<table>
<thead>
<tr>
<th>Title</th>
<th>Development and application of a 3He Neutron Spin Filter at J-PARC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation</td>
<td>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2020), 977</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2020-10-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/254191</td>
</tr>
<tr>
<td>Right</td>
<td>© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Textversion</td>
<td>KYOTO UNIVERSITY</td>
</tr>
</tbody>
</table>
Development and application of a 3He Neutron Spin Filter at J-PARC

T. Okudairaa,*, T. Okub,h, T. Inoc, H. Hayashidad, H. Kirad, K. Sakaia, K. Hiroia, S. Takahashib,a, K. Aizawae, H. Endoe, S. Endod,i, M. Hinog, K. Hirotaf, T. Hondag, K. Ikedac, K. Kakuraid, W. Kambarae, M. Kitaguchif,h, T. Odag, H. Ohshitac, T. Otomoc,b, H.M. Shimizuf, T. Shinozakaa, J. Suzukid, T. Yamamotof

aJ-PARC Center, Japan Atomic Energy Agency, 2-1 Shirakata, Tokai 319-1195, Japan
bGraduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
cInstitute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
dNeutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan
eNeutron Science and Engineering Center, Japan Atomic Energy Agency, 2-1 Shirane, Tokai 319-1195, Japan
fDepartment of Physics, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
gInstitute for Integrated Radiation and Nuclear Science, Kyoto University, KUmatari, Osaka 590-0494, Japan
hKobayashi-Maskawa Institute, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan

A R T I C L E I N F O

Keywords:
Pulsed neutron beam
Neutron polarization device

A B S T R A C T

We are developing a neutron polarizer with polarized 3He gas, referred to as a 3He spin filter, based on the Spin Exchange Optical Pumping (SEOP) for polarized neutron scattering experiments at Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC). A 3He gas-filling station was constructed at J-PARC, and several 3He cells with long spin relaxation times have been fabricated using the gas-filling station. A laboratory has been prepared in the MLF beam hall for polarizing 3He cells, and compact pumping systems with laser powers of 30 W and 110 W, which can be installed onto a neutron beamline, have been developed. A 3He polarization of 85% was achieved at a neutron beamline by using the pumping system with the 110 W laser. Recently, the first user experiment utilizing the 3He spin filter was conducted, and there have been several more since then. The development and utilization of 3He spin filters at MLF of J-PARC are reported.

1. Introduction

3He spin filter is a neutron polarization device in which polarized 3He gas is enclosed in a special glass cell that does not contain boron. 3He spin filters are widely used to polarize neutrons and analyze neutron spins in neutron scattering experiments because of its capabilities to polarize neutrons in broad energy range and cover wide solid angle [1–6]. Since 3He nuclei have a strongly spin-dependent neutron absorption cross section, neutrons passing through polarized 3He gas are polarized. 3He nuclei are polarized using laser techniques known as Spin Exchange Optical Pumping (SEOP) [7] or Metastability Optical Pumping (MEOP) [8]. In SEOP, 3He gas, N_2 gas, and pure rubidium or rubidium and potassium are encapsulated within a glass cell. The Rb or Rb-K cells are heated to around 170 °C or 220 °C, respectively, to evaporate the alkali metals, and circularly polarized laser light irradiates the cell. Unpaired electrons of alkali atoms are polarized by optical pumping, and the spins of the electrons are exchanged with those of 3He nuclei by hyperfine interaction. A diode laser array with output power on the order of 100 W and a wavelength of 794.7 nm, which corresponds to the D$_1$ absorption line of Rb, is typically employed. The 3He polarization can be improved by using Rb-K compared to the pure Rb case because of the high optical pumping efficiency of Rub-K [9]. When the laser irradiation is stopped, the 3He polarization exponentially decays due to non-uniformity of the surrounding magnetic field, collisions of 3He atom with each other, and collisions of 3He atoms with impurities in the glass cell and a glass wall.

Ex-situ and in-situ methods are used for 3He spin filters with SEOP. In the ex-situ method, a 3He cell is polarized in a pumping station away from a neutron beamline, transferred in a magnetic cavity to keep the 3He polarization, and installed to a neutron beamline. Since the 3He polarization decays during a neutron experiment, the 3He cell needs to be periodically exchanged with another polarized 3He cell for long-running experiments. However, the advantage of using ex-situ method is that it can be used for a neutron beamline with limited space, and the installation of the instrument is straightforward. This is beneficial at spallation neutron sources, which generally have small experimental spaces. As there are many experiments with short...
measuring time at intense neutron beam facilities, those may be done without re-polarizing the \(^3\)He cell. In order to keep high \(^3\)He polarization during the experiment, a long relaxation time of \(^3\)He polarization is required, which makes details of the fabrication process of the \(^3\)He cells important.

On the other hand, in the in-situ method, the \(^3\)He cell is installed along with a laser system onto a neutron beamline. This method is suitable for longer experiments because a stable \(^3\)He polarization can be maintained for weeks. However, a larger space compared to the space required for the ex-situ method is needed, and the safety regulations involving the use of high powered lasers on a neutron beamline must be considered. For details of the technique for optically polarized \(^3\)He and its application, please see a reviewed paper Ref. [10].

At MLF of J-PARC, world class intense pulsed neutron beams are provided to 23 neutron beamlines, and many neutron scattering experiments are conducted [11]. In Japan, the fundamental development of \(^3\)He polarization technique based on SEOP began in the 1990s [12], and further development is still ongoing by Ino et al. at High Energy Accelerator Research Organization [13-17]. An in-situ SEOP system dedicated for a polarized neutron spectrometer POLANO [11,18] at beamline No. 23 has been developed, and now under commissioning [15,16]. In order to promote user experiments using \(^3\)He spin filters on the other beamlines at MLF, we are carrying out the development of \(^3\)He spin filters with both in-situ and ex-situ methods for their versatile uses on site at J-PARC. Experiments demonstrating their use have been performed on several beamlines. User experiments and fabrication of \(^3\)He cells have recently begun. In this paper, we report development and utilization of \(^3\)He spin filters at MLF of J-PARC.

2. Gas-filling station

As mentioned in the previous section, a clean gas-filling station and fabrication process without impurities are important for a \(^3\)He cell with long relaxation time. The first gas-filling station was constructed in 2018 at J-PARC. The schematic diagram of the gas-filling station is shown in Fig. 1. All the gas lines are wrapped with heaters for vacuum bake-out. An ultimate pressure of the gas-filling station was \(5 \times 10^{-8}\) Pa after baking at 150 °C for a few days.

Boron-free aluminosilicate GE180 glass is widely used for the glass cell of a \(^3\)He spin filter due to a small wall relaxation effect and low permeability of \(^3\)He [4,19-21]. Our fabrication process of \(^3\)He cells is similar to those of NIST, JCNS, and ORNL. A cylindrical-shaped glass cell made of GE180 is attached to a glassware made of Pyrex glass, which is referred to as “string”, (Fig. 2). The glass cell and the string are rinsed with neutral detergent, pure water, acetone, and alcohol before connecting to the gas-filling station. Rubidium and potassium ampoules are also rinsed with acetone and alcohol. After connecting the string to the gas-filling station, the ampoules are put in the string without breaking the ampoules, and the string is sealed off with a gas torch. The ampoules are broken in a nitrogen atmosphere by dropping hammers made of an iron rod covered with glass. The string and the glass cell are baked out for a week at 200 °C and 400 °C, respectively. In the next step, rubidium and potassium are distilled to retorts at 200 °C and 220 °C, respectively, by using the heaters. After that, the glass tube parts containing ampoules and hammers are pulled off with a gas torch. The glass cell and the string are baked out again for one week, and then the alkali metals in the retorts are distilled to the glass cell. Finally, \(^3\)He and \(N_2\) gases purified using GC50 getters (SAES Getters) are filled to the glass cell, and the glass cell is sealed off by placing a gas torch at the Pyrex part. When encapsulating the gases above 1 atm, the glass cell is submerged in liquid nitrogen to keep the pressure inside the glass cell below 1 atm while sealing. So far, nine \(^3\)He cells have been fabricated with \(^3\)He pressures of 3.1 atm using the gas-filling station at J-PARC, and four of them have found to have spin relaxation times over 150 hours. A list of these \(^3\)He cells and a photograph of Sekichiku cell are presented in Table 1 and Fig. 3, respectively.

![Fig. 1. The schematic diagram of the gas-filling station to fabricate \(^3\)He cells.](image1)

![Fig. 2. The glassware used to fabricate a \(^3\)He cell. The ampoules are put in the parts labeled as K ampoule and Rb ampoule in the figure. The glass cell made of GE180 is attached to the string made of Pyrex at the top of the glass cell. The string is connected to the pumping station using a Swagelok connector at the metal tube.](image2)

![Fig. 3. \(^3\)He cell (Sekichiku) fabricated at J-PARC.](image3)

<table>
<thead>
<tr>
<th>Name</th>
<th>Dimensions [mm]</th>
<th>(^3)He pressure [atm]</th>
<th>(T_1) [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chidori</td>
<td>(\phi 45 \times 75)</td>
<td>3.1</td>
<td>201</td>
</tr>
<tr>
<td>Karigane</td>
<td>(\phi 45 \times 75)</td>
<td>3.1</td>
<td>180</td>
</tr>
<tr>
<td>Sekichiku</td>
<td>(\phi 60 \times 60)</td>
<td>3.1</td>
<td>175</td>
</tr>
<tr>
<td>Hanabishi</td>
<td>(\phi 40 \times 90)</td>
<td>3.1</td>
<td>165</td>
</tr>
</tbody>
</table>

Table 1: List of \(^3\)He cells using rubidium and potassium with long relaxation times at J-PARC.
3. NMR and pumping systems

3.1. 3He coil and NMR system

To keep the 3He polarization, a coil with double magnetic shields, referred to as B_{0} coil, is mainly used for the laser pumping [22]. Fig. 4 shows a cross-sectional view of the B_{0} coil and a photograph of its interior. The coil is consisting of a main solenoid, two compensation coils, and two side coils. The dimensions of the B_{0} coil are 29.2 cm in diameter and 36.8 cm in length. The B_{0} coil was designed using the finite element method to make the field gradient less than 5×10^{-4} T/cm in a cylindrical region with a diameter of 10 cm and a length of 10 cm at the center of the coil. A magnetic field of 1.5 mT is produced to keep the 3He polarization. Frequency-sweep Adiabatic Fast Passage (AFP)-NMR was employed to flip the 3He spin as well as to evaluate the 3He polarization [17]. A cosine winding is used as a drive coil to apply an oscillating magnetic field to the 3He cell. The 3He precession signal is detected by a pick-up coil located under the 3He cell. The coils were installed inside the B_{0} coil as shown in Fig. 4. The polarization loss due to spin flip was measured as 3.8×10^{-5} per flip. The 3He cell is heated by electrical heating using a rubber heater with a power of 100 W wound around the drive coil during optical pumping.

3.2. Pumping station at MLF

We have set up a laboratory in the MLF beam hall to polarize 3He cells. 3He cells polarized at the laboratory can be provided to neutron beamlines in MLF. A pumping system using an air-cooling laser module has been installed in the laboratory (Fig. 5). The dimensions of the pumping system are 60 cm × 60 cm × 40 cm, and it is used for both in-situ and ex-situ methods. Using a volume Bragg grating (VBG) element in the laser module, the center wavelength of the laser is tuned to 794.7 nm with a line width of 0.2 nm in Full Width at Half Maximum (FWHM). The laser light is circularly polarized using a quarter-wavelength plate installed in the module. The polarization light from the laser module is reflected by dielectric multi-layer coated quartz mirrors and irradiates the 3He cell. The temperature at the cell surface is kept about 170 °C for a pure Rb cell and about 210 °C for a cell with rubidium and potassium during optical pumping. A 3He polarization of ~70% is achieved with this laser system. A polarization measurement system using Electron Paramagnetic Resonance (EPR) [24] is also equipped.

3.3. Pumping system using a fiber laser

In order to achieve higher 3He polarization, we have developed a separate pumping system using a fiber laser made by DILAS Diode Laser, Inc. (M1F4S22-794.7-[0,6]-100C-IS9), as shown in Fig. 6. The pumping system using this fiber laser has been constructed at another laboratory in the J-PARC research building, about 30 m away from the MLF experimental hall. This fiber laser is an air-cooled diode laser with a maximum output power of 110 W. The center wavelength is tuned to 794.7 nm with a line width of 0.4 nm in FWHM using a VBG element. An optical fiber with an internal diameter of 400 μm is connected to the laser shield box. An unpolarized laser beam from the fiber exit is split into two paths by a polarized beam splitter. The laser beams are circularly polarized with quarter-wavelength plates. The polarized laser beams irradiate both sides of a 3He cell. The degree of circular polarization in each path was measured using a polarimeter as more than 98% at the 3He cell position. The dimensions of the pumping system are 70 cm × 70 cm × 40 cm, and it can also be used for the in-situ method. The pumping system is currently used only for the ex-situ method, and will be installed in the laboratory at MLF in the near future after following a safety review.

4. Performance evaluation of the 3He spin filter

We conducted an experiment at the NOBORU beamline [11,25], which is a test neutron beamline for general purpose, to evaluate the 3He polarization for the Chidori cell, which has the longest T_{1} as shown in Table 1. The 3He cell was polarized using the pumping system with the fiber laser at J-PARC research building. Time evolution of the 3He polarization $P_{3He}(t)$ during optical pumping can be described as

$$P_{3He}(t) = P_{3He}^{0}(1 - \exp(-t/r_{1}r_{2})), \quad (1)$$

where r_{1} is the time from the start of optical pumping, P_{3He}^{0} is the 3He polarization at $t \to \infty$, and r is a polarization build-up time. The time evolution of the 3He polarization in this experiment is shown in Fig. 7, and the build-up time r was 3.5 hours. For reference, the typical build-up time is 6.5 hours when the pumping system with 30 W laser is used.

After the 3He polarization was saturated, the 3He cell, the B_{0} coil, and the NMR system were transferred to the NOBORU beamline in MLF while applying a magnetic field to the 3He cell using a battery to keep the 3He polarization. Neutron transmission was measured using a Gas Electron Multiplier (GEM) detector [26] for the polarized and unpolarized 3He cell as well as for an empty glass cell with the same.
The number of the transmitted neutrons through the 3He cell is described as [27]

$$N_0 T_{\text{cell}}(\lambda) \exp(-\rho d \sigma(\lambda)) \cosh(P_{\text{He}} \rho d \sigma(\lambda)),$$

(2)

where, N_0 is the number of incident neutrons, T_{cell} is the transmission of the cell windows, $\epsilon(\lambda)$ is the detection efficiency of the GEM detector, P_{He} is 3He polarization, ρ is the number density of 3He nuclei, d is the thickness of 3He gas, $\sigma(\lambda)$ is the absorption cross section of the 3He nucleus for unpolarized neutrons, and λ is the wavelength of incident neutrons, which is calculated from the time of flight. The ratio of transmitted neutrons for the polarized to unpolarized 3He cell $N_{\text{pol}}/N_{\text{unpol}}$ is described as

$$\frac{N_{\text{pol}}}{N_{\text{unpol}}} = \cosh(P_{\text{He}} \rho d \sigma(\lambda)).$$

(3)

The product of the 3He gas pressure and thickness ρd was obtained from the measurement of the ratio of transmitted neutrons for the unpolarized 3He cell to the empty glass cell as 20.8 ± 0.1 atm·cm. The measured ratios of $N_{\text{pol}}/N_{\text{unpol}}$ are plotted against the neutron wavelength in Fig. 8 along with the curve of best fit using Eq. (3) with P_{He} as a free parameter. The 3He polarization was measured to be 85.3 ± 0.5%. The uncertainty comes mostly from the measured ρd.

The neutron wavelength dependences on the neutron polarization is obtained using the following equation:

$$P_n = \sqrt{1 - \frac{T_2^2}{T_1^2}},$$

(4)

where P_n is the polarization of neutrons passed through the polarized 3He cell, T is the transmission of polarized 3He cell, and T_0 is the transmission of the unpolarized 3He cell. The transmissions T_0 and T
in-situ with the 30 W laser used for the situ laser, while the pumping system with the 110 W laser was used with prior to 2020 were conducted using the pumping system with the 30 W experiments using performed in 2019–2020. Neutron beamlines, where we conducted user experiment was conducted in 2018, five user experiments were 3 SEOP methods at neutron beamlines of MLF [28–31]. In 2017, the uncertainties.

\[T = \frac{N_{pol}}{N_{cell}}, \quad T_0 = \frac{N_{mol}}{N_{cell}}, \] (5)

where \(N_{cell} \) is the transmitted neutrons for the empty glass cell. The neutron wavelength dependence of the neutron polarization and the neutron transmission are shown in Fig. 9. Each measurement took 15 min. The relaxation time \(T_1 \) on the beamline was 170 h, which was measured with AFP-NMR.

5. Trial and user experiments using \(^3\)He spin filter

We have carried out several trial experiments with in-situ and ex-situ SEOP methods at neutron beamlines of MLF [28–31]. In 2017, the \(^3\)He spin filter was first supplied to a user experiment. Although no user experiment was conducted in 2018, five user experiments were performed in 2019–2020. Neutron beamlines, where we conducted experiments using \(^3\)He spin filters, are listed in Table 2. In this section, we report on experiments performed on typical beamlines at MLF using \(^3\)He spin filters, including the results already reported. The experiments prior to 2020 were conducted using the pumping system with the 30 W laser, while the pumping system with the 110 W laser was used with ex-situ method in the experiments conducted in 2020. The pumping system with the 30 W laser used for the in-situ experiments described in this section will also be replaced by that with the 110 W laser in the near future.

5.1. BL10 NOBORU

A trial experiment for magnetic imaging was carried out [28] with in-situ and ex-situ systems using \(^3\)He cell with pure Rb and the 30 W laser as shown in Fig. 5. The in-situ system with a \(^3\)He cell of 17 atm-cm and the ex-situ system with \(^3\)He cell of 11 atm-cm were used as a neutron spin polarizer and analyzer, respectively. The dimensions of the \(^3\)He cells were 35 mm in diameter and 55 mm in length for both. A coil with a 0.35 mm-thick ring-shaped magnetic steel core was placed between the polarizer and the analyzer as a sample. A two-dimensional RPMT neutron detector [32] was set after the analyzer. The magnetic field applied to the sample was controlled with the current sent to the coil. Two-dimensional images of the neutron polarization were obtained, and obvious differences in the spin rotations of neutrons were observed as the wavelength dependence of the neutron polarization in two current conditions, \(I = 1.42 \) A and \(I = 0 \) A. This result indicates that it is possible to perform an experiment for magnetic imaging with \(^3\)He spin filters at J-PARC.

Furthermore, a study for magnetic atomic resolution holography with polarized neutrons using a \(^3\)He spin filter is currently underway. Two user experiments for this study were conducted at NOBORU in 2019–2020.

5.2. BL04 ANNRI

BL04 ANNRI [11,33] is a neutron beamline used for studies of nuclear science such as nuclear data for nuclear technology, astrophysics, and quantitative analyses. A germanium detector assembly measuring 22 high-quality germanium crystals is installed on this beamline to measure the \((n, \gamma)\) reaction. Measurements of the \((n, \gamma)\) reaction for the study of fundamental symmetry violation in nuclei have been conducted as a user experiment using a \(^3\)He spin filter [34–36]. A \(^3\)He spin filter with the ex-situ system was used to polarize epithermal neutrons to measure the \((n, \gamma)\) reaction with polarized neutrons at the 0.74 eV neutron resonance of \(^{139}\)La. A lanthanum sample was placed at the center of the germanium detector assembly, and the emitted \(\gamma\)-rays from the sample were detected by the germanium detectors. The \(^3\)He cell, solenoid, and compensation coils with a magnetic shield made of permalloy were installed between the detector and a neutron collimator (Fig. 10). The magnetic field used to keep the \(^3\)He polarization was perpendicular to the neutron beam in order to obtain a vertically polarized neutron beam. The magnetic shield had two openings in the path of the neutron beam to avoid a decay of the neutron polarization. Neutron polarization was held by the magnetic field produced with the guide magnets to a lanthanum target. A \(^3\)He cell using pure Rb with a pressure thickness of 19.3 atm-cm and dimensions of 50 mm diameter and 70 mm length was used. The \(^3\)He cell was polarized with the 30 W laser system at MLF, and the \(^3\)He polarization at the start of the measurement was typically 60%. The relaxation time of the \(^3\)He polarization was 130 h. In 2019, as a result of three separate measurements using the \(^3\)He spin filter, a significant spin-dependent angular distribution of \(\gamma\)-rays from the 0.74 eV neutron resonance of \(^{139}\)La was observed [36].

Furthermore, a \((n, \gamma)\) reaction measurement using polarized epithermal neutrons to obtain nuclear data for reactor science is being planned, and the development of a \(^3\)He cell for epithermal neutrons is an ongoing process.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Purpose of beamline</th>
<th>Type of (^3)He spin filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>ANNRI</td>
<td>Nuclear reaction</td>
<td>ex-situ</td>
</tr>
<tr>
<td>05</td>
<td>NOP</td>
<td>Fundamental physics</td>
<td>ex-situ</td>
</tr>
<tr>
<td>06</td>
<td>VIN ROSE</td>
<td>Spin echo</td>
<td>ex-situ</td>
</tr>
<tr>
<td>10</td>
<td>NOBORU</td>
<td>General purpose</td>
<td>ex-, in-situ</td>
</tr>
<tr>
<td>15</td>
<td>TAIKAN</td>
<td>SANS</td>
<td>ex-, in-situ</td>
</tr>
<tr>
<td>17</td>
<td>SHARAKU</td>
<td>Reflectometer</td>
<td>in-situ</td>
</tr>
<tr>
<td>18</td>
<td>SENJU</td>
<td>Single crystal diffraction</td>
<td>ex-situ</td>
</tr>
<tr>
<td>22</td>
<td>RADEN</td>
<td>Pulsed neutron imaging</td>
<td>in-situ</td>
</tr>
</tbody>
</table>
The in-situ system was used to measure the spin dynamics of ferrofluid by analyzing scattered neutrons. Although the trial experiment was successful, the solid angle of the He cell was inadequate and the pressure–thickness was not suitable for the neutron wavelength used in TAIKAN. In order to cover a larger solid angle, an ex-situ SEOP system using a larger He cell, which is to be placed 10 mm downstream of the sample, is being prepared (Fig. 13). A new He cell with rubidium and potassium has been fabricated with a diameter of 60 mm, a thickness of 40 mm, and a gas pressure of 1.5 atm for cold neutrons. More trial and experimental results will be carried out in 2020.

5.6. BL21 NOVA

Experiments using 3He spin filters at BL21 NOVA [11,41], which is a total diffractometer, are also planned. NOVA is equipped with large solid angle neutron detectors. The detectors and a sample are installed in a large vacuum chamber. We are planning to install two ex-situ systems upstream of the beamline and around the sample to perform polarized neutron scattering experiments. The schematic view of the ex-situ systems at NOVA is shown in Fig. 14. The ex-situ system for the analyzer which can be installed to the vacuum chamber is developed as shown in Fig. 15. A sample is suspended from the top of the vacuum flange. The neutrons scattered by the sample are analyzed with two 3He cells placed at a distance of 20 mm from the sample. The stage for the 3He cells can be rotated.

Photograph of the ex-situ system installed on the VIN ROSE beamline. The polarized neutron beam was scattered by the sample, and the spin of the scattered neutron was analyzed with the 3He spin filter. The vacuum duct was wrapped with boron sheets to reduce background neutrons.

The in-situ system was used to measure the spin dynamics of ferrofluid by analyzing scattered neutrons. Although the trial experiment was successful, the solid angle of the He cell was inadequate and the pressure–thickness was not suitable for the neutron wavelength used in TAIKAN. In order to cover a larger solid angle, an ex-situ SEOP system using a larger He cell, which is to be placed 10 mm downstream of the sample, is being prepared (Fig. 13). A new He cell with rubidium and potassium has been fabricated with a diameter of 60 mm, a thickness of 40 mm, and a gas pressure of 1.5 atm for cold neutrons. More trial and experimental results will be carried out in 2020.

5.5. BL15 TAIKAN

BL15 TAIKAN [11,40] is a small and wide angle neutron scattering instrument. We conducted a trial experiment to measure coherent and incoherent scattering cross sections from hydrogen contained material by analyzing scattered neutrons using the in-situ system [30]. Supermirrors were installed upstream of the beamline as a neutron polarizer, and the 3He spin filter was used as a spin analyzer. Silver behenate was used as the sample, and the 3He cell with pure Rb was placed 120 mm downstream of the sample. The diameter of 3He cell was 35 mm, the length was 55 mm, and the gas pressure was 3 atm. A stable 3He polarization of 68% was kept during the experiment. Scattered neutrons reaching a part of the small-angle detector bank were spin analyzed. The coherent and incoherent scattering components were successfully separated by analyzing the scattered neutrons. Although the trial experiment was successful, the solid angle of the 3He cell was inadequate and the pressure–thickness was not suitable for the neutron wavelength used in TAIKAN. In order to cover a larger solid angle, an ex-situ SEOP system using a larger 3He cell, which is to be placed 10 mm downstream of the sample, is being prepared (Fig. 13). A new 3He cell with rubidium and potassium has been fabricated with a diameter of 60 mm, a thickness of 40 mm, and a gas pressure of 1.5 atm for cold neutrons. More trial and experimental results will be carried out in 2020.
so that the scattered neutrons of any angle can be analyzed. The 3He polarization is kept using the Helmholtz coil that produces 40 W of heat. The heat from the coil flows to the flange through the 30 mm thick aluminum plates connected to the coil, and the flange is air-cooled. A thermal simulation of the ex-situ system in a vacuum was performed. As a result of the simulation, the maximum temperature was determined to be 76 °C at the bottom of the coil, which does not cause a problem. A test experiment using the ex-situ system will be carried out in 2020.

6. Conclusion

Development of 3He spin filters for user experiments are being carried out at MLF at J-PARC. The in-situ system using a 30 W laser has been developed, and several trial experiments using 3He cells with pure Rb have been conducted. Recently, a gas-filling station has been constructed at J-PARC and several high quality 3He cells using rubidium and potassium were fabricated. Additionally, the pumping system using a 110 W fiber laser was developed. High 3He polarization of 85% was achieved on a neutron beamline using the 3He cell with rubidium and potassium and the pumping system using the fiber laser. The first user experiment utilizing a 3He spin filter took place in 2017, and five user experiments were conducted in 2019–2020. These experiments are beginning to yield scientific results. Preparations are underway for further user experiments using 3He spin filters.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank the staff of each beamline, and MLF and J-PARC for operating the accelerators and the neutron production target. This work was supported by MEXT, Japan KAKENHI Grant Nos. 19K21047, JP19GS0210, JSPS, Japan KAKENHI Grant Nos. 18K11929, JP18H05518, and JP17H02889. The neutron scattering experiments at BL06 and BL21 were approved by the Neutron Scattering Program Advisory Committee of IMSS, KEK (Proposal Nos. 2019S06 and 2019S07). The neutron scattering experiments at BL04 were performed under the user program of MLF (Proposals Nos. 2018B0148 and 2019A0185). The neutron scattering experiments at BL10, BL15, and BL17 were performed under the program of project use (Proposal Nos. 2012P0802, 2014P0802, and 2019P0201).

CRediT authorship contribution statement

The authors would like to thank the staff of each beamline, and MLF and J-PARC for operating the accelerators and the neutron production target. This work was supported by MEXT, Japan KAKENHI Grant Nos. 19K21047, JP19GS0210, JSPS, Japan KAKENHI Grant Nos. 18K11929, JP18H05518, and JP17H02889. The neutron scattering experiments at BL06 and BL21 were approved by the Neutron Scattering Program Advisory Committee of IMSS, KEK (Proposal Nos. 2019S06 and 2019S07). The neutron scattering experiments at BL04 were performed under the user program of MLF (Proposals Nos. 2018B0148 and 2019A0185). The neutron scattering experiments at BL10, BL15, and BL17 were performed under the program of project use (Proposal Nos. 2012P0802, 2014P0802, and 2019P0201).
References

