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We construct a complete type II superstring field theory that includes all the NS–NS, R–NS,
NS–R, and R–R sectors. As in the open and heterotic superstring cases, the R–NS, NS–R, and
R–R string fields are constrained by using the picture-changing operators. In particular, we
use a non-local inverse picture-changing operator for the constraint on the R–R string field,
which seems to be inevitable due to the compatibility of the extra constraint with the closed
string constraints. The natural symplectic form in the restricted Hilbert space gives a non-local
kinetic action for the R–R sector, but it correctly provides the propagator expected from the first-
quantized formulation. Extending the prescription previously obtained for the heterotic string
field theory, we give a construction of general type II superstring products, which realizes a
cyclic L∞ structure, and thus provides a gauge-invariant action based on the homotopy algebraic
formulation. Three typical four-string amplitudes derived from the constructed string field theory
are demonstrated to agree with those in the first-quantized formulation. We also give the half-
Wess–Zumino–Witten action defined in the medium Hilbert space whose left-moving sector is
still restricted to the small Hilbert space.
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1. Introduction

In recent years there has been some significant progress in constructing gauge-invariant superstring
field theories. First, a complete WZW-like action for an open superstring including both the Neveu–
Schwarz (NS) and Ramond (R) sectors, representing space-time bosons and fermions, respectively,
has been constructed [1] after several significant developments [2–13]. A crucial idea to successfully
incorporate the Ramond sector is to impose an extra constraint on the Ramond string field, which
can naturally be interpreted to come from the fermionic moduli integration over the super-Riemann
surface. Shortly thereafter, this was extended to an alternative formulation in the small Hilbert space
[14], in which the gauge symmetry is beautifully realized using a homotopy algebraic structure,
the A∞ algebra. Several interesting studies, such as on the general structure of the complete WZW
formulation [15,16], on the space-time supersymmetry [17,18], and on some generalization toward a
heterotic string field theory [19–21], have also been undertaken. Then, in a previous paper, the authors
extended these constructions to the heterotic string field theory [22]. We first constructed a gauge-
invariant action in the small Hilbert space by constructing string interactions realizing a homotopy
algebraic structure of a closed string, the cyclic L∞ algebra, and then also gave the WZW-like action
through a field redefinition.
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Independent of these developments, Ashoke Sen has developed a closed superstring field theory
applicable to both the heterotic and type II theories [23,24]. He has provided a quantum master action
in a rather abstract way by considering string off-shell amplitudes allowing a cell decomposition. In
addition, instead of imposing a constraint as in the former two formulations, he introduced an extra
string field, which becomes free and decouples from the physical sector, to incorporate the Ramond
sector consistently. It has also been shown that it can also be extended to the open superstring field
theory [25].

Thanks to these developments, we now have three independent formulations of superstring field
theory: the homotopy algebraic, the WZW-like, and the Sen’s formulations. Each of these formu-
lations has advantages and disadvantages, and they seem to be complementary. So the aim of this
paper is to fill the blank still remaining by constructing a complete field theory of the type II super-
string based on the homotopy algebraic and WZW-like formulations to provide a solid foundation
for non-perturbative studies of superstring theories.

This paper is organized as follows. In Sect. 2 we summarize how the type II superstring field
theory is constructed based on the homotopy algebraic structure for the closed string, the cyclic L∞
algebra. We impose constraints on the string fields in the R–NS, NS–R, and R–R sectors. In the
R–R sector, in particular, we introduce a non-local inverse picture-changing operator, which seems
to be inevitable due to the compatibility of the extra constraint with the closed string constraints.
We construct the free theory and explain that it provides the correct R–R propagator even though
the kinetic term is non-local. We show that it can be replaced with the local action if an extra
string field is introduced following Sen’s formulation. Then, it is shown that we can construct a
gauge-invariant action if the string products have the cyclic L∞ structure. Such string products are
explicitly constructed in Sect. 3. The prescription is an extension of the asymmetric construction
proposed in Ref. [3] for the NS–NS sector, and is obtained by repeating twice the one proposed for
the heterotic string products in Ref. [22]. The operators with non-zero picture number are inserted
first for the left-moving sector and then for the right-moving sector, following the procedure used
for the heterotic string field theory. We confirm that the action constructed in this way actually
reproduces typical four-point amplitudes in Sect. 4. We explicitly calculate three on-shell four-point
amplitudes with four R–R; two NS–R, two R–R; and NS–NS, R–NS, NS–R, R–R external states,
and show that they agree with those obtained in the first-quantized formulation. In Sect. 5, we
attempt to map the action and gauge transformation to those based on the WZW-like formulation.
Unfortunately, however, we only obtain a half-WZW-like action defined not in the large Hilbert
space but in the medium Hilbert space, the tensor product of the large Hilbert space for the left-
moving sector and the small Hilbert space for the right-moving sector. Section 6 is devoted to the
summary and discussion. We summarize how the string field is expanded with respect to the ghost
zero modes for each sector in appendixA, which is useful in considering the Batalin–Vilkovisky (BV)
quantization [26].

2. Type II string field theory in the homotopy algebraic formulation

We first summarize several basics of type II string field theory in the homotopy algebraic formulation.
The free field theory is given and discussed in some detail. After confirming that the action of the
R–R sector provides the propagator used in the first-quantized formulation, we show that it can also
be written in the local form by introducing an extra R–R string field following Sen’s formulation.
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The gauge-invariant interacting action can be obtained if we assume multi-string products with the
cyclic L∞ structure.

2.1. String field and constraints

There are four sectors, the NS–NS, R–NS, NS–R, and R–R sectors, in the first-quantized Hilbert
space of the type II superstring, H,

H = HNS–NS + HR–NS + HNS–R + HR–R, (2.1)

corresponding to the combinations of the Neveu–Schwarz and Ramond boundary conditions for the
left- and right-moving fermionic coordinates:

HNS–NS = HNS ⊗ H̄NS, HR–NS = HR ⊗ H̄NS,

HNS–R = HNS ⊗ H̄R, HR–R = HR ⊗ H̄R, (2.2)

where H and H̄ on the right-hand sides are the left-moving and right-moving small Hilbert spaces,
respectively. Accordingly, the type II string field � has four components,

� = �NS–NS +�R–NS +�NS–R +�R–R ∈ H, (2.3)

which is Grassmann even and has ghost number 2. The first and the last components, �NS–NS and
�R–R, have picture number (−1, −1) and (−1/2, −1/2), respectively, and represent space-time
bosons. The second and the third components,�R–NS and�NS–R, have picture number (−1/2, −1)
and (−1, −1/2), respectively, and represent space-time fermions. All of these components satisfy
the closed string constraints,

b−
0 � = L−

0 � = 0, (2.4)

where b±
0 = b0 ± b̄0, L±

0 = L0 ± L̄0, and c±
0 = (c0 ± c̄0)/2. The first constraint imposes that the

string field does not depend on the ghost-zero mode c−
0 . Therefore, the NS–NS component, in which

only the bc ghosts have zero modes, is expanded with respect to the ghost zero mode as

�NS–NS = φNS–NS − c+
0 ψNS–NS. (2.5)

As in the open and heterotic superstring field theories [1,14,22], we further restrict the dependence
of the other components on the βγ ghost zero modes. For the �R–NS and �NS–R components, we
impose

XY�R–NS = �R–NS, X̄ Ȳ�NS–R = �NS–R, (2.6)

respectively, where XY and X̄ Ȳ are the projection operators defined by using the picture-changing
operators and their inverses,

X = −δ(β0)G0 + δ′(β0)b0, Y = −2c+
0 δ

′(γ0), (2.7a)

X̄ = −δ(β̄0)Ḡ0 + δ′(β̄0)b̄0, Ȳ = −2c+
0 δ

′(γ̄0), (2.7b)
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which satisfy the relations

XYX = X , YXY = Y , [Q, X ] = 0, (2.8a)

X̄ Ȳ X̄ = X̄ , Ȳ X̄ Ȳ = Ȳ , [Q, X̄ ] = 0. (2.8b)

Here, G0 and Ḡ0 are the zero modes of the left- and right-moving (total) superconformal currents,
respectively. Note that the inverse picture-changing operators in Eq. (2.7) are defined so that the
additional constraints in Eq. (2.6) are compatible with the closed string constraints of Eq. (2.4).
Since the picture-changing operators X and X̄ are Becchi–Rouet–Stora–Tyutin (BRST) invariant,
they can be written as the BRST exact form in the large Hilbert space:

X = [Q,�], X̄ = [Q, �̄], (2.9)

with1

� = ξ + (
(β0)ηξ − ξ)P−3/2 + (ξη
(β0)− ξ)P−1/2, (2.10a)

�̄ = ξ̄ + (
(β̄0)η̄ξ̄ − ξ̄ )P̄−3/2 + (ξ̄ η̄
(β̄0)− ξ̄ )P̄−1/2. (2.10b)

The ghost zero-mode dependence of the components �R–NS and �NS–R is restricted to the form

�R–NS = φR–NS − 1

2
(γ0 + 2c+

0 G)ψR–NS, (2.11a)

�NS–R = φNS–R − 1

2
(γ̄0 + 2c+

0 Ḡ)ψNS–R, (2.11b)

where G = G0 + 2γ0b0 and Ḡ = Ḡ0 + 2γ̄0b̄0 are the ghost zero-mode independent part of G0 and
Ḡ0, respectively.

On the other hand, for the�R–R component which depends on both the left- and right-moving βγ
zero modes, we cannot simultaneously impose two conditions,

XY�R–R = �R–R, X̄ Ȳ�R–R = �R–R,

due to their non-commutativity: [XY , X̄ Ȳ ] �= 0. However, we should notice that the choices of inverse
picture-changing operators are not unique. There is a possibility to use the non-local operators,

Y = −2
G

L+
0

δ(γ0), Ȳ = −2
Ḡ

L+
0

δ(γ̄0), (2.12)

which also satisfy

X YX = X , YX Y = Y , (2.13a)

X̄ ȲX̄ = X̄ , ȲX̄ Ȳ = Ȳ , (2.13b)

as the inverse picture-changing operators [11]. We can impose the conditions

X Y�R–R = X̄ Ȳ�R–R = �R–R, (2.14)

1 In this paper, for notational simplicity we denote the zero modes of η(z) and ξ(z) as η and ξ , and those of
η̄(z̄) and ξ̄ (z̄) as η̄ and ξ̄ , respectively.

4/32

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/3/033B06/5814070 by Kyoto university user on 24 August 2020



PTEP 2020, 033B06 H. Kunimoto and T. Sugimoto

which are now compatible with each other, and also with the closed string constraints of Eq. (2.4).
It can be shown that the ghost zero-mode dependence of �R–R is restricted by the constraints in
Eq. (2.14) as

�R–R = φR–R − 1

2
(γ0Ḡ − γ̄0G + 2c+

0 GḠ)ψR–R. (2.15)

Here we define ψR–R so that the expansion in Eq. (2.15) has a local form, which will be found to be
natural shortly.

Here, if we define the operators G and G−1 by

G = Iπ
(0,0)
1 + Xπ(1,0)

1 + X̄π(0,1)
1 + X X̄π(1,1)

1 , (2.16a)

G−1 = Iπ
(0,0)
1 + Yπ(1,0)

1 + Ȳπ(0,1)
1 + YȲπ(1,1)

1 , (2.16b)

the relations in Eqs. (2.8) and (2.13) can collectively be written as

GG−1G = G, G−1GG−1 = G−1, [Q, G] = 0, (2.17)

where π(0,0)
1 , π(1,0)

1 , π(0,1)
1 , and π(1,1)

1 are the projection operators onto HNS–NS, HR–NS, HR–R, and
HR–R components of the Hilbert space H, respectively. It is also useful to define

X = π
(0,∗)
1 I + π

(1,∗)
1 X , X̄ = π

(∗,0)
1 I + π

(∗,1)
1 X̄ , (2.18)

with π(r,∗)
1 = π

(r,0)
1 +π(r,1)

1 and π(∗,r)
1 = π

(0,r)
1 +π(1,r)

1 (r = 0, 1); then we can write G = XX̄ . Note
that G−1 is the inverse of G in this sense. Then we can define the projection operator PG = GG−1

and collectively write the extra constraints of Eqs. (2.6) and (2.14) as

PG� = �. (2.19)

We call the Hilbert space restricted by the constraints in Eqs. (2.4) and (2.19) the restricted Hilbert
space, or frequently simply restricted space, in this paper. On the restricted Hilbert space, the BRST
operator acts consistently:

PGQPG = QPG . (2.20)

A natural symplectic form in the restricted Hilbert space is defined as follows. First, the symplectic
form in the space restricted by the closed string constraints of Eq. (2.4) is defined by using the
Belavin–Polyakov–Zamolodchikov (BPZ) inner product as

ωs(�1,�2) = (−1)|�1|〈�1|c−
0 |�2〉, (2.21)

where 〈�| is the BPZ conjugate of |�〉. The symbol |�| denotes the Grassmann property of the string
field �: |�| = 0 or 1 if � is Grassmann even or odd, respectively. For later use, we also define the
symplectic forms ωm, ωm̄, and ωl in the Hilbert spaces

Hm = Hlarge ⊗ H̄, Hm̄ = H ⊗ H̄large, Hl = Hlarge ⊗ H̄large (2.22)

by

ωi(ϕ1,ϕ2) = (−1)|ϕ1|
i〈ϕ1|c−

0 |ϕ2〉i, i = m, m̄, l, (2.23)
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where i〈ϕ1| and i〈ϕ2| are the BPZ conjugates of |ϕ1〉i and |ϕ2〉i in Hi (i = m, m̄, l), respectively. The
symplectic form ωs, ωm, and ωm̄ are related to ωl as

ωs(�1,�2) = ωl(ξ ξ̄�1,�2), (2.24a)

ωm(�1,�2) = −ωl(ξ̄�1,�2), (2.24b)

ωm̄(�1,�2) = ωl(ξ�1,�2), (2.24c)

for �1,�2 ∈ Hi (i = s, m, m̄). Then, a natural symplectic form in the restricted Hilbert space is
defined by

�(�1,�2) = ωs(�1, G−1�2)

= ωs(�1 NS–NS,�2 NS–NS)+ ωs(�1 R–NS, Y�2 R–NS)

+ ωs(�1 NS–R, Ȳ�2 NS–R)+ ωs(�1 R–R, YȲ�2 R–R). (2.25)

This has the non-degenerate cross-diagonal form common in each sector

�(�1,�2) =
∑

I

(
〈〈φ1I |ψ2I 〉〉 + 〈〈ψ1I |φ2I 〉〉

)
, (2.26)

after integrating out (or carrying out the inner product of) the ghost zero modes,2 where the index I
runs over each component, NS–NS, R–NS, NS–R, and R–R. The fields φI andψI are subcomponents
of each component �I expanded with respect to the ghost zero modes as in Eqs. (2.5), (2.11),
and (2.15). It should be noted that the ψR–R in Eq. (2.15) is defined so that the non-locality of Y and
Ȳ in the R–R sector disappears in the symplectic form in Eq. (2.26). In the following, we will see
that this cross-diagonal form of the symplectic form � in the restricted space provides a free field
theory which can properly be quantized via the BV formalism.

2.2. Free field theory

Using the symplectic form � in the restricted Hilbert space, the free field action and gauge
transformation of the type II superstring field theory are given by

S0 = 1

2
�(�, Q�), δ� = Q�, (2.27)

where the gauge parameter also has four components,

� = �NS–NS +�R–NS +�NS–R +�R–R, (2.28)

is Grassmann odd, and has ghost number 1. The equation of motion

0 = G−1Q�, (2.29)

derived from Eq. (2.27) can be written by using Eq. (2.20) as

0 = G−1QPG� = G−1PGQPG�. (2.30)

2 The expansion with respect to the ghost zero mode is summarized in Appendix A.
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Then, by multiplying by G, we have

0 = PGQPG� = QPG� = Q�, (2.31)

thanks to Eq. (2.17).
The action in Eq. (2.27) has superficially the same form as that of the bosonic string field theory,

and its BV quantization can be carried out in a similar way [27]. The master action S0 can simply
be given by removing the ghost number restriction on � in the classical action:

S0 = 1

2
�(�, Q�), (2.32)

where � = ∑∞
g=−∞�(g). Each �(g) is the string field with the ghost number g. The component

�(2) is equal to the classical string field�, and the others are the space-time ghosts, anti-ghosts, and
corresponding anti-fields. The BRST transformation, which keeps the master action in Eq. (2.32)
invariant, is obtained by replacing the parameter � in the gauge transformation of Eq. (2.27) by the
field � as

δB0� = Q�. (2.33)

It is easy to show that the master action in Eq. (2.32) actually satisfies the BV master equation. Using
the fact that the symplectic form � has the cross-diagonal form of Eq. (2.26), an arbitrary variation
of the master action can be written as

δS0 = �(δ�, δB0�)

=
∑

I

(
〈〈δφI |δB0ψ I 〉〉 + 〈〈δψ I |δB0φI 〉〉

)
, (2.34)

and thus we have

∂S0

∂φI
= δB0ψ I ,

∂S0

∂ψ I
= δB0φI . (2.35)

The BRST invariance of the action implies that the classical BV master equation holds:

0 =
∑

I

(
∂S0

∂φI
δB0φI + ∂S0

∂ψ I
δB0ψ I

)

= 2
∑

I

(
∂S0

∂φI

∂S0

∂ψ I

)
. (2.36)

The components φI and ψ I are identified with the fields and anti-fields in the gauge-fixed basis in
the BV formulation [28], respectively.3 The gauge-fixed action in the Siegel gauge is obtained by
setting ψ I = 0 .

3 Here, since the field φI is Grassmann even, the anti-field ψ I must be Grassmann odd. We can show that
this is actually true for the Gliozzi–Scherk–Olive (GSO) projected string field, which we implicitly assume
[28].
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2.3. R–R action

Before incorporating the interactions, let us examine the action of the R–R sector,

SR–R
0 = 1

2
ωs(�R–R, YȲQ�R–R), (2.37)

in more detail since it is characteristic of type II superstring field theory. For simplicity we take the
Siegel gauge |ψR–R〉〉 = 0 in this discussion. After integrating out the ghost zero modes, the master
action of Eq. (2.32) and the BRST transformation of Eq. (2.33) in the R–R sector become

SR–R
0 = 〈〈φR–R|2GḠ

L+
0

|φR–R〉〉, δB0|φR–R〉〉 = Q̃|φR–R〉〉. (2.38)

Although this action is non-local, the propagator

−b+
0 b−

0 δ(β̄0)δ(β0)GḠδ(L−
0 )

L+
0

(2.39)

agrees with that obtained in the first-quantized formulation [29].
If one wants to avoid the non-local action, one can replace it with the Sen-like action as an alternative

by introducing an extra Grassmann even string field �̃R–R, which is restricted by the closed string
constraints in Eq. (2.4) and has ghost number 2 and picture number −3/2. Then the alternative action
is given by

S̃R–R
0 = −1

2
ωs(�̃R–R, X X̄ Q�̃R–R)+ ωs(�̃R–R, Q�R–R)

= −1

2
�(X X̄ �̃R–R, QX X̄ �̃R–R)+�(X X̄ �̃R–R, Q�R–R). (2.40)

The difference from Sen’s original action, however, is that we can rewrite it using the method of
completing the square as

S̃R–R
0 = −1

2
�(X X̄ �̃′

R–R, QX X̄ �̃′
R–R)+ 1

2
�(�R–R, Q�R–R), (2.41)

with �̃′
R–R = �̃R–R − YȲ�R–R, thanks to the constraint in Eq. (2.14), where the equivalence is

obvious. Since �̃R–R appears only in the form of X X̄ �̃R–R in the action of Eq. (2.40), we can restrict
�̃R–R by the condition

YX �̃R–R = ȲX̄ �̃R–R = �̃R–R, (2.42)

which is dual to the constraint in Eq. (2.14) on �R–R and restricts �̃R–R to the form of

�̃R–R = φ̃R–R − c+
0 ψ̃R–R. (2.43)

The Sen-like master action in the generalized Siegel gauge ψR–R = ψ̃R–R = 0 then becomes

S̃
R–R
0 = 1

2
〈〈φ̃R–R|L+

0 GḠ|φ̃R–R〉〉 − 〈〈φ̃R–R|L+
0 |φR–R〉〉

= 1

2
〈〈φ̃′

R–R|L+
0 GḠ|φ̃′

R–R〉〉 + 1

2
〈〈φR–R|4GḠ

L+
0

|φR–R〉〉, (2.44)
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with |φ̃′
R–R〉〉 = |φ̃R–R〉〉 + 4 GḠ

(L+
0 )

2 |φR–R〉〉 after integrating out the ghost zero modes. Although the

extra sector is a higher-derivative theory, it stays free and is decoupled from the physical sector if
the interaction part of the action does not include �̃R–R.

2.4. Including interactions

The interactions of type II superstring field theory are described by the multi-string products,

Ln(�1, . . . ,�n) (n ≥ 1), (2.45)

which make a string field from n string fields �1, . . . ,�n. They are graded symmetric under inter-
change of the n string fields, and must carry proper ghost number and picture number. In addition,
since the type II superstring field in this formulation is in the restricted small Hilbert space, the
outputs of the string products must also satisfy the constraint in Eq. (2.19):

PGLn(�1, . . . ,�n) = Ln(�1, . . . ,�n). (2.46)

By using these string products, the action of type II superstring field theory is given by

S =
∞∑

n=0

1

(n + 2)!�(�, Ln+1(�, . . . ,�︸ ︷︷ ︸
n+1

)), (2.47)

where L1 is identified with the BRST operator: L1 = Q. The action in Eq. (2.47) is invariant under
the gauge transformation

δ� =
∞∑

n=0

1

n!Ln+1(�, . . . ,�︸ ︷︷ ︸
n

,�) (2.48)

if the string products satisfy the L∞ relations

∑
σ

n∑
m=1

(−1)ε(σ )
1

m!(n − m)!Ln−m+1(Lm(�σ(1), . . . ,�σ(m)),�σ(m+1), . . . ,�σ(n)) = 0 (2.49)

and cyclicity with respect to the symplectic form �:

�(�1, Ln(�2, . . . ,�n+1)) = −(−1)|�1|�(Ln(�1, . . . ,�n),�n+1). (2.50)

Here, the symbol σ denotes the permutation from {1, . . . , n} to {σ(1), . . . , σ(n)}, and ε(σ ) is the
sign factor of the permutation of the string fields from {�1, . . . ,�n} to {�σ(1), . . . ,�σ(n)}. If the set
of string products {Ln} satisfies these conditions, it is called the string products with the cyclic L∞
structure or simply the cyclic L∞ algebra. The problem is how to construct such an L∞ algebra.

3. Construction of string products with L∞ structure

Let us construct a set of string products realizing a cyclic L∞ algebra. We use a coalgebraic repre-
sentation handling an infinite number of string products in the L∞ algebra collectively. We follow
the notation and convention in Ref. [22].
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3.1. Cyclicity, Ramond numbers and picture number deficit

String products describing the interaction of type II superstrings must have a proper ghost number
and picture number. Since the ghost number structure is the same as that of the bosonic closed string
field theory, here it is enough to consider the picture number that the string products should have.
Denote a coderivation corresponding to an (n + 2)-string product (n ≥ 0) with picture number
(p, p′) as B(p,p′)

n+2 . In order to describe the type II superstring interaction, the output string state must
have the same picture number as that of the type II superstring field: the picture number of its NS–
NS, R–NS, NS–R, and R–R components must be equal to (−1, −1), (−1/2, −1), (−1, −1/2), and
(−1/2, −1, 2), respectively. The string products are also characterized by their Ramond and cyclic
Ramond number defined by(

Ramond
cyclic Ramond

)
number = # of Ramond inputs ∓ # of Ramond outputs, (3.1)

which are also assigned for each of the left- and right-moving sectors. Since we can consider each
sector separately, let us first consider the left-moving sector. Suppose that 2r of n + 2 inputs are the
R states in the left-moving sector. If we assume conservation of the space-time fermion number then
the output must be the NS state, and thus(

− 1

2

)
× 2r + (−1)× (n + 2 − 2r)+ p = −1 (3.2a)

from the picture number conservation. Such a string product is characterized by the cyclic Ramond
number 2r and the Ramond number 2r. If 2r + 1 of the inputs are the R states, the output is the R
state and

(
− 1

2

)
× (2r + 1)+ (−1)× (n + 1 − 2r)+ p = −1

2
, (3.2b)

which is the case characterized by the cyclic Ramond number 2r + 2 and the Ramond number 2r.
Both of these equations in Eq. (3.2) can be solved as n = p + r − 1. After repeating the same
consideration for the right-moving sector, we can find that a candidate coderivation describing the
type II superstring interaction is the one respecting the Ramond number:4

∞∑
p,r,p′,r′=0

δp+r,p′+r′
(
π
(0,0)
1 B(p,p′)

p+r+1

∣∣(2r,2r′)
(2r,2r′) + π

(1,0)
1 B(p,p′)

p+r+1

∣∣(2r+2,2r′)
(2r,2r′)

+ π
(0,1)
1 B(p,p′)

p+r+1

∣∣(2r,2r′+2)
(2r,2r′) + π

(1,1)
1 B(p,p′)

p+r+1

∣∣(2r+2,2r′+2)
(2r,2r′)

)

=
∞∑

p,r,p′,r′=0

δp+r,p′+r′π1B(p,p′)
p+r+1

∣∣
(2r,2r′), (3.3)

with B1 ≡ 0, which we call the string products with no picture number deficit. However, this is
not suitable for considering the cyclicity since the Ramond number is not invariant under the cyclic

4 We take the convention that the quantity with the (cyclic) Ramond number out of range is identically equal
to zero, as in Ref. [22].
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permutation as in Eq. (2.50). So, instead we consider the string products,

π1B ≡
∞∑

p,,r,r′=0

π1B(p,p′)
p+r+1

∣∣(2r,2r′)

=
∞∑

p,r,r′=0

(
π
(0,0)
1 B(p,p′)

p+r+1

∣∣(2r,2r′)
(2r,2r′) + π

(1,0)
1 B(p,p′)

p+r+1

∣∣(2r,2r′)
(2r−2,2r′)

+ π
(0,1)
1 B(p,p′)

p+r+1

∣∣(2r,2r′)
(2r,2r′−2) + π

(1,1)
1 B(p,p′)

p+r+1

∣∣(2r,2r′)
(2r−2,2r′−2)

)
, (3.4)

respecting the cyclic Ramond number that is invariant under the permutation. While it becomes
easy to consider the cyclicity, this combination of string products B cannot be used as it is since its
NS–NS, R–NS, NS–R, and R–R components have picture number deficit (0, 0), (1, 0), (0, 1), and
(1, 1), respectively. In the heterotic string field theory, similar string products can naturally appear in
a non-linear extension of the combination of the operator (one-string product) Q − η [22]. In type II
superstring theory, however, the analogous combination Q − η − η̄ has no counterpart with picture
number deficit (1, 1), and thus we cannot directly extend the prescription in Ref. [22] to construct
the required L∞ algebra. We take an alternative way that is a generalization of the asymmetric
construction used in Ref. [3] to give those restricted into the NS–NS sector.

3.2. Construction of string products

The prescription we propose is simply repeating that used in heterotic string field theory twice: the
first time is for getting the correct structure of the left-moving sector by inserting X and/or ξ in the
bosonic string products, which we assume to be known [30–32], and the second time is for getting the
correct structure of the right-moving sector by inserting X̄ and/or ξ̄ in the (heterotic) string products
obtained in the first step.

We start from the combined coderivation

D − C = Q − η + B, (3.5)

with

B =
∞∑

p,r=0

B(p)p+r+1

∣∣2r , (3.6)

where p and 2r are the picture and cyclic Ramond numbers of the left-moving sector, respectively.
This can be decomposed to D and C by picture number deficit as

π1D = π1Q +
∞∑

p,r=0

π1B(p)p+r+1

∣∣2r
2r = π1Q + π

(0,∗)
1 B, (3.7)

π1C = π1η −
∞∑

p,r=0

π1B(p)p+r+1

∣∣2r
2r−2 = π1η − π

(1,∗)
1 B. (3.8)

Suppose B has zero right-moving picture number and is independent of the right-moving Ramond
and cyclic Ramond numbers. The left-moving picture number deficit of D is equal to zero and that
of C is equal to one. As was shown in Ref. [22], the L∞ relation for the coderivation D − C ,

[D − C , D − C] = 0, (3.9)
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following from the equations

[Q, B(s, t)] + 1

2
[B(s, t), B(s, t)]1 + s

2
[B(s, t), B(s, t)]2 = 0, (3.10a)

[η, B(s, t)] − t

2
[B(s, t), B(s, t)]2 = 0, (3.10b)

for the generating function

B(s, t) =
∞∑

m,n,r=0

smtnB(n)m+n+r+1

∣∣2r =
∞∑

n=0

tnB(n)(s), (3.11)

from which we obtain the required string products as B = B(0, 1). The operations [l, l ′]1 amd [l, l ′]2

in Eq. (3.10) are defined by splitting the commutator into the pieces with definite left-moving cyclic
Ramond number: if l = ∑

r l|2r and l ′ = ∑
r′ l ′|2r′

, then

[l, l ′]1 =
∑
r,r′

[l|2r , l ′|2r′ ]∣∣2r+2r′
, [l, l ′]2 =

∑
r,r′

[l|2r , l ′|2r′ ]∣∣2r+2r′−2. (3.12)

We can show that [l, l ′] = [l, l ′]1 + [l, l ′]2. It was also shown in Ref. [22] that the equations in
Eq. (3.10) are satisfied if we postulate the differential equations

∂tB(s, t) = [Q,λ(s, t)] + [B(s, t),λ(s, t)]1 + s[B(s, t),λ(s, t)]2, (3.13a)

[η,λ(s, t)] = ∂sB(s, t)+ t[B(s, t),λ(s, t)]2 (3.13b)

by introducing (a generating function of) the gauge products represented by a degree-even
coderivation,

λ(s, t) =
∞∑

m,n,r=0

smtnλ
(n+1)
m+n+r+2

∣∣2r =
∞∑

n=0

tnλ(n+1)(s). (3.14)

The differential equations in Eq. (3.13) can be recursively solved as

λ(n+1)(s) = ξ ◦
(
∂sB

(n)(s)+
n−1∑
n′=0

[B(n−n′)(s),λ(n
′+1)(s)]2

)
, (3.15a)

(n + 1)B(n+1)(s) = [Q,λ(n+1)(s)]

+
n∑

n′=0

[B(n−n′)(s),λ(n
′+1)(s)]1 +

n∑
n′=0

s[B(n−n′)(s),λ(n
′+1)(s)]2, (3.15b)

with the initial condition

B(0)(s) = LB(s), (3.16)

given by using the interacting part of the bosonic products (string products with no non-zero picture
number operator insertion) [22]:

LB(s) =
∞∑

m,r=0

smLB
m+r+1

∣∣2r , (LB
1

∣∣0 ≡ 0). (3.17)
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The operation ξ◦ in Eq. (3.15a) is defined as that inserting ξ cyclically. Then, by construction, all
the B(s, t) and λ(s, t) are cyclic with respect to the symplectic form ωm. They provide a cyclic L∞
algebra (Hm,ωm, D−C). After decomposing this combined L∞ algebra into D and C , we can obtain
a heterotic L∞ algebra in the small Hilbert space, satisfying [η, LH ] = [η̄, LH ] = 0, by similarity
transformation generated by the cohomomorphism

π1F̂
−1 = π1ISH −�π

(1,∗)
1 B (3.18)

as

π1LH ≡ π1F̂
−1

DF̂ = π1Q + X bH , (3.19)

with bH = BF̂. This LH has the required picture number structure for the left-moving sector but the
right-moving picture number is still equal to zero:

LH = Q +
∞∑

p,r=0

(LH )
(p,0)
p+r+1

∣∣
2r = Q +

∞∑
p,r=0

X (bH )
(p,0)
p+r+1

∣∣2r . (3.20)

Here, the subscript or superscript 2r after the vertical line is the left-moving Ramond or cyclic
Ramond number, respectively. It is easy to see that bH is cyclic with respect to ωm in the same way
as in Ref. [22].

We repeat the same procedure for the right-moving sector. Let us consider the combined
coderivation

D̄ − C̄ = Q − η̄ + B̄, (3.21)

with

B̄ =
∞∑

p̄,r̄=0

B̄
(p̄)
p̄+r̄+1

∣∣2r̄ , (3.22)

which can be decomposed by the right-moving picture number deficit as

π1D̄ = π1Q +
∞∑

p̄,r̄=0

π1B̄
(p̄)
p̄+r̄+1

∣∣2r̄
2r̄ = π1Q + π

(∗,0)
1 B̄, (3.23)

π1C̄ = π1η̄ −
∞∑

p̄,r̄=0

π1B̄
(p̄)
p̄+r̄+1

∣∣2r̄
2r̄−2 = π1η̄ − π

(∗,1)
1 B̄. (3.24)

It is noted that only the right-moving quantum numbers, the picture, Ramond, and cyclic Ramond
numbers, are specified. Those of the left-moving sector are implicit but determined properly in our
construction below. The L∞ relation of the coderivation D̄ − C̄ ,

[D̄ − C̄ , D̄ − C̄] = 0, (3.25)
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again follows from the equations

[Q, B̄(s, t)] + 1

2
[B̄(s, t), B̄(s, t)]1̄ + s

2
[B̄(s, t), B̄(s, t)]2̄ = 0, (3.26a)

[η̄, B̄(s, t)] − t

2
[B̄(s, t), B̄(s, t)]2̄ = 0 (3.26b)

for the generating function

B̄(s, t) =
∞∑

m̄,n̄,r̄=0

sm̄tn̄B̄
(n̄)
m̄+n̄+r̄+1

∣∣2r̄ =
∞∑

n̄=0

tn̄B̄
(n̄)
(s). (3.27)

The string products in Eq. (3.22) are obtained as B̄ = B̄(0, 1). The operations [l, l ′]1̄ and [l, l ′]2̄ are
the right-moving counterpart of Eq. (3.12), which split the commutator into pieces with a definite
right-moving cyclic Ramond number. Equations (3.26) are satisfied if we postulate the differential
equations

∂tB̄(s, t) = [Q, λ̄(s, t)] + [B̄(s, t), λ̄(s, t)]1̄ + s[B̄(s, t), λ̄(s, t)]2̄, (3.28a)

[η̄, λ̄(s, t)] = ∂sB̄(s, t)+ t[B̄(s, t), λ̄(s, t)]2̄ (3.28b)

by introducing (a generating function of) the gauge products represented by a degree-even
coderivation

λ̄(s, t) =
∞∑

m̄,n̄,r̄=0

sm̄tn̄λ̄
(n̄+1)
m̄+n̄+r̄+2

∣∣2r̄ =
∞∑

n̄=0

tn̄λ̄
(n̄+1)

(s). (3.29)

This time we solve the differential equations in Eq. (3.28) by starting from the initial condition
B̄
(0)
(s) = LH (s) with

LH (s) =
∞∑

m̄,r̄=0

sm̄(LH )m̄+r̄+1
∣∣2r̄ , (3.30)

or b̄
(0)
(s) = bH (s) with B̄

(0)
(s) = X b̄

(0)
(s) and LH (s) = X bH (s). Solving Eq. (3.28b) explicitly,

we first obtain

λ̄
(1)
(s) = ξ̄ ◦ ∂sLH (s) = X (

ξ̄ ◦ ∂sbH
) ≡ Xμ(1)(s), (3.31)

and then, from Eq. (3.28a),

B̄
(1)
(s) = [Q, λ̄

(1)
(s)] + [LH (s), λ̄

(1)
(s)]1̄ + s[LH (s), λ̄

(1)
(s)]2̄

= X
(
[Q,μ(1)(s)] + [[bH (s),μ(1)(s)]]1̄ + s[[bH (s),μ(1)(s)]]2̄

)
≡ X b̄

(1)
(s), (3.32)

where the double square brackets [[l, l ′]]1̄ and [[l, l ′]]2̄ are defined by

[[l, l ′]]1̄ =
∞∑

r̄,s̄=0

(
l|2r̄ X l ′|2s̄ − (−1)|l||l′|l ′|2s̄ X l|2r̄)∣∣2r̄+2s̄, (3.33)

[[l, l ′]]2̄ =
∞∑

r̄,s̄=0

(
l|2r̄X l ′|2s̄ − (−1)|l||l′|l ′|2s̄X l|2r̄)∣∣2r̄+2s̄−2. (3.34)
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Similarly solving the higher-order products recursively, we obtain

μ(n̄+1)(s) = ξ̄ ◦
(
∂sb̄

(n̄)
(s)+

n̄−1∑
n̄′=0

[[b̄(n̄−n̄′)
(s),μ(n̄

′+1)(s)]]2̄
)

, (3.35a)

(n̄ + 1)b̄
(n̄+1)

(s) = [Q,μ(n̄+1)(s)]

+
n̄∑

n̄′=0

[[b̄(n̄−n̄′)
(s),μ(n̄

′+1)(s)]]1̄ +
n̄∑

n̄′=0

s[[b̄(n̄−n̄′)
(s),μ(n̄

′+1)(s)]]2̄, (3.35b)

where

λ̄
(n̄+1)

(s) = Xμ(n̄+1)(s), B̄
(n̄+1)

(s) = X b̄
(n̄+1)

(s). (3.36)

Note that the factor X for the left-moving sector can still be pulled out after repeating the procedure for
the right-moving sector. The initial condition B̄

(0)
(s) = L(0)H (s) fixes the structure of the left-moving

picture number as

μ
(n̄+1)
m̄+n̄+r̄+2

∣∣2r̄ =
∞∑

n,r=0

δn+r,m̄+n̄+r̄+1μ
(n,n̄+1)
m̄+n̄+r̄+2

∣∣(2r,2r̄), (3.37a)

b̄
(n̄)
m̄+n̄+r̄+1

∣∣2r̄ =
∞∑

n,r=0

δn+r,m̄+n̄+r̄ b̄
(n,n̄)
m̄+n̄+r̄+1

∣∣(2r,2r̄). (3.37b)

All the B̄(s, t) and λ̄(s, t) are in Hm̄, satisfying [η, B̄(s, t)] = [η, λ̄(s, t)] = 0, and now cyclic
with respect to the symplectic form ωm̄ by construction. We have obtained a cyclic L∞ algebra
(Hm̄,ωm̄, D̄ − C̄). Finally, the cohomomorphism

π1
ˆ̄F−1 = π1ISH − �̄π

(∗,1)
1 B̄ (3.38)

generates the similarity transformation which provides an L∞ algebra L in the small Hilbert space,
satisfying [η, L] = [η̄, L] = 0:

π1L ≡ π1
ˆ̄F−1D̄ ˆ̄F = π1Q + X̄ B̄ ˆ̄F

= π1Q + Gb, (3.39)

where b = b̄ ˆ̄F with b̄ = ∑∞
p̄,r̄=0 b̄

(p̄)
p̄+r̄+1

∣∣2r̄ . We can again show that b is cyclic with respect to ωl in
a similar way to Ref. [22], and thus the cyclic L∞ algebra (H,�, L) is obtained.

4. Four-point amplitudes

In this section we concretely calculate three typical on-shell physical amplitudes with four external
strings in a similar way to Refs. [2,22] to demonstrate how the type II string field theory we have
constructed reproduces the first-quantized amplitudes. We take the Siegel gauge defined by the
conditions

ψNS–NS = ψR–NS = ψNS–R = ψR–R = 0. (4.1)

15/32

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/3/033B06/5814070 by Kyoto university user on 24 August 2020



PTEP 2020, 033B06 H. Kunimoto and T. Sugimoto

From the action in Eq. (2.47) we can find that the propagators in this gauge are given by

�NS–NS = −b+
0 b−

0

L+
0

δ(L−
0 ), �R–NS = −b+

0 b−
0 X

L+
0

δ(L−
0 ),

�NS–R = −b+
0 b−

0 X̄

L+
0

δ(L−
0 ), �R–R = −b+

0 b−
0 X X̄

L+
0

δ(L−
0 ),

(4.2)

which agree with those appearing in the first-quantized formulation [29].

4.1. Four-(R–R) amplitude

Let us first consider the case that all the external strings are in the R–R sector. The first-quantized
amplitude is given in the form

A1st
4 (�1,�2,�3,�4) =

∫
d2z〈�1(0)(b

+
−1b−

−1�2(z))�3(1)�4(∞)〉, (4.3)

where�1, . . . ,�4 are on-shell physical R–R vertex operators, satisfying Q� = 0, in a (−1/2, −1/2)
picture. The correlator is evaluated in the small Hilbert space on the complex z-plane. It is not
necessary to add any picture-changing operators at all. Owing to the same moduli structure as the
bosonic closed string, we can express this using the bosonic closed string products LB

n as

A1st
4 (�1,�2,�3,�4) = ωs

(
�1,

(
LB

3 (�2,�3,�4)− LB
2

(
�2,

b+
0

L+
0

LB
2 (�3,�4)

)

− LB
2

(
�3,

b+
0

L+
0

LB
2 (�4,�2)

)
− LB

2

(
�4,

b+
0

L+
0

LB
2 (�2,�3)

)))
. (4.4)

It should be noted that the moduli integral b−
0 δ(L

−
0 ) = ∫ 2π

0
dθ
2π b−

0 exp(iθL−
0 ) is hidden behind the

definition of the string product. This amplitude can be regarded as a multi-linear map:

〈A4| : HR–R
Q ⊗ (HR–R

Q )∧3 −→ C, (4.5)

where HQ ⊂ H is the subspace of states annihilated by Q. Putting the string fields �1, . . . ,�4 out,
we can express Eq. (4.4) as

〈A1st
4 | = 〈ωs| I ⊗

(
LB

3 − LB
2

(
I ∧ b+

0

L+
0

LB
2

))
(4.6)

by introducing the bilinear map representation 〈ωs| of the symplectic form ωs defined by

H ⊗ H 〈ωs|−→ C

∈ ∈

|�1〉 ⊗ |�2〉 �−→ ωs(�1,�2).

(4.7)

The expression in Eq. (4.6) can also be written by using the coderivations as

〈A1st
4 | = 〈ωs| I ⊗ π

(1,1)
1

(
LB

3

∣∣(4,4)
(2,2) − LB

2

∣∣(2,2)
(0,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,2)

)
. (4.8)

Here,
b+

0
L+

0
LB

2 is the coderivation derived from
b+

0
L+

0
LB

2 .
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From the type II superstring field theory, on the other hand, the four-(R–R) amplitude is
calculated as

A4(�1,�2,�3,�4) = ωs

(
�1,

(
b(0,0)

3 (�2,�3,�4)− b(0,0)
2 (�2,�NS–NS c−

0 b(0,0)
2 (�3,�4))

− b(0,0)
2 (�3,�NS–NS c−

0 b(0,0)
2 (�4,�2))

− b(0,0)
2 (�4,�NS–NS c−

0 b(0,0)
2 (�2,�3))

))

= ωs

(
�1,

(
b(0,0)

3 (�2,�3,�4)− b(0,0)
2

(
�2,

b+
0

L+
0

b(0,0)
2 (�3,�4)

)

− b(0,0)
2

(
�3,

b+
0

L+
0

b(0,0)
2 (�4,�2)

)
− b(0,0)

2

(
�4,

b+
0

L+
0

b(0,0)
2 (�2,�3)

)))
.

(4.9)

The second equality holds owing to the fact that the string field b(0,0)
2 (�1,�2) satisfies the closed

string constraints in Eq. (2.4). Rewriting by using the coderivations, we find

〈A4| = 〈ωs|I ⊗ π
(1,1)
1

(
b(0,0)

3

∣∣(4,4)
(2,2) − b(0,0)

2

∣∣(2,2)
(0,0)

b+
0

L+
0

b(0,0)
2

∣∣(2,2)
(2,2)

)
. (4.10)

Here, the string products without picture number b(0,0)
n are equal to the bosonic string products LB

n

by construction.5 Hence, the string field theory amplitude in Eq. (4.10) certainly agrees with the
first-quantized amplitude in Eq. (4.8).

4.2. Two-(NS–R)-two-(R–R) amplitude

Next, we consider the amplitude with two NS–R strings and two R–R strings, which is given in the
first-quantized formulation by

〈A4| = 〈ωs| X0 ⊗ π
(0,1)
1

(
LB

3

∣∣(2,4)
(2,2) − LB

2

∣∣(0,2)
(0,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,2) − LB

2

∣∣(2,2)
(2,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(0,2)

)
, (4.11)

in a similar representation to the four-(R–R) amplitude. Here, 〈A4| is a multi-linear map

〈A4| : HNS–R
Q ⊗

(
HNS–R

Q ∧ (HR–R
Q )∧2

)
−→ C, (4.12)

and X0 = {Q, ξ}. In this case, the amplitude obtained from the type II string field theory is calculated
as

〈A4| = 〈ωs| I ⊗ π
(0,1)
1

(
b(1,0)

3

∣∣(2,4)
(2,2) − b(1,0)

2

∣∣(0,2)
(0,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,2) − LB

2

∣∣(2,2)
(2,0)

b+
0 X

L+
0

LB
2

∣∣(2,2)
(0,2)

)
. (4.13)

5 This will be used without notice hereafter.
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In our construction given in the previous section, the string products without right-moving picture
number b(1,0)

n are equal to the heterotic string products (bH )
(1)
n = (BF̂)(1)n and given explicitly by∑

r̄=0,1

b(1,0)
2

∣∣(0,2r̄) = (BF̂)(1)2

∣∣0 = B(1)2

∣∣0
= [Q,λ(1)2

∣∣0], (4.14a)∑
r̄=0,1,2

b(1,0)
3

∣∣(2,2r̄) = (BF̂)(1)3

∣∣2 = B(1)3

∣∣2 + B(0)2

∣∣2�π(1,∗)
1 B(0)2

∣∣2
= [Q,λ(1)3

∣∣2] + [B(0)2

∣∣2,λ(1)2

∣∣2]∣∣2 + B(0)2

∣∣2�π(1,∗)
1 B(0)2

∣∣2, (4.14b)

where the last equalities follow from the recursion relation in Eq. (3.15b) with n = 0. If we further
note that

B(0)2

∣∣2 =
∑

r̄=0,1

LB
2

∣∣(2,2r̄), λ
(1)
2

∣∣0 =
∑

r̄=0,1

λ
(1)
2

∣∣(0,2r̄), λ
(1)
3

∣∣2 =
∑

r̄=0,1,2

λ
(1)
3

∣∣(2,2r̄), (4.15)

the relations in Eq. (4.14) can be decomposed with respect to the Ramond and cyclic Ramond
numbers. In particular, we find that

π
(0,1)
1 b(1,0)

2

∣∣(0,2)
(0,0) = π

(0,1)
1 [Q,λ(1)2

∣∣(0,2)
(0,0)], (4.16a)

π
(0,1)
1 b(1,0)

3

∣∣(2,4)
(2,2) = π

(0,1)
1

([Q,λ(1)3

∣∣(2,4)
(2,2)] − λ

(1)
2

∣∣(0,2)
(0,0)L

B
2

∣∣(2,2)
(2,2) + LB

2

∣∣(2,2)
(2,0) �LB

2

∣∣(2,2)
(0,2)

)
. (4.16b)

Substituting this into the string field theory amplitude in Eq. (4.13) and then pulling Q out, we can
rewrite it as

〈A4| = 〈ωl| ξ ξ̄ ⊗ π
(0,1)
1

(
[Q,λ(1)3

∣∣(2,4)
(2,2)] − λ

(1)
2

∣∣(0,2)
(0,0)L

B
2

∣∣(2,2)
(2,2) + LB

2

∣∣(2,2)
(2,0) �LB

2

∣∣(2,2)
(0,2)

− [Q,λ(1)2

∣∣(0,2)
(0,0)]

b+
0

L+
0

LB
2

∣∣(2,2)
(2,2) − LB

2

∣∣(2,2)
(2,0)

b+
0 {Q,�}

L+
0

LB
2

∣∣(2,2)
(0,2)

)

= −〈ωl|(ξ X̄0 − X0ξ̄ )

⊗ π
(0,1)
1

(
λ
(1)
3

∣∣(2,4)
(2,2) − λ

(1)
2

∣∣(0,2)
(0,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,2) − LB

2

∣∣(2,2)
(2,0)

b+
0 �

L+
0

LB
2

∣∣(2,2)
(0,2)

)
, (4.17)

except for the terms vanishing when they hit the states in HQ. Inserting 1 = {η, ξ} or 1 = [η̄, ξ̄ ], we
can find that the amplitude in Eq. (4.17) agrees with the first-quantized one:

〈A4| = 〈ωs|X0 ⊗ π
(0,1)
1

(
[η,λ(1)3

∣∣(2,4)
(2,2)] − [η,λ(1)2

∣∣(0,2)
(0,0)]

b+
0

L+
0

LB
2

∣∣(2,2)
(2,2) − LB

2

∣∣(2,2)
(2,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(0,2)

)

= 〈ωs|X0 ⊗ π
(0,1)
1

(
LB

3

∣∣(2,4)
(2,2) − LB

2

∣∣(0,2)
(0,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,2) − LB

2

∣∣(2,2)
(2,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(0,2)

)
. (4.18)

In the second equality we used [η̄,λ(1)n ] = [η̄, LB
n ] = 0 and the recursion relation in Eq. (3.15a) with

n = 0,

[η,λ(1)3

∣∣(2,4)
(2,2)] = LB

3

∣∣(2,4)
(2,2), [η,λ(1)2

∣∣(0,2)
(0,0)] = LB

2

∣∣(0,2)
(0,0). (4.19)
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4.3. (NS–NS)-(R–NS)-(NS–R)-(R–R) amplitude

Finally, let us consider the case with four external strings coming from the four different sectors.
The first-quantized amplitude is given by

〈A4| = 〈ωs| X0X̄0 ⊗ π
(0,0)
1

(
LB

3

∣∣(2,2)
(2,2) − LB

2

∣∣(2,0)
(2,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(0,2)

− LB
2

∣∣(0,2)
(0,2)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,0) − LB

2

∣∣(2,2)
(2,2)

b+
0

L+
0

LB
2

∣∣(2,2)
(0,0)

)
P; (4.20)

as a multi-linear map,

〈A4| : HNS–NS
Q ⊗

(
HR–NS

Q ∧ HNS–R
Q ∧ HR–R

Q

)
−→ C. (4.21)

Here, P is the projection operator onto HR–NS
Q ∧ HNS–R

Q ∧ HR–R
Q necessary to distinguish it from

HNS–NS
Q ∧HR–R

Q ∧HR–R
Q , both of which contain two left-moving Ramond states and two right-moving

Ramond states. The string field theory amplitude in this case is calculated as

〈A4| = 〈ωs| I ⊗ π
(0,0)
1

(
b(1,1)

3

∣∣(2,2)
(2,2) − b(0,1)

2

∣∣(2,0)
(2,0)

b+
0 X

L+
0

LB
2

∣∣(2,2)
(0,2)

− b(1,0)
2

∣∣(0,2)
(0,2)

b+
0 X̄

L+
0

LB
2

∣∣(2,2)
(2,0) − LB

2

∣∣(2,2)
(2,2)

b+
0 X X̄

L+
0

LB
2

∣∣(2,2)
(0,0)

)
P. (4.22)

Using b = b̄ ˆ̄F and the recursion relation in Eq. (3.35b), we have

∑
p=0,1

b(p,1)
2

∣∣(2(1−p),0) = (b̄ ˆ̄F)(1)2

∣∣0 = b̄
(1)
2

∣∣0
= [Q,μ(1)2

∣∣0], (4.23a)∑
p=0,1,2

b(p,1)
3

∣∣(2(2−p),2) = (b̄ ˆ̄F)(1)3

∣∣2 = b̄
(1)
3

∣∣2 + b̄
(0)
2

∣∣2 �̄π(∗,1)
1 X b̄

(0)
2

∣∣2
= [Q,μ(1)3

∣∣2] + [[b̄(0)2

∣∣2,μ(1)2

∣∣0]]1̄ + b̄
(0)
2

∣∣2 �̄π(∗,1)
1 X b̄

(0)
2

∣∣2, (4.23b)

from which we can find that

π
(0,0)
1 b(0,1)

2

∣∣(2,0)
(2,0) = π

(0,0)
1 [Q,μ(0,1)

2

∣∣(2,0)
(2,0)], (4.24a)

π
(0,0)
1 b(1,1)

3

∣∣(2,2)
(2,2)P = π

(0,0)
1

([Q,μ(1,1)
3

∣∣(2,2)
(2,2)] − μ

(0,1)
2

∣∣(2,0)
(2,0)X LB

2

∣∣(2,2)
(0,2)

+ LB
2

∣∣(2,2)
(2,2)X �̄LB

2

∣∣(2,2)
(0,0) + b̄

(1,0)
2

∣∣(0,2)
(0,2) �̄LB

2

∣∣(2,2)
(2,0)

)
P (4.24b)
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by decomposing it with respect to the cyclic Ramond and Ramond numbers. Then, the string field
theory amplitude in Eq. (4.22) can be rewritten as

〈A4| = 〈ωl|ξ ξ̄ ⊗ π
(0,0)
1

(
[Q,μ(1,1)

3

∣∣(2,2)
(2,2)] − μ

(0,1)
2

∣∣(2,0)
(2,0)X LB

2

∣∣(2,2)
(0,2)

+ LB
2

∣∣(2,2)
(2,2)X �̄LB

2

∣∣(2,2)
(0,0) + b̄

(1,0)
2

∣∣(0,2)
(0,2)�̄LB

2

∣∣(2,2)
(2,0) − [Q,μ(0,1)

2

∣∣(2,0)
(2,0)]

b+
0 X

L+
0

LB
2

∣∣(2,2)
(0,2)

− b(1,0)
2

∣∣(0,2)
(0,2)

b+
0 {Q, �̄}

L+
0

LB
2

∣∣(2,2)
(2,0) − LB

2

∣∣(2,2)
(2,2)

b+
0 X {Q, �̄}

L+
0

LB
2

∣∣(2,2)
(0,0)

)
P

= −〈ωl|(ξ X̄0 − X0ξ̄ )⊗ π
(0,0)
1

(
μ
(1,1)
3

∣∣(2,2)
(2,2) − μ

(0,1)
2

∣∣(2,0)
(2,0)

b+
0 X

L+
0

LB
2

∣∣(2,2)
(0,2)

− b(1,0)
2

∣∣(0,2)
(0,2)

b+
0 �̄

L+
0

LB
2

∣∣(2,2)
(2,0) − LB

2

∣∣(2,2)
(2,2)

b+
0 X �̄

L+
0

LB
2

∣∣(2,2)
(0,0)

)
P, (4.25)

except for the terms which vanish when they hit the states in HQ. Inserting 1 = {η̄, ξ̄} or 1 = {η, ξ},
we find that

〈A4| = 〈ωs| X̄0 ⊗ π
(0,0)
1

(
(bH )

(1)
3

∣∣(2,2)
(2,2) − LB

2

∣∣(2,0)
(2,0)

b+
0 X

L+
0

LB
2

∣∣(2,2)
(0,2)

− (bH )
(1)
2

∣∣(0,2)
(0,2)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,0) − LB

2

∣∣(2,2)
(2,2)

b+
0 X

L+
0

LB
2

∣∣(2,2)
(0,0)

)
P (4.26)

by using

[η,μ] = [η, LB] = 0 (4.27)

and

[η̄,μ(1,1)
3

∣∣(2,2)
(2,2)] = b̄

(1,0)
3

∣∣(2,2)
(2,2) = (bH )

(1)
3

∣∣(2,2)
(2,2), (4.28a)

[η̄,μ(0,1)
2

∣∣(2,0)
(2,0)] = b̄

(0,0)
2

∣∣(2,0)
(2,0) = LB

2

∣∣(2,0)
(2,0), (4.28b)

following from Eq. (3.31).
We can repeat a similar procedure for the left-moving sector. Using bH = BF̂, we have, in

particular,

(bH )
(1)
2

∣∣0 = (BF̂)(1)2

∣∣0 = B(1)2

∣∣0
= [Q,λ(1)2

∣∣0], (4.29a)

(bH )
(1)
3

∣∣2 = (BF̂)(1)3

∣∣2 = B(1)3

∣∣2 + B(0)2

∣∣2�π(1,∗)
1 B(0)2

∣∣2
= [Q,λ(1)3

∣∣2] + [B(0)2

∣∣2,λ(1)2

∣∣0]|2 + B(0)2

∣∣2�π(1,∗)
1 B(0)2

∣∣2, (4.29b)
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by using Eq. (3.15b). Decomposing these with respect to the cyclic Ramond and Ramond numbers,
we find that

π
(0,0)
1 (bH )

(1)
2

∣∣(0,2)
(0,2) = π

(0,0)
1 [Q,λ(1)2

∣∣(0,2)
(0,2)], (4.30a)

π
(0,0)
1 (bH )

(1)
3

∣∣(2,2)
(2,2)P = π

(0,0)
1

(
[Q,λ(1)3

∣∣(2,2)
(2,2)] − λ

(1)
2

∣∣(0,2)
(0,2) LB

2

∣∣(2,2)
(2,0)

+ LB
2

∣∣(2,0)
(2,0) �LB

2

∣∣(2,2)
(0,2) + LB

2

∣∣(2,2)
(2,2) �LB

2

∣∣(2,2)
(0,0)

)
P. (4.30b)

Thanks to these relations, the amplitude in Eq. (4.26) can be further rewritten as

〈A4| = 〈ωl| X̄0ξ ξ̄ ⊗ π
(0,0)
1

(
[Q,λ(1)3

∣∣(2,2)
(2,2)] − λ

(1)
2

∣∣(0,2)
(0,2) LB

2

∣∣(2,2)
(2,0)

+ LB
2

∣∣(2,0)
(2,0) �LB

2

∣∣(2,2)
(0,2) + LB

2

∣∣(2,2)
(2,2) �LB

2

∣∣(2,2)
(0,0)

− LB
2

∣∣(2,0)
(2,0)

b+
0 {Q,�}

L+
0

LB
2

∣∣(2,2)
(0,2) − [Q,λ(1)2

∣∣(0,2)
(0,2)]

b+
0

L+
0

LB
2

∣∣(2,2)
(2,0)

− LB
2

∣∣(2,2)
(2,2)

b+
0 {Q,�}

L+
0

LB
2

∣∣(2,2)
(0,0)

)
P

= −〈ωl| X̄0(ξ X̄0 − X0ξ̄ )⊗ π
(0,0)
1

(
λ
(1)
3

∣∣(2,2)
(2,2) − LB

2

∣∣(2,0)
(2,0)

b+
0 �

L+
0

LB
2

∣∣(2,2)
(0,2)

− λ
(1)
2

∣∣(0,2)
(0,2)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,0) − LB

2

∣∣(2,2)
(2,2)

b+
0 �

L+
0

LB
2

∣∣(2,2)
(0,0)

)
P, (4.31)

except for the terms vanishing when they hit the states in HQ. Again, inserting 1 = {η, ξ} = {η̄, ξ̄},
the string field theory amplitude eventually becomes

〈A4| = 〈ωs| X0X̄0 ⊗ π
(0,0)
1

(
LB

3

∣∣(2,2)
(2,2) − LB

2

∣∣(2,0)
(2,0)

b+
0

L+
0

LB
2

∣∣(2,2)
(0,2)

− LB
2

∣∣(0,2)
(0,2)

b+
0

L+
0

LB
2

∣∣(2,2)
(2,0) − LB

2

∣∣(2,2)
(2,2)

b+
0

L+
0

LB
2

∣∣(2,2)
(0,0)

)
P, (4.32)

using [η,λ(1)] = LB. This reproduces the first-quantized amplitude of Eq. (4.20).

5. Relation to the WZW-like formulation

So far we have constructed a complete gauge-invariant action for the type II superstring field theory
in the small Hilbert space based on the cyclic L∞ structure. In open superstring field theory [14]
and heterotic string field theory [22], we can map it to a gauge-invariant action in the WZW-like
formulation through a field redefinition. In this section we consider whether it is also possible to
construct a complete WZW-like action in a similar way for the type II superstring field theory.
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Here, let us consider the restriction of the construction to the pure NS–NS sector. If we define
generating functions by

LH (s, t)|(0,0) ≡ (
Q + B(s, t)

)∣∣(0,0) = (
Q +

∞∑
m,n=0

smtnB(n)m+n+1

)∣∣(0,0), (5.1a)

L(s, t)
∣∣(0,0) ≡ (

Q + B̄(s, t)
)∣∣(0,0) = (

Q +
∞∑

m̄,n̄=0

sm̄tn̄B̄
(n̄)
m̄+n̄+1

)|(0,0), (5.1b)

they are the generating functions of LH |(0,0) and L|(0,0) since the cohomomorphisms F̂ and ˆ̄F reduce
to the identity in the NS–NS sector. The string products in the NS–NS action can be obtained by
L|(0,0) = L(0, 1)|(0,0). These coderivations satisfy the L∞ relations

[LH (s, t)
∣∣(0,0), LH (s, t)

∣∣(0,0)] = 0, (5.2a)

[L(s, t)
∣∣(0,0), L(s, t)

∣∣(0,0)] = 0, (5.2b)

and both of them are closed in the small Hilbert space:

[η, LH (s, t)
∣∣(0,0)] = [η̄, LH (s, t)

∣∣(0,0)] = [η, L(s, t)
∣∣(0,0)] = [η̄, L(s, t)

∣∣(0,0)] = 0. (5.3)

The L∞ relations in Eq. (5.2) follow from the differential equations

∂tLH (s, t)
∣∣(0,0) = [LH (s, t)

∣∣(0,0),λ(s, t)
∣∣(0,0)], (5.4a)

∂sLH (s, t)
∣∣(0,0) = [η,λ(s, t)

∣∣(0,0)], (5.4b)

and

∂tL(s, t)
∣∣(0,0) = [L(s, t)

∣∣(0,0), λ̄(s, t)
∣∣(0,0)], (5.5a)

∂sL(s, t)
∣∣(0,0) = [η̄, λ̄(s, t)

∣∣(0,0)], (5.5b)

derived from Eqs. (3.13) and (3.28), respectively, where λ(s, t)|(0,0) and λ̄(s, t)|(0,0) are the similar
restrictions of the gauge products in Eqs. (3.14) and (3.29) to the NS–NS sector. The required
string products are obtained in two steps: first, we recursively solve Eq. (5.4) starting from the
initial condition LH (s, 0)|(0,0) = LB(s)|(0,0), and then solve Eq. (5.5) with the initial condition
L(s, 0)|(0,0) = LH (0, s)|(0,0). This is nothing but the asymmetric construction proposed in Ref. [3],
and thus the string and gauge products we constructed reduce in the NS–NS sector to those obtained
by their asymmetric construction [3].

Using the fact that L(s, t)|(0,0) satisfies the differential equation in Eq. (5.5), we can show that the
string products restricted in the NS–NS sector L|(0,0) = L(0, 1)|(0,0) can be written in the form of
the similarity transformation [14,22] as

L|(0,0) = Q + B̄(0, 1)
∣∣(0,0) = ĝ−1Qĝ (5.6)

by the cohomomorphism

ĝ = �P exp
(∫ 1

0
dtλ̄(0, t)|(0,0)

)
. (5.7)
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Due to the commutativity [η, λ̄(0, t)] = 0 that holds by construction, however, it transforms η
and η̄ asymmetrically. The constraints η�NS–NS = η̄�NS–NS = 0, restricting �NS–NS to the small
Hilbert space, are mapped to

η π1ĝ(e∧�NS–NS) = π1Lη̄(e∧π1ĝ(e∧�NS–NS )) = 0, (5.8)

with Lη̄ = ĝη̄ĝ−1. Using this map, therefore, we can only obtain a half -WZW-like formulation, in
which the NS–NS string field V has the ghost and picture numbers (1, 0) and (−1, 0), respectively,
and takes value in the medium Hilbert space introduced in Eq. (2.22): V ∈ Hm̄. If we identify the
string field through the map

π1ĝ(e∧�NS–NS) = Gη̄(V ), (5.9)

the pure-gauge string field Gη̄(V ) satisfies the asymmetric Maurer–Cartan equations

ηGη̄(V ) = 0, Lη̄(e∧Gη̄(V )) = 0, (5.10)

and thus is given by the one used in heterotic string field theory [19,22].6 The string fields in the other
sectors are simply identified in two formulations. We denote the string fields of the R–NS, NS–R, and
R–R sectors in the half-WZW-like formulation as �, �̄, and �, respectively, to distinguish which
formulation they belong to:

�R–NS = �, �NS–R = �̄, �R–R = �. (5.11)

The half-WZW-like formulation obtained in this way is the dual (in the sense that the roles of
Q and η̄ are exchanged) to that given in Ref. [12]. It is not the completely WZW-like formulation
defined using the (whole) large Hilbert space Hl , but we also construct here an action and a gauge
transformation to complete the story. First of all, we rewrite the action in Eq. (2.47) in the WZW-
like form by extending the NS–NS string field �NS–NS to �NS–NS(t) with t ∈ [0, 1] satisfying
�NS–NS(0) = 0 and �NS–NS(1) = �NS–NS. Using the cyclicity, we find that

S =
∫ 1

0
dt ωm(ξ̄∂t�NS–NS(t),π

(0,0)
1 L(e∧�NS–NS(t)))

+ 1

2
ωs(�R–NS, YQ�R–NS)+ 1

2
ωs(�NS–R, Ȳ Q�NS–R)+ 1

2
ωs(�R–R, YȲQ�R–R)

+
∞∑

r=0

1

(2r + 2)!
(
ωs
(
�R–NS,π(1,0)

1 b(e∧�NS–NS ∧�R–NS
∧2r+1)

)
+ ωs

(
�NS–R,π(0,1)

1 b(e∧�NS–NS ∧�NS–R
∧2r+1)

)
+ ωs

(
�R–R,π(1,1)

1 b(e∧�NS–NS ∧�R–R
∧2r+1)

))

+
∞∑

r1,r2=0

1

(2r1 + 2)!(2r2 + 2)!

×
[

1

2

(
ωs
(
�R–NS,π(1,0)

1 b(e∧�NS–NS ∧�R–NS
∧2r1+1 ∧�NS–R

2r2+2)
)

6 The role of η in heterotic string field theory is played here by η̄.
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+ ωs
(
�NS–R,π(0,1)

1 b(e∧�NS–NS ∧�R–NS
∧2r1+2 ∧�NS–R

2r2+1)
))

+ ωs
(
�R–R,π(1,1)

1 b(e∧�NS–NS ∧�R–NS
∧2r1+2 ∧�R–R

∧2r2+1)
)

+ ωs
(
�R–R,π(1,1)

1 b(e∧�NS–NS ∧�NS–R
∧2r1+2 ∧�R–R

∧2r2+1)
)]

+
∞∑

r1,r2,r3=0

[
1

(2r1 + 1)!(2r2 + 1)!(2r3 + 1)!

× ωs
(
�R–R ,π(1.1)

1 b(e∧�NS–NS ∧�R–NS
∧2r1+1 ∧�NS–R

∧2r2+1 ∧�R–R
∧2r3)

)
+ 1

(2r1 + 2)!(2r2 + 2)!(2r3 + 2)!

× ωs
(
�R–R,π(1,1)

1 b(e∧�NS–NS ∧�R–NS
∧2r1+2 ∧�NS–R

∧2r2+2 ∧�R–R
∧2r3+1)

)]
.

(5.12)

It is mapped to the half-WZW-like action through the identification in Eqs. (5.9) and (5.11) as

S =
∫ 1

0
dt ωm(Bt(V (t)), QGη̄(V (t)))

+ 1

2
ωs(�, YQ�)+ 1

2
ωs(�̄, Ȳ Q�̄)+ 1

2
ωs(�, YȲQ�)

+
∞∑

r=0

1

(2r + 2)!
(
ωs
(
�,π(1,0)

1 b̃(e∧Gη̄(V ) ∧�∧2r+1)
)

+ ωs
(
�̄,π(0,1)

1 b̃(e∧Gη̄(V ) ∧ �̄∧2r+1)
)

+ ωs
(
�,π(1,1)

1 b̃(e∧Gη̄(V ) ∧�∧2r+1)
))

+
∞∑

r1,r2=0

1

(2r1 + 2)!(2r2 + 2)!

×
[

1

2

(
ωs
(
�,π(1,0)

1 b̃(e∧Gη̄(V ) ∧�∧2r1+1 ∧ �̄2r2+2)
)

+ ωs
(
�̄,π(0,1)

1 b(e∧Gη̄(V ) ∧�∧2r1+2 ∧ �̄2r2+1)
))

+ ωs
(
�,π(1,1)

1 b̃(e∧Gη̄(V ) ∧�∧2r1+2 ∧�∧2r2+1)
)

+ ωs
(
�,π(1,1)

1 b̃(e∧Gη̄(V ) ∧ �̄∧2r1+2 ∧�∧2r2+1)
)]

+
∞∑

r1,r2,r3=0

[
1

(2r1 + 1)!(2r2 + 1)!(2r3 + 1)!

× ωs
(
�,π(1.1)

1 b̃(e∧Gη̄(V ) ∧�∧2r1+1 ∧ �̄∧2r2+1 ∧�∧2r3)
)
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+ 1

(2r1 + 2)!(2r2 + 2)!(2r3 + 2)!
× ωs

(
�,π(1,1)

1 b̃(e∧Gη̄(V ) ∧�∧2R1+2 ∧ �̄∧2R2+2 ∧�∧2R3+1)
)]

, (5.13)

where b̃ = ĝ(b − B̄(0, 1)|(0,0))ĝ−1. Here, we defined the associated fields as

Bd(V (t)) = π
(0,0)
1 ĝξ̄d(e

∧�NS–NS(t)), (5.14)

with d = ∂t or δ, by introducing one-coderivations ξ̄d derived from ξ̄d. We can show that they satisfy
the characteristic identities of the associated fields,

dGη̄(V (t)) = π
(0,0)
1 Lη̄(e∧Gη̄(V (t)) ∧ Bd(V (t))), (5.15a)

Dη̄(t)
(
∂tBδ(V (t))− δBt(V (t))

− π
(0,0)
1 Lη̄(e∧Gη̄(V (t)) ∧ Bt(V (t)) ∧ Bδ(V (t)))

) = 0. (5.15b)

The nilpotent linear operator Dη̄(t) was introduced as

Dη̄(t)ϕ = π
(0,0)
1 Lη̄

(
e∧Gη̄(V (t)) ∧ ϕ), (5.16)

for a general string field ϕ ∈ Hm̄.
The gauge transformation

π1δ(e
∧�) = π1L(e∧� ∧�) (5.17)

generated by the parameter � = �NS–NS +�R–NS +�NS–R +�R–R is also mapped to that in the
half-WZW-like formulation with the gauge parameters

� = −π(0,0)
1 ĝ(e∧�NS–NS ∧ ξ̄�NS–NS), λ = �R–NS, λ̄ = �NS–R, ρ = �R–R, (5.18)

as

Bδ(V ) = π
(0,0)
1 L̃

(
e∧Gη̄+�+�̄� ∧ (�− ξ̄λ− ξ̄ λ̄− ξ̄ρ)

)
, (5.19a)

δ� = −π(1,0)
1 L̃

(
e∧Gη̄+�+�̄� ∧ (η̄�− λ− λ̄− ρ)

)
, (5.19b)

δ�̄ = −π(0,1)
1 L̃

(
e∧Gη̄+�+�̄� ∧ (η̄�− λ− λ̄− ρ)

)
, (5.19c)

δ� = −π(1,1)
1 L̃

(
e∧Gη̄+�+�̄� ∧ (η̄�− λ− λ̄− ρ)

)
, (5.19d)

where

π1L̃ = π1ĝLĝ−1 = π1Q + Gb̃. (5.20)

There is also an extra gauge invariance in the half-WZW-like formulation under the transformation

Bδ(V ) = Dη̄�, (5.21)

because the identification in Eq. (5.9) is not one-to-one but

δGη̄(V ) = Dη̄Bδ(V ) = Dη̄Dη̄� = 0. (5.22)
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The identities in Eq. (5.15) are enough to guarantee that the action in Eq. (5.13) is invariant under
the gauge transformations in Eqs. (5.19) and (5.21) independently with the gauge invariance in the
homotopy algebraic formulation.

6. Summary and discussion

Extending the procedure for constructing the heterotic string field theory, we have constructed the
type II superstring field theory with a cyclic L∞ structure based on the homotopy algebraic formu-
lation. In addition to the closed string constraints, we impose extra constraints on the string fields in
the R–NS, NS–R, and R–R sectors. These constraints restrict the dependence of these string fields
on the bosonic ghost zero modes, and also make the field–anti-field decomposition in the BV quan-
tization obvious. Although the kinetic term of the R–R string field is non-local, it provides the same
propagator in the Siegel gauge as that naturally obtained in the first-quantized formulation. Repeat-
ing the procedure used in the construction of the heterotic string products, we have constructed the
string products for the type II superstring with the cyclic L∞ structure acting across all the NS–NS,
R–NS, NS–R, and R–R sectors. We can map the action and the gauge transformation to those in the
half-WZW-like formulation defined using the medium Hilbert space, although not in the completely
WZW-like formulation in the large Hilbert space.

A remaining interesting task is to construct a completely WZW-like action in the large Hilbert
space. In the language introduced in Ref. [12], the similarity transformation generated by the coho-
momorphism in Eq. (5.7) maps the small Hilbert space L∞ triplet (η, η̄; LNS,NS) to the asymmetric
(heterotic) one (η, Lη̄; Q), while the symmetric triplet (Lη, Lη̄; Q) is necessary to realize the complete
WZW-like formulation. In order to realize it and couple the NS–NS action in Ref. [33] to the string
fields in the other sectors, it seems to be necessary to find a construction which is an extension of the
symmetric construction proposed in Ref. [3]. Our method used in this paper, which was developed
in Ref. [22] for constructing the heterotic string field theory, cannot be extended that way so some
completely different approach seems to be needed.

Finally, it should be emphasized that the type II superstring field theory has the possibility of
providing a solid basis to the AdS/CFT correspondence which is still mysterious and must be proved.
We hope that the gauge-invariant action we have constructed will help us explore such an interesting
possibility.
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Appendix A. Expanding with respect to ghost zero modes

In this appendix we expand the string field with respect to the ghost zero modes. After summarizing
the Fock representation, an explicit expression is given for each sector.
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Appendix A.1. Fock representation of ghost zero modes

Appendix A.1.1. fermionic ghost
The fermionic ghost zero modes (b0, c0) satisfy the anti-commutation relation

{b0, c0} = 1, (A.1)

and the Hermite and BPZ conjugate relations

(b0)
† = b0, (c0)

† = c0, (A.2)

bpz(b0) = b0, bpz(c0) = −c0. (A.3)

Its Fock representation is two-dimensional space spanned by two states,

{| ↓ 〉, | ↑ 〉}, (A.4)

where

b0| ↓ 〉 = 0, | ↑ 〉 = c0| ↓ 〉. (A.5)

Its dual space is spanned by their BPZ conjugates

{〈 ↓ |, 〈 ↑ |}, (A.6)

with

〈 ↓ |b0 = 0, 〈 ↑ | = 〈 ↓ |c0. (A.7)

The inner-product matrix between two spaces is off-diagonal:

〈 ↑ | ↓ 〉 = 〈 ↓ |c0| ↓ 〉 = 〈 ↓ | ↑ 〉 = 1, 〈 ↑ | ↑ 〉 = 〈 ↓ | ↓ 〉 = 0. (A.8)

Since there are two pairs of fermionic ghost zero modes, (b0, c0) and (b̄0, c̄0), in the closed string
theory, their Fock representation is four-dimensional,

{| ↓↓ 〉, | ↑↓ 〉, | ↓↑ 〉, | ↑↑ 〉}, (A.9)

where | ↓↓ 〉 ∝ | ↓ 〉 ⊗ | ↓ 〉. One of the closed string constraints b−
0 | ↓↓ 〉 = 0 restricts it to the

two-dimensional space,

{| ↓↓ 〉, c+
0 | ↓↓ 〉}. (A.10)

We normalize the states so that

〈 ↓↓ |c+
0 c−

0 | ↓↓ 〉 = 1. (A.11)
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Appendix A.1.2. Bosonic ghost
There are also bosonic ghosts (βn, γn) in the R sector. They satisfy the commutation relation

[γn,βm] = δn+m,0, (A.12)

and the Hermite and BPZ conjugate relations7

(γn)
† = γ−n, (βn)

† = −β−n, (A.13)

bpz(γn) = e−iπ(n+ 1
2 )γ−n, bpz(βn) = e−iπ(n− 3

2 )β−n. (A.14)

In general it is known that they have infinitely many Fock representations defined on the ground
states with the picture number p as [34]

βn|p〉 = 0 for n > −p − 3

2
, (A.15)

γn|p〉 = 0 for n ≥ p + 3

2
. (A.16)

In string field theory we use two natural representations with p = −1/2 and −3/2, whose non-zero
mode parts are common Fock space obtained by acting (β−n, γ−n) with n > 0 on the ground state
|0〉〉 satisfying

βn|0〉〉 = γn|0〉〉 = 0, n > 0. (A.17)

Two representations with p = −1/2 and −3/2 are the direct product of this common non-zero mode
part and the zero mode parts obtained by acting γ0 and β0 on the ground states |0〉 and |0̃〉 defined
by

β0|0〉 = 0, γ0|0̃〉 = 0, (A.18)

respectively. The representations of the zero modes,

{|0〉, γ0|0〉, (γ0)
2|0〉, . . .} and {|0̃〉,β0|0̃〉, (β0)

2|0̃〉, . . .}, (A.19)

are infinite-dimensional and dual to each other with respect to the BPZ inner product induced by

〈0̃|0〉 = 〈0|0̃〉 = 1. (A.20)

In order to intertwine two representations, we can introduce the delta functions δ(γ0) and δ(β0) as
the Grassmann odd operators which satisfy

γ0δ(γ0) = δ(γ0)γ0 = 0, β0δ(β0) = δ(β0)β0 = 0, (A.21)

δ(β0)δ(γ0)δ(β0) = δ(β0), δ(γ0)δ(β0)δ(γ0) = δ(γ0), (A.22)

7 Fractional phases in Eq. (A.14) become a simple sign factor on the Fock states restricted by the GSO
projection.
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and are (graded) commutative with the operators other than (β0, γ0). Then, two ground states |0〉 and
|0̃〉 can be related as

|0〉 = δ(β0)|0̃〉, |0̃〉 = δ(γ0)|0〉. (A.23)

The inner products in Eq. (A.20) provide

〈0|δ(γ0)|0〉 = 〈0̃|δ(β0)|0̃〉 = 1. (A.24)

These apparently strange operators can be defined by

δ(γ0) = |0̃〉〈0̃|, δ(β0) = |0〉〈0|, (A.25)

if necessary, and are closely related to a geometric object, the integral form on the super-moduli
space of the super Riemann manifold [35,36].8

Appendix A.2. Zero-mode expansion of string fields

Appendix A.2.1. NS–NS sector
In the NS–NS sector, only the fermionic ghosts have zero modes (b0, c0) and (b̄0, c̄0). The NS–NS
string field�NS–NS constrained by Eq. (2.4) can be expanded with respect to these ghost zero modes
as

�NS–NS = φNS–NS − c+
0 ψNS–NS. (A.26)

From its Fock representation, we can separate the ghost zero-mode dependence as

|φNS–NS〉 = | ↓↓ 〉 ⊗ |φNS–NS〉〉, |ψNS–NS〉 = | ↓↓ 〉 ⊗ |ψNS–NS〉〉, (A.27)

where the state denoted as |φNS–NS〉〉 or |ψNS–NS〉〉 represents the non-zero mode part of the Fock
representation of the string field. This expansion holds independent of whether the ghost number of
�NS–NS is restricted or not.

Appendix A.2.2. R–NS sector
In the R–NS sector there are also the bosonic ghost zero modes (β0, γ0) in the left-moving sector.
The R–NS string field �R–NS restricted by the constraints in Eqs. (2.4) and (2.6) can be expanded
as

�R–NS = φR–NS − 1

2
(γ0 + 2c+

0 G)ψR–NS, (A.28)

in which the ghost zero-mode dependence can be separated as

|φR–NS〉 = | ↓↓ 〉 ⊗ |0〉 ⊗ |φR–NS〉〉, |ψR–NS〉 = | ↓↓ 〉 ⊗ |0〉 ⊗ |ψR–NS〉〉. (A.29)

The states denoted as |φR–NS〉〉 and |ψR–NS〉〉 are the string field after separating the ghost-zero modes.
The zero modes can be integrated out by using the inner product

〈0| ⊗ 〈↓↓ |c+
0 c−

0 δ(γ0)| ↓↓ 〉 ⊗ |0〉 = 1. (A.30)

8 The authors would like to thank Pietro Antonio Grassi, from whom they learned much about the integral
form [37–39].
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Appendix A.2.3. NS–R sector
In the NS–R sector the bosonic ghost zero modes (β̄0, γ̄0) are in the right-moving sector. The NS–R
string field �NS–R restricted by the constraints in Eqs. (2.4) and (2.6) can be expanded as

�NS–R = φNS–R − 1

2
(γ̄0 + 2c+

0 Ḡ)ψNS–R, (A.31)

and we can separate the zero-mode part as

|φNS–R〉 = | ↓↓ 〉 ⊗ |0〉 ⊗ |φNS–R〉〉, |ψNS–R〉 = | ↓↓ 〉 ⊗ |0〉 ⊗ |ψNS–R〉〉. (A.32)

The ghost zero modes can be integrated out using

〈0| ⊗ 〈 ↓↓ |c+
0 c−

0 δ(γ̄0)| ↓↓ 〉 ⊗ |0〉 = 1. (A.33)

Appendix A.2.4. R–R sector
In the R–R sector, there are the bosonic ghost zero modes (β0, γ0) and (β̄0, γ̄0) in both the left-moving
and right-moving sectors. The R–R string field restricted by the constraints in Eqs. (2.4) and (2.14)
can be expanded as

�R–R = φR–R − 1

2
(γ0Ḡ − γ̄0G + 2c+

0 GḠ)ψR–R, (A.34)

in which we can further separate the ghost zero modes as

|φR–R〉 = | ↓↓ 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |φR–R〉〉, |ψR–R〉 = | ↓↓ 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |ψR–R〉〉, (A.35)

with the string fields |φR–R〉〉 and |ψR–R〉〉 constructed only on the non-zero-mode Fock space. The
zero modes can be integrated out by using the non-trivial inner product

〈0| ⊗ 〈0| ⊗ 〈 ↓↓ |c+
0 c−

0 δ(γ0)δ(γ̄0)| ↓↓ 〉 ⊗ |0〉 ⊗ |0〉 = 1. (A.36)

In order to construct the Sen-type action, we have to introduce an extra string field with picture
number (−3/2, −3/2), whose zero-mode ground state | ↓↓ 〉⊗|0̃〉⊗|0̃〉 is related to | ↓↓ 〉⊗|0〉⊗|0〉
through the relations

| ↓↓ 〉 ⊗ |0〉 ⊗ |0〉 = δ(β̄0)δ(β0)| ↓↓ 〉 ⊗ |0̃〉 ⊗ |0̃〉, (A.37)

| ↓↓ 〉 ⊗ |0̃〉 ⊗ |0̃〉 = δ(γ0)δ(γ̄0)| ↓↓ 〉 ⊗ |0〉 ⊗ |0〉. (A.38)

Their BPZ conjugates are

〈0| ⊗ 〈0| ⊗ 〈 ↓↓ | = 〈0̃| ⊗ 〈0̃| ⊗ 〈 ↓↓ |δ(β̄0)δ(β0), (A.39)

〈0̃| ⊗ 〈0̃| ⊗ 〈 ↓↓ | = 〈0| ⊗ 〈0| ⊗ 〈 ↓↓ |δ(γ0)δ(γ̄0). (A.40)

The zero-mode integration can be performed by using the inner product

〈0̃| ⊗ 〈0̃| ⊗ 〈 ↓↓ |c+
0 c−

0 δ(β̄0)δ(β0)| ↓↓ 〉 ⊗ |0̃〉 ⊗ |0̃〉 = 1. (A.41)

The extra string field �̃R–R restricted by the constraint in Eq. (2.42) can be expanded with respect
to the ghost zero modes as

�̃R–R = φ̃R–R − c+
0 ψ̃R–R, (A.42)
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from which we can separate the ghost zero modes as

φ̃R–R = | ↓↓ 〉 ⊗ |0̃〉 ⊗ |0̃〉 ⊗ |φ̃R–R〉〉, (A.43a)

ψ̃R–R = | ↓↓ 〉 ⊗ |0̃〉 ⊗ |0̃〉 ⊗ |ψ̃R–R〉〉. (A.43b)

It can be shown that X X̄ �̃R–R obtained by changing the picture actually has the form of Eq. (2.15):

X X̄ �̃R–R = GḠ ˜̃
φR–R − 1

2
(γ0Ḡ − γ̄0G + 2c+

0 GḠ) ˜̃
ψR–R, (A.44)

where

˜̃
φR–R = | ↓↓ 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |φ̃R–R〉〉, (A.45a)

˜̃
ψR–R = | ↓↓ 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |ψ̃R–R〉〉. (A.45b)
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