOA
0 (r) = V NLOA

0 (r)+ (V NLOA
2 )′(r)

r
+ (V NLOA

2 )′′(r)
2

+ m�
4

{(V NLOA
2 )′(r)}2

1 − m�V NLOA
2 (r)

. (70)

Here Ṽ0 is calculated from the fitted functions for V NLOA
0 (r) and V NLOA

2 (r) in Ref. [12], together with
the first and second derivatives of V2 analytically calculated from the fitted function. We compare
Ṽ NLOA

0 (r)with V NLOA
0 (r) in Fig. 2 (left), while we plot the phase shifts of the��(1S0) obtained with

Ṽ NLOA
0 (r), V NLOA

0 (r), V NLOA(�r, ∇), and Ṽ NLOA(�r, ∇) in Fig. 2 (right). For visibility, only central
values are given here. Errors of Ṽ NLOA

0 are comparable to those of V NLOA
0 , which can be seen in

Fig. 1 (left). We notice that the leading-order term V NLOA
0 of the original non-Hermitian NLOA

potential describes the behavior of the scattering phase shift rather well at low energy but shows
some deviation from the NLOA result at high energies, while the local term Ṽ NLOA

0 of the hermitized
NLOA potential describes the scattering phase shift in a wider energy range, 0 ≤ (k/mπ)2 ≤ 0.6 with
small deviations around the turning point at (k/mπ)2 � 0.1. Of course, the non-Hermitian NLOA

potential V NLOA(�r, ∇) and the hermitized NLOA potential Ṽ NLOA(�r, ∇) give identical results at all
energies by construction.

3.2. NLOB: NLO analysis without V2

We next consider the NLO analysis without V2 (NLOB), whose potential is given by

V NLOB(�r, ∇) = V NLOB
0 (r)+ V NLOB

1 (r) r̂i∇i. (71)
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Fig. 3. (Left) V NLOB
0 (r) (yellow open triangles) as a function of r at short distances, together with V LO(wall)

0 (r)
(red open circles) and V NLOA

0 (r) (black open triangles). (Right) V NLOB
1 (r) (purple open triangles).

Figure 3 (left) shows V NLOB
0 (r) (yellow open triangles), together with V LO(wall)

0 (r) (red open circles)
and V NLOA

0 (r) (black open triangles), at 0.45 fm ≤ r ≤1.05 fm, while Fig. 3 (right) gives V NLOB
1 (r)

(purple open triangles) at r ≤ 3.5 fm. Unlike V NLOA
0 (r), V NLOB

0 (r) deviates greatly from V LO(wall)
0 (r)

at short distances.
According to the procedure in Sect. 2, we convert this non-Hermitian NLOB potential to a local

Hermitian potential Ṽ NLOB
0 (r), where

Ṽ NLOB
0 (r) = V NLOB

0 (r)− V NLOB
1 (r)

r
− 1

2
(V NLOB

1 )′(r)+ m�
4
(V NLOB

1 (r))2, (72)

which is shown in Fig. 4 (left) by the blue dotted line, together with V LO(wall)
0 (r) (red solid line)

and V NLOB
0 (r) (yellow dashed line). The attractive pocket of Ṽ NLOB

0 (r) around r � 0.6 fm is much
deeper than that of V LO(wall)

0 (r) or V NLOB
0 (r). Figure 4 (right) compares the scattering phase shifts

δ0(k) among V LO(wall)
0 (r) (red solid circles), V NLOB

0 (r) (yellow solid down-triangles), V NLOA
0 (r)

(black solid diamonds), V NLOB(�r, ∇) (purple solid up-triangles), V NLOA(�r, ∇) (green crosses), and
Ṽ NLOB

0 (r) (blue open squares). By construction, Ṽ NLOB
0 (r) and V NLOB(�r, ∇) give identical results,

which also agree well with δ0(k) from V NLOA
0 (r). As mentioned before, V LO(wall)

0 (r) and V NLOA
0 (r)

give good approximations at low energy but show small deviations as energies increase. However,
δ0(k) from V NLOB

0 (r) deviates from others even at low energies. Finally it is noted that two different
NLO potentials, V NLOA(�r, ∇) (green solid crosses) and V NLOB(�r, ∇) (purple solid up-triangles),
agree well even at high energies, though the first derivative term (V NLOB

1 (r)) has larger effects than
the second derivative term (V NLOA

2 (r)) on the scattering phase shift.

4. Summary and concluding remarks

The HAL QCD potential expressed as an energy-independent non-local potential is known to be non-
Hermitian due to the nature of the Nambu–Bethe–Salpeter (NBS) wave function used to extract it:
While the leading-order (LO) term in the derivative expansion of the potential is local and Hermitian,
the higher-order terms are in general non-Hermitian. In this paper, we have formulated a way of
hermitizing it in the derivative expansion. Since the hermitized potential can be expressed to contain
only an even number of derivatives, we classify the first- and second-order derivative terms as the
next-to-leading order (NLO) and in general (2n−1) and 2n derivative terms as the nth order. Starting
from the NLO terms, which can be made Hermitian exactly, we have shown that the higher-order
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Fig. 4. (Left) Ṽ LOB
0 (r) (blue dotted line) for ��(1S0) together with V LO(wall)

0 (r) (red solid line) and V NLOB
0 (r)

(yellow dashed line). (Only central values are plotted for visibility.) (Right) Scattering phase shifts δ0(k) for
��(1S0) from V LO(wall)

0 (r) (red solid circles), V NLOB
0 (r) (yellow solid down-triangles), V NLOA

0 (r) (black solid
diamonds), V NLOB(�r, ∇) (purple solid up-triangles), V NLOA(�r, ∇) (green crosses), and Ṽ NLOB

0 (r) (blue open
squares).

terms can be hermitized order by order to all orders using mathematical induction in the derivative
expansion.

In order to see the feasibility of our formalism, we applied it to the case of ��(1S0) scattering
for which two independent NBS wave functions were available from the lattice QCD calculations
[12]. Since two NBS wave functions are insufficient for the full NLO analysis, which requires three
unknown functions, V0(r), V1(r), and V2(r), we carried out two NLO analyses, one without V1

(NLOA) and the other without V2 (NLOB). Although the two hermitized potentials, V̄ NLOA and
V̄ NLOB, look very different, the former containing a second-order derivative term while the latter is
purely local, they give essentially the same phase shifts within the uncertainties of the calculations.
This agreement indicates that the obtained NLO phase shift can be regarded approximately as the
yet unknown exact one. By comparing it to the LO phase shifts obtained in Ref. [12], we find that
the LO phase shift from the NBS wave function with the wall source is very similar to the NLO
phase shift at low energies while it is slightly larger at higher energies. The LO analysis with the
wall source is thus well justified for the ��(1S0) scattering.

While the non-Hermitian potential is fine as long as we are interested in two-body observables
such as scattering amplitudes and binding energies, the Hermitian version is more convenient for a
comparison with phenomenological interactions and also for using it as a two-body interaction in
many-body systems.

Appendix A. Convergence of the derivative expansion for non-local potentials

In this appendix, we briefly discuss an issue with the convergence of the derivative expansion for
non-local potentials.

Let us consider a non-local potential V (x, y), which can be expressed in terms of the derivative
expansion as

V (x, y) =
∞∑

n=0

1

n!V
i1i2···in
l (x)∇i1∇i2 · · · ∇inδ

(3)(x − y), (A.1)
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where no symmetry is assumed for generality.
Applying this potential to a plane wave eik·x, we obtain

V̄ (x, k)eik·x ≡
∫

dy V (x, y)eik·y =
∞∑

n=0

in

n!V
i1i2···in
l (x)ki1ki2 · · · kineik·x (A.2)

= eik·x
∫

dr V (x, x + r)eik·r = eik·x
∞∑

n=0

∫
dr V (x, x + r)

in

n!(k · r)n. (A.3)

By equating Eqs. (A.2) and (A.3), we have

V i1i2···in
l (x) =

∫
drV (x, x + r)ri1ri2 · · · rin ≡ Vl(x)〈 ri1ri2 · · · rin〉x, (A.4)

where we define the nth moment of non-locality, 〈ri1ri2 · · · rin〉x, satisfying 〈1〉x = 1, and Vl(x) is
the term at n = 0 (the local term) in the derivative expansion (A.1). Then V̄ (x, k) can be expanded
as

V̄ (x, k) = Vl(x)
∞∑

n=0

in

n! 〈(k · r)n〉x. (A.5)

The convergence of the sum in Eq. (A.5) is guaranteed if the absolute magnitude of the n th moment
of non-locality grows more slowly than nαn with α < 1 as n → ∞, though the convergence rate
depends on x and k, reflecting the detail for the non-locality of V (x, x + r). It is clear that the sum
converges as k → 0. The convergence of the derivative expansion applied to a wave function, which
can be expressed as a superposition of plane waves, is usually guaranteed, though the convergence
rate depends on the nature of the wave function. In practice, for instance, the importance of the NLO
terms can be estimated from |k||〈r〉x| or k2|〈r2〉x|, where k is the local wave number.

If the total energy is small enough, the wave function is expanded by plane waves with small |k|
only. As the total energy increases, higher-order terms become important to cause slower conver-
gence, and even may cease to converge at some energy, depending on the non-locality of V (x, x+r).
In this paper, we assume that the non-locality of potentials is mild enough for the derivative expansion
to converge.
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