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Abstract. Human interventions to control environmental and ecological system 
dynamics are efficiently described as impulsive interventions by which the sys-
tem state suddenly transits. Such interventions in applications are imperfect in 
the sense that the state transition is not exactly controllable and thus uncertain. 
Mathematical description of the imperfect impulsive interventions, despite rele-
vance in practical problems of environmental and ecological engineering, has not 
been addressed so far to the best of the authors’ knowledge. The objectives and 
contributions of this research are formulation and numerical computation of sin-
gle-species population dynamics controlled through imperfect impulsive inter-
ventions. We focus on a management problem of a waterfowl population as a 
model problem where the population dynamics follows a stochastic differential 
equation subject to impulsive harvesting. We show that the stationary probability 
density function of the population dynamics is governed by a 1-D Fokker-Planck 
equation with a special non-locality, which potentially becomes an obstacle in 
analyzing the equation. We demonstrate that the equation is analytically solvable 
under a simplified condition, which is validated through a Monte-Carlo simula-
tion result. We also demonstrate that a simple finite volume scheme can approx-
imate its solution in a stable, conservative, and super-convergent manner. 

Keywords: Imperfect Impulsive Intervention, Non-local Fokker-Planck Equa-
tion; Exponentially-fitted Finite Volume Scheme 

1 Introduction 

Human interventions are becoming more common in management of environmental 
and ecological system dynamics, such as extermination of invasive species [1] and har-
vesting regulation of biological resources [2]. Establishment of management policies 
of the system dynamics from the viewpoint of both cost-effectiveness and feasibility is 
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an indispensable topic. To this end, we incorporate the imperfect interventions into the 
management problems because the human interventions do not always progress just as 
planned. The imperfectness is caused by uncertainties with respect to the magnitude of 
interventions. 

The dynamics of environmental and ecological systems is described by stochastic 
differential equations (SDEs) [3], and management problems through human interven-
tions to the system dynamics are described as stochastic control problems [4,5]. Pesti-
cide applications for exterminating natural enemies of crops [6] and harvesting of bird 
population as a predator of fishery resources [7-8] are such examples. The impulse con-
trol approach provides a suitable analytical method if the intervention causes a discrete 
change in the system. Impulse control problems arise not only in environmental and 
ecological management problems but also in many other engineering research areas [9-
10]. The optimal intervention policies to control system dynamics have been mathe-
matically studied in detail from the viewpoint of the optimality equations [9]. However, 
much less attentions have been paid for behavior of the controlled system dynamics. 

A Fokker-Planck equation is a governing differential equation of a probability den-
sity function (PDF) of stochastic system dynamics [11]. Recently, Yaegashi et al. [12] 
approached this issue through derivation and analysis of a 1-D Fokker-Planck equation 
of the controlled single-species population dynamics, which is the governing differen-
tial equation of the PDF of the state variable. However, they assumed that human inter-
ventions are perfect and that there exists no uncertainty in the interventions, which is 
not consistent with the above-mentioned reality of environmental and ecological sys-
tems management. This motivates us to extend their approach to imperfect interven-
tions, which is a topic not addressed so far to the best of the authors’ knowledge. 

The objectives and contributions of this research are formulation and numerical com-
putation of single-species population dynamics controlled by imperfect impulsive in-
terventions. A particular emphasis is put on the fish-eating waterfowl management 
problem [7, 8]: a serious ecological problem in many countries of Europe, America, 
Asia, and New Zealand. This is an engineering problem with a relatively simple dy-
namics following an SDE subject to impulsive harvesting [8, 12]. We show that the 
stationary PDF of the population is governed by a 1-D Non-Local Fokker-Planck Equa-
tion (NL-FPE) with a special non-locality, which is potentially an obstacle in its anal-
ysis and computation. We demonstrate that the NL-FPE is analytically solvable in a 
simplified case. The solution is physically validated through a Monte-Carlo simulation. 
We develop an exponentially-fitted (local exact solution-based) finite volume scheme 
to discretize the NL-FPE in a stable, conservative, and super-convergent manner; the 
last one implies second-order convergence despite the equation has an advection term. 

2 Mathematical Model 

2.1 Impulse Control Model 

Controlled population dynamics. A long-term model stochastic impulse control prob-
lem for population management is reviewed [8]. The decision-maker managing the pop-
ulation dynamics can impulsively reduce the population through interventions, which 
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are carried out in a much shorter timescale than that of the dynamics. The population 
in a habitat at time 0t ≥  is denoted as 0tX ≥ , which is right continuous with left limits 
as in the conventional impulse control models [10]. The population dynamics, namely 
temporal evolution of the process ( ) 0t t

X
≥

, is assumed to be governed by the Itô’s SDE 
subject to interventions: 

 
( ) 1d d d ,  

i i

t t t i i

i

X X t B t
X Xτ τ

µ σ τ τ
ζ

−

+= + ≤ <
 = −

 (1) 

with the initial population 0 0X x− = ≥ , where 0µ >  is the deterministic growth rate, 
0σ >  is a volatility with 22µ σ> , and tB  is the 1-D standard Brownian motion on a 

usual complete probability space [3]. The second line of (1) is the human interventions, 
where each iτ  ( 0,1,2,i = ⋅⋅⋅ , 0 0τ = ) is the stopping time adapted to a natural filtration 
generated by the Brownian motion and represents the time at which the population is 
harvested, and iζ  ( 0,1,2,i = ⋅⋅⋅ , 0 0ζ = ) is the magnitude of harvesting at iτ . 
 Human interventions ( ) 0,1,2,...

,i i i
η τ ζ

=
=  to control the population dynamics (1), 

which is hereafter simply referred to as the policy, are determined so that a performance 
index considering both costs and benefits of the population management is minimized. 
The performance index ( );J J x η=  is a functional of the process ( ) 0t t

X
≥

 and a policy 
η . The performance index in this model is [7-8] 

 ( ) ( ) ( )
0

1
; E d is M m

s s i
i

J x e uX dX s e Kδτδη ζ
∞∞ −−

=

 = − + +  
∑∫ , (2) 

where E  is the expectation, 0δ >  is a sufficiently large discount rate as an inverse of 
the time-scale of the decision-making, 0u > , 0d > , 0 1M< <  and 1m >  are con-
stants. The first term in the right-hand side of (2) is the discounted sum of the utility 
( M

suX− ) and disutility ( m
sdX ) that the population may provide during the management 

period. Notice that the disutility is considered to be a non-negative value because we 
will consider a minimization problem. As explained in Yaegashi et al. [7], this term 
gives a simplest lumped representation of the sum of the utility and disutility. The sum 

M m
s suX dX− +  is convex and unimodal, and thus takes a global minimum value with 

some positive 0sX > . Its minimizer is considered as a desired state of the population 
to be achieved through human interventions. The second term of (2) is the discounted 
sum of the cost of each harvesting, where 
 ( ) ( )1 0  0K k kζ ζ ζ= + > . (3) 
Here, 1 0k >  is the proportional cost and 0 0k >  is the fixed cost. 

Following the standard methodology for impulse control problems [13, 14], the fol-
lowing threshold type strategy turns out to be optimal: 

(Optimal policy) 
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There exists the two thresholds x  and x  ( 0 x x< < ) whose values depend on values 
of the model parameters. At each time 0t ≥ , if tX x− < , then no intervention is taken 
If tX x− ≥ , then the intervention is immediately taken and tX −  is reduced to x . 

In this way, the optimal policy is characterized with the thresholds x  and x , and the 
population is confined in a compact interval [ ]0, x  and is harvested only when the pop-
ulation hits the upper threshold x . 

Imperfect interventions. A drawback of the above-presented model is that the human 
interventions are achieved exactly in the sense that paying the cost ( )K ζ  reduces the 
population by the amount of ζ . However, it is plausible to assume that such an exact 
intervention is not realized in practice, but there exists uncertainty between the cost and 
realization. Mathematically, this means that paying the cost ( )K ζ  reduces the popu-
lation, but the effectively reduced population is Zζ  not ζ , where 0Z >  is a stochas-
tic variable that is not predictable for the decision-maker. This means that the popula-
tion truly reduced at iτ  is ( ) ix x Z−  because of the imperfectness of interventions, 
which equals to the perfect model only if 1iZ = . In what follows, we call an optimal 
control with the uncertainty iZ  as an imperfect intervention. 

Hereafter, for the sake of brevity of descriptions, we set the amount of reduced pop-
ulation at iτ  by the imperfect optimal control as ix Z−  with an abuse of notation, 
again it equals x x−  if iZ x= . We assume that each iZ  ( 0,1,2,...i = ) is possibly re-
lated to x , and is i.i.d. Furthermore, each iZ  is assumed to be generated by a PDF 

( )q q z=  of z Z=  supported on [ ],a b  such that 0 ix Z x< − < . Fig. 1 plots a sample 

path of the controlled process ( ) 0t t
X

≥
 by an imperfect intervention. Note that the im-

pulsive intervention itself is deterministic here, and is different from the unpredictable 
ones that reset the process randomly [15]. 

 
Fig. 1 A sample path of the controlled population dynamics (blue), the upper threshold x (red), 
and the uncertainty range [ ],a b  (pink). 
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2.2 Non-local Fokker-Planck Equation 

Derivation. The PDF of the controlled process ( ) 0t t
X

≥
 under imperfect interventions 

is denoted as ( )p y  for 0 y x≤ ≤ , where y  represents the current value of the popu-
lation. In general, a Fokker-Planck equation governs a PDF [11], and the equation is 
given as a conservative elliptic or parabolic differential equation subject to appropriate 
initial and/or boundary conditions. These equations are local like the conventional heat 
and wave equations. However, Yaegashi et al. [12] theoretically showed for the perfect 
impulse control model that the Fokker-Planck equation has a non-local term connecting 
the probability flux at y x=  and that at y x= , based on the physical consideration 
that the process is immediately and irreversibly transported y x=  from to y x= . In 
this research, we extend their approach to the model with imperfect interventions.  

Now, we derive the NL-FPE based on a physical consideration. Since our focus in 
what follows is not the impulse control but rather the controlled population dynamics, 
we set 1x =  without any loss of generality. Set [ ]0,1Ω = . The PDF p  is non-negative 
and defined in Ω , and satisfies the conservation condition 
 ( )d 1p y y

Ω
=∫ . (4) 

The flux ( )F F y=  is assumed to belong to ( )ˆC Ω  with [ )ˆ 0,1Ω =  and is defined as 

 ( )
2 2d

d 2
yF y yp p

y
σµ
 

= −  
 

. (5) 

Set the left limit of F  at 1y =  as 
 ( )

1 0
lim

y
F F y

→ −
= . (6) 

As in Yaegashi et al. [12], the following boundary conditions are specified: 
 ( )0 0F =  and ( )1 0p = . (7) 

The first boundary condition is the usual one meaning that the process ( ) 0t t
X

≥
 is non-

negative and never approaches the boundary 0y =  if it has a positive initial condition. 
The second one means that the process ( ) 0t t

X
≥

 is immediately absorbed at the bound-
ary 1y = , after that it is irreversibly transported to somewhere inside Ω  according to 
the uncertainty Z .  

What we have to find is the probabilistic relationship between the process ( ) 0t t
X

≥
 

just before and after each intervention. From a physical consideration, the flux F  is 
distributed in the interval [ ],a b ⊂⊂Ω  according to the law q  as 

 ( ) ( )S y Fq y= , a y b≤ ≤ , (8) 

where ( )S y  is the source of probability increase per unit length at y . In this way, the 
total distributed probability from the boundary 1y =  to the inside Ω  is evaluated as 

 ( ) ( ) ( )d d d
b b b

a a a
S y y Fq y y F q y y F= = =∫ ∫ ∫ , (9) 
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meaning that this non-local treatment of the transport of probability is conservative. 

Note that F  is a constant and ( )d 1
b

a
q y y =∫ . 

Considering the non-local relationship (8) combined with the standard derivation 
procedure for the other part of the domain, we get the complete description of the NL-
FPE as a non-local two-point boundary value problem: 

 [ ] ( ),
d
d a b
F q y F
y

χ=  inside Ω , subject to (4) and (7). (10) 

Here, [ ], 1a bχ =  if [ ],y a b∈  and [ ], 0a bχ =  otherwise. This kind of non-locality through 

the boundary flux is not common in the conventional non-local diffusive transport prob-
lems. Our goal is to solve the NL-FPE, which is achieved exactly for a simplified case, 
and is carried out numerically for general cases.  

The Exact Solution. For analytical tractability, we consider the uniform distribution 

 ( ) ( )1  q z a z b
b a

= ≤ ≤
−

. (11) 

We briefly explain the derivation procedure of p  in this case. Set 2 0r µ σ= − >  and 
2 / 2D σ= . Firstly, the NL-FPE (10) is solved for 0 y a≤ <  as 

 ( ) 1
mp y C y=  (12) 

with /m r D=  and an unknown constant 1C . Secondly, in a y b≤ ≤ , (10) is solved as 

 ( ) ( ) ( ) ( )
1

2
m aF Fp y C y y

r D b a r b a
−= − +

+ − −
 (13) 

with an unknown constant 2C . Thirdly, (10) is solved in 1b y< <  as 

 ( ) 1
3

m Fp y C y y
r D

−= +
+

 (14) 

with an unknown constant 3C . 
 We have four unknown constants F , 1C , 2C , and 3C , meaning that we have to im-
pose four conditions to completely determine them. We explore a continuous solution 
p  over the domain Ω . Then, we impose the three conditions 

 ( ) ( )0 0p a p a− = + , ( ) ( )0 0p b p b− = + , ( )1 0p =  (15) 
and the remaining one is the conservation condition (4). The four conditions are inde-
pendent with each other, and give a unique tetrad 1 2 3( , , , )F C C C  whose representations 
are not presented here because of page limitations. Consequently, we get 

 ( )

( )

( ) ( ) ( ) ( )

( ) ( )

1

1
2

1

                                                   0

 

                                  1

m

m

m

C y y a

aF Fp y C y y a y b
r D b a r b a

F y y b y
r D

−

−


 ≤ <



= − + ≤ ≤ + − −

 − < ≤
 +

 (16) 
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and 

 ( )

( )

( )

( )

0           0

 

          1

y a
y aF y F a y b
b a
F b y

≤ <


−= ≤ ≤ −
 < <

. (17) 

By uniqueness of the construction method of the PDF p , we get the proposition below. 

Proposition 1. The NL-FPE (10) admits a unique continuous solution complying with 
the conservation condition (4). In addition, the flux F  is continuous inside Ω . 

The exact solution has the regularity [ ]( ) ( ) ( ) ( )( )20,1 0, , ,1C C a a b b   . Notice that 
the PDF of the perfect model [12] is derived from (16) under the limit 0b a→ + , 
meaning that the present model considering the uncertainty is truly a generalization of 
the previous one. This solution is validated in the next section through a comparison 
with numerical solutions generated by a Monte-Carlo method and a finite volume 
scheme. 

3 Numerical Computation 

3.1 Finite Volume Scheme 

Discretization. The finite volume scheme developed here is a generalization of the 
previous one [12]. The discretization starts from a time-dependent NL-FPE 

 [ ] ( ),a b
p F q y F
t y

χ∂ ∂
+ =

∂ ∂
 for 0t >  and inside Ω , subject to (7), (18) 

integrated from an initial condition satisfying the conservation condition (4) and iden-
tifies the stationary PDF p  with a steady solution to (18), which is numerically ob-
tained with a sufficiently large 0t >  in (18).  

The domain [ ]0,1Ω =  is divided into N  cells and  nodes iy  as 
 0 1 10 ... .. ... 1L R N Ny y y y y y−= < < < < < < < < =   (19) 
so that Ly a=  and Ry b= . The nodes are located at the center of cells except at the 
boundaries 0,1y = . For the sake of brevity, we assume the uniform discretization 
where the length between the nodes y∆  are uniform: 1 /y N∆ = . The time increment 
for temporal integration is denoted as t∆ . The PDF p  approximated at the node i  and 
the time step n  is denoted as n

ip . For the sake of brevity, set 1 0y− = . 
The semi-discretized (18) in the cell i  (1 1i N≤ ≤ − ) is denoted as 

 1 1
2 2

d 1
d

i
ii i

p F F S
t x + −

 
= − − + ∆  

, (20) 

where iS  corresponds to the discretized S  of (9) that is non-negative for L i R≤ ≤  
and equals 0 otherwise. Each term of (20) is discretized as follows. 

1N +
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Following the fitting technique that evaluates a numerical flux from exact solutions 
to auxiliary two-point boundary value problems [12, 16], the numerical flux 1

2
i

F
+

 is 

evaluated through exponential functions as 

 
Pe

1 1 1 1 1Pe Pe
2 2 2

1
1 1i i i i i ii i i

eF V p V p p p
e e

α β+ +
+ + +
= − + = +

− −
 (21) 

with 

 1
1 1
2 2

Pe
i i

V yε −

+ +
= ∆ , ( )2 1

1
2 2

i i

i

y yV µ σ +

+

+ = −  
 

, 
2

1
1
2 2

i i

i

y yDε +

+

+ =  
 

. (22) 

The source iS  is constructed so that the discretized system is conservative. Set 
K R L= −  and discretize the domain [ ],a b  of q  as 
 0 1 1... K Ka z z z z b−= < < < < = . (23) 
Set 1/2 1( ) / 2j j jz z z+ += + and 

 ( )1/2

0
0 d

z

z
Q q z z= ∫ , ( )1/2

1/2

dj

j

z

j z
Q q z z+

−

= ∫  (1 1j K≤ ≤ − ), ( )
1/2

dK

K

z

K z
Q q z z

−

= ∫ , (24) 

which are exactly or numerically evaluated so that 

 
0

1
K

j
j

Q
=

=∑ . (25) 

Then, iS  is evaluated as 
 1

2
j L jN

S F Q+
−

=  ( 0 j K≤ ≤ ). (26) 

Substituting (21) and (26) into (20) with an application of a fully-explicit discretization 
to the right-hand side yields 

 ( )( )
1

1 1 1 1
1n n

n n n n ni i
i i i i i i i i i

p p p p p p S
t y

α β α β
+

+ − − −

−
= − + − + +

∆ ∆
. (27) 

Boundary conditions have to be specified to complete the discretization. At the bound-
ary 0y =  ( 0i = ), we solve 

 ( )
1

0 0
0 0 0 1

2n n
n np p p p

t y
α β

+ −
= − +

∆ ∆
, (28) 

which is (27) with the boundary condition 1
2

0F
−
= . At the boundary 1y =  ( i N= ), 

 0n
Np =  (29) 

is directly specified. The system of linear equations containing (27), (28), and (29) is 
temporally evolved until the convergence condition 
 1max n n

i ii
p p ω+ − <   (30) 

is satisfied for some 1n ≥ , where 1210ω −=  in this paper. Then, 1n
ip +  ( 0 i N≤ ≤ ) is 

taken as a numerical approximation to the NL-FPE (10). 
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Mathematical Properties. The present finite volume scheme has the several important 
mathematical properties. Firstly, the scheme is conservative in a discrete sense. 
Namely, if the initial condition satisfies 

 ( )
1

0 0 0
0

1

1 1
2

N

N i
i

y p p p
−

=

 ∆ + + = 
 

∑ , (31) 

then 

 ( )
1

0
1

1 1
2

N
n n n

N i
i

y p p p
−

=

 ∆ + + = 
 

∑  ( 1n ≥ ), (32) 

implying that numerical solutions are discrete analogue of the PDF. In addition, non-
negativity of the numerical solution is satisfied for sufficiently small t∆  [12], meaning 
that the scheme is stable. This stability is owing to the flux discretization (21). The 
scheme is simple and easy to implement, and furthermore conservative and stable as 
reviewed above. A drawback is that it may have at most first-order to second-order 
accurate, namely the error would decrease only linearly with respect to y∆  in the worst 
case. This drawback can be efficiently mitigated through the modern dual-meshing 
technique [17], which is currently undergoing by the authors. Notice that uniqueness of 
numerical solutions at each computation is clearly guaranteed because of using a fully-
explicit time discretization. An implicit discretization of our NL-FPE is also possible, 
but may be computationally inefficient because the coefficient matrix is dense. 

3.2 Numerical Tests 

The exact solution with a uniform distribution (11) is compared with numerical solu-
tions generated with a standard Monte-Carlo method and the finite volume scheme. The 
Monte-Carlo method is based on a standard Euler-Maruyama discretization of the 
SDE(1) with the random numbers generated with Mersenne twisters. The total number 
of the sample points is 88 10×  and the time increment for discretization of the SDE is 
0.0001. Unless otherwise specified, the computational resolution of the finite volume 
scheme is set as 1 / 600y∆ =  and 0.00005t∆ =  with 600N = , / 3L N=  ( 1 / 3a = ), 
and 2 / 3R N=  ( 2 / 3b = ). Considering the waterfowl management problem [7], the 
model parameters of the SDE are set as 0.17µ =  (1/year) and 0.20σ =  (1/year1/2). 
These computational conditions are used unless otherwise specified. The initial condi-
tion is a delta distribution concentrated at 50y . 

Fig. 2 demonstrates that the exact solution (16) and the two computational results 
agree well with each other, suggesting physical validity of the exact solution as a rea-
sonable solution to the NL-FPE (10) and reasonable accuracy of the finite volume 
scheme. The convergence rate between the exact solution and numerical solutions with 
the scheme is then evaluated for different values of y∆ . A four times finer temporal 
resolution was used for 1,200N =  to maintain numerical stability. The computational 
results of the error are summarized in Table 1, suggesting second-order convergence 
of the scheme despite the scheme is linear and the NL-FPE (10) has an advection term 
that often provides a source of first-order error. The second-order convergence is 
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checked from the quadratic decrease of the maximum nodal errors. This kind of attrac-
tive convergence property is called super-convergence [17], and the present scheme is 
thus super-convergent. The largest deviations between the exact and numerical solu-
tions occur near the points ,y a b=  where the regularity of p  decreases. 

Finally, the scheme is applied to an advanced problem with 
( ) ( ) ( ) ( )( )/q z b a p z a b a= − − − , which leads to a nonlinear NL-FPE where the PDF 

p  modulates the uncertainty itself. This problem can be considered as the simplest 
model problem of a feed-back learning of the uncertainty. Theoretically, more realistic 
nonlinearity would be possible, but they will be addressed in our future work and the 
present numerical computation serves as its starting point. Fig. 3 shows the numerical 
solutions to the previous uniform q  and that with the present p -dependent one, 
demonstrating that the PDF of the latter clearly has a more concentrated profile. The 
conservation property (32) is correctly satisfied in this case despite its non-linearity and 
non-locality. Notice that this is a non-linear case that Monte-Carlo methods potentially 
become less efficient. 

 
Fig. 2 Comparison of the exact solution (red line), a numerical solution generated by the Monte-
Carlo method (black circles), and a numerical solution by the finite volume scheme (blue line). 
 

Table 1 The maximum nodal error of the finite volume scheme. 

N  Error 
75 3.584 E-03 

150 8.988 E-04 
300 2.249 E-04 
600 5.623 E-05 

1,200 1.408 E-05 
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Fig. 3 Numerical solutions with the linear (red) and non-linear problems (blue). 

4 Conclusions 

The NL-FPE was derived for the first time and its analytical solution was found under 
a simplified condition. An explicit exponentially-fitted finite volume scheme was then 
presented to discretize the NL-FPE in a stable and conservative manner. The scheme 
successfully generated numerical solutions converging super-linearly toward the exact 
solution, demonstrating its satisfactory computational performance. Overall, we could 
efficiently and stably solve the non-local differential equation related to the impulse 
control by utilizing the sophisticated finite volume scheme. 

A theoretical limitation of this work is that the underlying stochastic process is linear 
with respect to the state variable. This simplification is due to considering a tractable 
problem as a starting point of the present modeling framework of imperfect impulsive 
interventions, and the limitation can be abandoned without technical difficulties. More 
complex SDEs, like those having several state variables and/or jump noises, can be 
handled as well [18]. Loosely speaking, this extension can be achieved through for-
mally adding appropriate terms to SDEs and NL-FPEs. The presented finite volume 
scheme then has to be extended so that the increased complexity of the corresponding 
NL-FPE is reasonably dealt with. Currently, we are considering an application of the 
present mathematical framework to ecosystem management involving the population 
of waterfowl and small migratory fish as its prey. This non-linear and multi-dimen-
sional problem is theoretically of interest as well as practically of importance in fisher-
ies resource management [19]. Deeper mathematical analysis of NL-FPEs, such as their 
solvability and regularity, is also currently undergoing. 
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