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Abstract

Quantitative ultrasound can be used to characterize the evolution of the bone-implant interface
(BII), which is a complex system due to the implant surface roughness and to partial contact
between bone and the implant. The determination of the constitutive law of the BII would be of
interest in the context of implant acoustical modeling in order to take into account the imperfect
characteristics of the BII. The aim of the present study is to propose an analytical effective model
describing the interaction between an ultrasonic wave and a rough BII.

To do so, a spring model was considered to determine the equivalent stiffness K of the BII.
The stiffness contributions related (i) to the partial contact between the bone and the implant
and (ii) to the presence of soft tissues at the BII during the process of osseointegration were
assessed independently. K was found to be comprised between 1013 and 1017 N/m3 depending
on the roughness and osseointegration of the BII. Analytical values of reflection and transmission
coefficients at the BII were derived from values of K. A good agreement with numerical results
obtained through finite element simulation was obtained. This model may be used for future finite
element bone-implant models to replace the BII conditions.

Keywords: Bone-implant interface, Roughness, Osseointegration, Spring model, Finite element
modeling.

1. Introduction

Endosseous cementless titanium implants have been used in orthopedic, dental and maxillofa-
cial surgeries for more than 40 years, and have allowed considerable progresses to restore joints
functionality and to replace missing teeth. However, despite a routine clinical use, osseointegration
failures still occur and may have dramatic consequences. The implant surgical success is deter-
mined by the evolution of the implant stability [27], which is directly related to the biomechanical
properties of the bone-implant interface (BII) [10, 13]. The biological tissues surrounding an im-
plant are initially non-mineralized and may thus be described as soft tissues [31]. During normal
osseointegration processes, periprosthetic bone tissue is progressively transformed into mineralized
bone. However, in cases associated to implant failures, the aforementioned osseointegration phe-
nomena do not occur in an appropriate manner, leading to the presence of fibrous tissues around
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the implant and to the implant aseptic loosening, which is one of the major causes of surgical
failure [37].

Different biomechanical techniques such as impact methods [41, 30, 44] or resonance frequency
analysis [29, 33] have been applied to assess implant stability. Quantitative ultrasound (QUS)
methods have the advantage of providing a better resolution compared to approaches using acoustic
waves with a lower frequency range. The principle of QUS measurements lies on the dependence
of the ultrasonic propagation at the BII on the bone-implant contact ratio (BIC) and on the
bone mechanical properties. A combined increase of the BIC and of the periprosthetic bone
Young’s modulus [45] and mass density [26, 48] occurs during healing. All the aforementioned
bone changes lead to a decrease of the reflection coefficient at the BII due to a decrease of the
gap of acoustical properties, which has been evidenced experimentally [28]. Based on these results
and on a preliminary study [1], a 10 MHz QUS device has been developed by our group to assess
dental implant stability. It was validated first ex vivo using cylindrical implants [24], then in vitro
using dental implants inserted in a biomaterial [46] and in bone tissue [47], and eventually in vivo
[53]. Moreover, the sensitivity of QUS on the biomechanical properties of the BII was shown to be
significantly higher compared to resonance frequency analysis in vitro [52] and in vivo [51].

The various parameters influencing the interaction between an ultrasonic wave and the BII
are difficult to control when following an experimental approach and are likely to vary in parallel.
Therefore, acoustical modeling and numerical simulation are useful in order to precisely estimate
the effects of the mechanical and geometrical properties of the implant and of bone tissue.

Ultrasonic propagation has been simulated in cylindrical implants [25] and in dental implants
[49, 50, 39] using 2-D finite difference time domain and 3-D finite element models (FEM). However,
the aforementioned studies considered a fully-bonded BII and did not account for the combined
effect of the surface roughness and bone growth around the implant. Since osseointegration was
only modeled through variations of the biomechanical properties of periprosthetic bone tissue, the
influence of the BIC ratio could not be considered either. More recently, a 2-D FEM has been
developed to investigate the sensitivity of the ultrasonic response to multiscale surface roughness
properties of the BII and to osseointegration processes [18, 17, 19]. The implant roughness was
modeled by a sinusoidal profile and the thickness of a soft tissue layer comprised between the bone
and the implant was progressively reduced to simulate osseointegration phenomena. The sinusoidal
description of the surface profile was shown to be adapted (i) at the macroscopic scale because it
mimicks implant threading and (ii) at the microscopic scale since equivalence between the ultrasonic
response of sinusoidal profiles and of real implant profiles measured by profilometry was established
[17]. Moreover, 2-D modeling was shown to be sufficient to describe the ultrasonic propagation at
the BII [19]. However, only numerical approaches have been developed to model the propagation of
QUS at the BII. Analytical modeling could be of interest in order to determine the constitutive law
corresponding to the interaction between an ultrasonic wave and an osseointegrating BII, which
could then be used to replace the BII conditions in future FEM of bone-implant systems.

Different approaches have been developed to simulate the interaction of an elastic wave with
rough interfaces, especially in the context of non-destructive testing and for geological applications.
In particular, Baik and Thompson [3] developed a quasi-static model studying the ultrasonic scat-
tering from imperfect interfaces. Lekesiz et al. [23] assessed the effective spring stiffness of a
periodic array of collinear cracks at an interface between two dissimilar materials. The geometric
configuration of this model may be of interest to describe a BII, but it cannot take into account
the presence of soft tissues at the BII. Pecorari and Poznic [36] experimentally investigated the
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effect of a fluid layer confined between two solid rough surfaces on the acoustic non-linear response
of an interface, and highlighted that none of the current models from the literature could give an
accurate description of the acoustical behavior of liquid-confining interfaces. More recently, Dwyer-
Joyce et al. [7] separately assessed the solid contact stiffness and the fluid stiffness and then added
these two contributions in order to describe the ultrasonic propagation near elastohydrodynamic
lubricated contacts. However, to the best of our knowledge, such methods have never been applied
in the literature to model the BII. The use of spring models to describe a BII has been introduced
by Egan and Marsden [8] to describe load transfers at the BII and was more recently considered
by [38], but none of these studies investigated the acoustical behavior of the BII.

The aim of the present work is to derive an analytical model describing the propagation of
an ultrasonic wave at the BII. To do so, a spring model was considered. Two springs acting in
parallel were introduced between the bone and the implant, as illustrated in Figure 1b. The first
spring represents the contribution Kc of the contact between the bone and the implant, while the
second spring represents the contribution Kst due to the presence of soft tissues at the interface.
The equivalent stiffness K of the BII was determined analytically by separately assessing Kc and
Kst. Analytical values of the reflection and transmission coefficients were derived from the stiffness
values. Analytical values of the stiffness and of the reflection and transmission coefficients of
the BII were compared with numerical results, which were determined using the FEM previously
developed in Heriveaux et al. [18].

Figure 1: Schematic illustrations of (a) the 2-D numerical model and of (b) the analytical spring model.
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2. Material and methods

2.1. General strategy

In previous studies [18, 17], a numerical model describing the propagation of an ultrasonic wave
at the BII was developed. Based on this model, the reflection and transmission coefficients (r, t) at
the BII can be assessed numerically, which will be recalled in Section 2.2.2. In the present work,
an analytical model is proposed (see Section 2.3) in order to assess the values of the reflection and
transmission coefficients (r, t).

The general strategy used herein (i) to develop the analytical model and (ii) to compare an-
alytical results with their numerical counterparts is illustrated in Fig. 2 and will be described in
what follows. Note that the superscript num refers to numerical results, while the superscript ana
refers to analytical results.

Figure 2: Schematic description of the numerical and analytical models developed to describe the interaction between
the BII and an ultrasonic wave. The parameters plotted in Figures 4, 5, 6, 7, 8, 9 and 10 are represented with different
fonts.

2.2. Numerical model

The numerical model considered herein was adapted from Heriveaux et al. [18, 17], Raffa et al.
[38]. Two different studies were carried out with this model. First, the values of reflection and
transmission coefficients (rnum, tnum) of the BII were retrieved through a numerical study carried
out in the time domain. Second, the equivalent stiffness Knum of the BII was estimated through
a static study. Both studies considered the same geometry for the BII, which will be described in
what follows:
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2.2.1. Description of the geometry of the model

As illustrated in Fig. 1, two coupled 2-dimensional half-spaces were separated from each other
by an interphase. The first domain corresponds to the implant made of titanium alloy (Ti-6Al-4V,
noted (1) in Fig. 1) and the other one represents bone tissue (noted (3) in Fig. 1). The implant
surface profile was defined by a sinusoidal function of amplitude h and half-period L through the
following expression:

y =
h

2
sin
(πx
L

)
(1)

Only a single half-sine period of the interface was considered, which is sufficient to simulate
the propagation of the acoustic wave using symmetrical boundary conditions for the interfaces
perpendicular to the direction x. The point of origin of the model was defined as the middle of the
half-sine and is noted O in Fig 1a.

A soft tissue layer was considered between the bone and the implant (noted (2) in Fig. 1a)
in order to model non-mineralized fibrous tissue that may be present at the BII just after surgery
or in the case of non-osseointegrated implants [16]. The thickness W of the soft tissue layer was
defined by the distance between the highest point of the sinusoidal surface profile and the bone
level, as shown in Fig. 1a. The process of osseointegration was associated to a decrease of the
value of W from 2h down to 0.

The total lengths of the implant and of the bone domain, denoted H1 and H2 respectively, were
chosen to be able to distinguish the signal reflected from the interface and to avoid any reflection
from the boundary of the simulation domain. Namely a value of H1 = H2 = 10 cm was chosen
throughout the study.

All media were assumed to have homogeneous isotropic mechanical properties. The values used
for the different media are shown in Table 1 and were taken from [32, 35, 34, 15].

Table 1: Material properties used in the numerical simulations.

Cp (m.s−1) Cs (m.s−1) ρ (kg.m−3)

Soft tissues 1500 10 1000

Titanium 5810 3115 4420

Cortical bone tissue 4000 1800 1850

Different boundary conditions have been considered for the dynamic and static studies. For the
dynamic study, a uniform pressure p(t) was imposed at the top boundary of the implant domain
(at y = H1, see Fig. 1a). For the static study, a uniform constant tensile stress σ = 1 MPa
was imposed at the top boundary of the implant domain (at y = H1). For both studies, a fixed
boundary was imposed at the bottom of the bone domain (at y = - H2), which is supposed to be
sufficiently large so that reflected waves on the bottom boundary of the model may be neglected.

2.2.2. Dynamic study

Time-dependent simulations were performed in order to determine the reflection and transmis-
sion coefficients (rnum, tnum) of the model. The governing equations have been described in details
in Heriveaux et al. [18] and the reader is referred to this publication for further details. Briefly,
the classical equations of elastodynamic wave propagation in isotropic solids were considered. The
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continuity of the displacement and of the traction vector fields were considered at each interface (i
- j), where {i,j} = {1,2}, {1,3} or {2,3}. The symmetric boundary conditions also impose that ux
= 0 at the lateral surfaces (x = -L/2 and x = L/2).

The acoustical source was modeled as a broadband ultrasonic pulse with a uniform pressure
p(t) applied at the top surface of the implant domain (see Fig. 1a) defined by:

p(t) = Ae−4(fct−1)2 sin(2πfct) (2)

where A is an arbitrary constant (all computations are linear) representing the signal amplitude
and fc is its central frequency, which may vary between 2 and 15 MHz in the present study.

The system of dynamic equations was solved in the time domain using a finite element software
(COMSOL Multiphysics, Stockholm, Sweden). The implicit direct time integration generalized-α
scheme [5] was used to calculate the transient solution. The elements size was chosen equal to
λmin/10, where λmin corresponds to the shortest wavelength in the simulation subdomain. The
implant and bone subdomains were meshed by structured quadrangular quadratic elements and
the soft tissues subdomain was meshed with triangular quadratic elements. The time step was
chosen using the stability Courant-Friedrichs-Lewy (CFL) condition ∆t ≤ α min(he/c) where α =
1/
√

2, he is the elements size and c is the velocity in the considered subdomain. For simulations
presented here, the time step is set at ∆t = 4× 10−3/fc (s).

The reflection and transmission coefficients were determined for each configuration. To de-
termine the reflection coefficient, the signal representing the displacement along the direction of
propagation was averaged along an horizontal line located at y = H1/2. Two signals were compared
to determine the reflection coefficient rnum. The first signal corresponds to the averaged simulated
incident signal, noted si(t). The second signal corresponds to the averaged simulated reflected
signal, noted sr(t). The moduli of the Hilbert’s transform of si(t) and sr(t) were computed, and
the maximum amplitudes of these envelopes are noted Ai and Ar, respectively. The reflection
coefficient in amplitude is determined by:

rnum = Ar/Ai (3)

Similarly, in order to determine the transmission coefficient, the signal representing the dis-
placement along the direction of propagation was averaged along an horizontal line located at y =
-H2/2. The obtained signal corresponds to the averaged simulated transmitted signal, noted st(t).
The moduli of the Hilbert’s transform of st(t) was computed, and the maximum amplitudes of this
envelope is noted At. The reflection coefficient in amplitude is determined by:

tnum = At/Ai (4)

2.2.3. Static study

A static study was performed in order to determine the numerical stiffness Knum of the model.
The approach used herein was similar to the one described in Raffa et al. [38]. The system of static
equations was solved using the finite element software COMSOL Multiphysics, and domains were
meshed in the same way as for the dynamic study. The total vertical displacement ∆H of the
model due to the tensile stress σ was determined, and was related to the different parameters of
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the model through the relation:

∆H = H1
σ

λti + 2µti
+H2

σ

λb + 2µb
+

σ

Knum
, (5)

where (λti, µti) (respectively (λb, µb)) are the Lamé parameters of the titanium implant (respec-
tively bone) corresponding to the values of (ρ, Cp, Cs) listed in Table 1. Therefore, the stiffness
value of the interface Knum could be numerically assessed through the following expression:

Knum =
1

∆H
σ −

H1
λti+2µti

− H2
λb+2µb

(6)

The relative stiffness contributions Knum
c due to the contact between the implant and the bone,

and Knum
st due to the presence of the soft tissue layer between the implant and the bone were also

determined numerically. In order to assess Knum
c , soft tissues were replaced by vacuum for the

material (2) of the model (see Fig. 1a). Simulations were performed similarly as for the estimation
of Knum, and Knum

c was estimated through Eq. 6. Note that Knum
c could only be estimated for

W < h since for W > h, there is no more contact between the bone and the implant. Therefore,
in this latter case, Kc was considered equal to 0.

Finally, the contribution Knum
st was assessed through the relation :

Knum
st = Knum −Knum

c (7)

2.3. Analytical model

A spring model was considered to assess the analytical value of the BII stiffness, as illustrated
in Fig. 1b. First, the stiffness contribution Kana

c due to the contact between implant and bone was
assessed considering the model described in Lekesiz et al. [23]. Second, the stiffness contribution
Kana
st due to the presence of the soft tissue layer was assessed considering the work of Dwyer-Joyce

et al. [7]. Finally, the total stiffness of the interface was defined by:

Kana = Kana
c +Kana

st (8)

2.3.1. Stiffness Kana
c due to the bone-implant contact

The analytical expression of the stiffness due to the bone-implant contact Kana
c was obtained

from Lekesiz et al. [23]. Assuming that all materials are elastic, Lekesiz et al. [23] provide a closed-
form analytical expression for the effective spring stiffness of an infinite array of micro-cracks of
length 2a spaced at a constant interval 2b along the bond line between two dissimilar materials
(see Fig. 3b), namely the implant and the bone in the present study. To do so, Lekesiz considered
the framework of the open crack model [9], and took into account the effect of interactions between
cracks. The expression of Kana

c was determined as follows:

Kana
c =

Gti
b(3− 4νti)

(1 + α)

(1− β2)(1 + 4ε2)

π

ln
(
sec(πa2b )

) (9)

where (α, β) are the two Dundurs’ parameters [6] depending on the mechanical properties of the
bone and of the implant, ε = 1

2π ln(1−β
1+β ) is the oscillation index, νti is the Poisson’s ratio of the

titanium implant and Gti is the shear modulus of the implant.
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Figure 3a shows the sinusoidal BII considered in the numerical studies, and figure 3b shows
the corresponding geometric configuration considered in Lekesiz et al. [23]. In order to derive an
equivalence between both models, the soft tissues regions from the numerical model were assimi-
lated to the interfacial cracks from the model of Lekesiz et al. [23]. This geometric approximation
is only valid for W < h since there is no more contact between the bone and the implant when
W > h. Therefore, in this latter case, Kana

c was considered equal to 0. Note that the validity of
this approximation may decrease when the roughness amplitude h increases.

Figure 3: Geometric configurations of the interface considered (a) in the present work and (b) in Lekesiz et al. [23].
Parameters written in white represent the ones that were used in the numerical model (see Fig 1a) and parameters
written in black correspond to the ones used in the work of Lekesiz et al. [23]

From this approximation, relations between the geometric parameters (a,b) from Lekesiz et al.
[23] and (h, L, W ) from the numerical model were obtained. First, the period of the sinusoidal
roughness 2L corresponds to the periodicity of cracks 2b (see Fig. 3a), so that b = L. Second, the
length of contact between the bone and soft tissues corresponds to the diameter of the cracks, i.e.
to 2a. Based on the sinusoidal expression of the implant roughness, a was defined as:

a = L

(
1

2
−

arcsin
(
1− 2W

h

)
π

)
(10)

From the expressions of a and b, it may be noticed that Kana
c depends on the geometrical

parameters of the interface only through L and W/h.

2.3.2. Stiffness Kana
st due to the presence of a soft tissue layer

Soft tissues have a low S-wave velocity Cs compared to their P-wave velocity Cp (see Table 1)
and mechanical properties similar to those of liquid, so that they may be assimilated to a thick
liquid film present between the bone and the implant. Therefore, the work of Dwyer-Joyce et al.
[7] was considered to assess the analytical expression Kana

st of the stiffness contribution due to the
presence of soft tissues. Dwyer-Joyce et al. [7] studied the stiffness of a lubricated interface by first
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considering a rough dry interfacial contact and then adding the contribution of the lubricant layer.
The following expression was provided:

Kana
st =

ρC2
p

d
(11)

where ρ is the density of soft tissues, Cp is the P-wave velocity in soft tissues (see Table 1) and d
is the gap thickness at the interface. In our case, d corresponds to the mean soft tissues thickness
at the interface and was geometrically established through the following expression:

d =


(
W − h

2

)(
1
2 −

arcsin(1− 2W
h

)

π

)
+
√
hW−W 2

π , if W ≤ h

W − h
2 , if W ≥ h

(12)

In particular, the expression of d defined by Eq. 12 is continuous, with d = h/2 for W = h.
Note that Kst could not be assessed analytically for W = 0 because there is no soft tissue at the
BII in that configuration (d = 0). The total analytical stiffness Kana of the BII was eventually
defined following:

Kana = Kana
c +Kana

st (13)

2.4. Reflection and transmission coefficients

Based on a quasi-static approach in the frequency domain, Tattersall [42] derived the following
expressions of the analytical reflection and transmission coefficients (ranaf , tanaf ) corresponding to
the interaction between an ultrasonic wave at an interface:

ranaf =
Zti − Zb + iωZtiZb/K

ana

Zti + Zb + iωZtiZb/Kana
(14)

tanaf =
2Zti

Zti + Zb + iωZtiZb/Kana
(15)

where Zti and Zb correspond to the acoustical impedance of titanium and of bone, respectively.
Since the numerical study was performed in the time domain, Eq. 14 and 15 were transformed

into the time domain to determine (rana, tana) so that the analytical and numerical results could
be compared. To do so, ranaf (respectively tanaf ) was convoluted by the Laplace transform of
the ultrasonic excitation pulse p(t) (see Eq. 2). An inverse Laplace transform was then applied to
obtain the analytical reflected signal sanar (t) (respectively the analytical transmitted signal sanat (t)).
Similarly as for numerical signals (see Section 2.2.2), the moduli of the Hilbert’s transform of sanar (t)
and sanat (t) were computed, and the maximum amplitudes of these envelopes were retrieved to assess
the analytical coefficients rana and tana.

In order to estimate the difference between the numerical and analytical models, an error
function e1 corresponding to the mean difference between the analytical and numerical reflection
coefficients for 4 values of central frequencies fc and 10 values of W/h was introduced:

e1 =
4∑
i=1

10∑
j=1

|rana(fc(i),W/h(j))− rnum(fc(i),W/h(j))|
40

(16)

Note that in Eq. 16, rana and rnum were determined in the time domain for input signals of
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frequency fc(i) (i ∈ [1, 4]) and considering a ratio of W and h equal to W/h(j) (j ∈ [1, 10]).
Moreover, the reflection coefficient rstatic derived from the numerical static study was also

assessed by introducing the numerical values of Knum determined in Section 2.2.3 into Eq. 14
instead of Kana, and compared to analytical results in order to validate the model presented here.
Similarly as for analytical results, the difference between rnum and rstatic was assessed through the
error function e2:

e2 =
4∑
i=1

10∑
j=1

|rstatic(fc(i),W/h(j))− rnum(fc(i),W/h(j))|
40

(17)

Table 2 shows all values of fc and W/h that were used to estimate e1 and e2. In particular,
ratios W/h were considered between 0 and 2 since it represents the main configuration of interest
from a physiological point of view [53, 51]. Moreover, values of W/h equal to 0.99 and 1.01 were
considered because W/h = 1 constitutes a critical situation where bone stops being in contact with
the implant.

Table 2: Values of the parameters used to estimate the error functions e1 and e2, employed to compare the numerical
and analytical results.

Values considered

Ratio W/h {0; 0.25; 0.5; 0.75; 0.99; 1.01; 1.25; 1.5; 1.75; 2}
Frequency fc (MHz) {2; 5; 10; 15}

3. Results

3.1. Stiffness Kc due to the bone-implant contact

Figure 4 presents the variation of the numerical and analytical contact interface stiffness Kc as
a function of the ratio of the soft tissues thickness W and the roughness amplitude h for L = 50
µm. Different values of h were considered for Knum

c , while Kana
c was shown to be independent from

h for a given value of W/h. Kc decreases as a function of W/h, especially for values of W/h close
to 0 and 1. In particular, Kana

c tends towards infinity when W/h tends towards 0, and Kana
c tends

towards 0 when W/h tends towards 1. A relatively good agreement is obtained between Knum
c and

Kana
c . However, the difference between numerical and analytical results increases for higher values

of h. Moreover, except for the case W/h = 0, Kana
c always remains lower than Knum

c .

3.2. Stiffness Kst due to the presence of a soft tissue layer

Figure 5 shows the variation of the analytical and numerical stiffness Kst due to the presence of
soft tissues as a function of the ratio of the soft tissues thickness W and the roughness amplitude h
for L = 50 µm and for different values of h. Kst decreases as a function of W/h and as a function of
h. A relatively good agreement is obtained between analytical and numerical values when W/h > 1.
However, for lower values of W/h, Knum

st is significantly higher than Kana
st , especially for high values

of h.
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Figure 4: Variation of the contact interface stiffness Kc as a function of the ratio of the soft tissues thickness W and
the roughness amplitude h for L = 50 µm. The solid line represents the analytical expression of Kc and punctual
values represent values of stiffness obtained through numerical simulation for different values of h.

Figure 5: Variation of the interface stiffness due to the presence of a soft tissue layer Kst as a function of the ratio
of the soft tissues thickness W and the roughness amplitude h for L = 50 µm and for different values of h. The solid
lines represent the analytical expression of Kst and punctual values represent values of stiffness obtained through
numerical simulation.

3.3. Total stiffness of the interface K

Figure 6 presents the evolution of Kana
c , Kana

st and Kana as a function of the ratio the soft
tissues thickness W and of the roughness amplitude h for L = 50 µm and for different values
of h. For low values of h (h = 5 µm and h = 10 µm), the contribution of the contact stiffness
is low compared to the contribution due to the presence of soft tissues. For h = 20 µm, both
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contributions are in the same order of magnitude. For h = 40 µm, the contribution of the contact
stiffness becomes higher to the one due to the presence of soft tissues. For all values of h, a steep
decrease of K is obtained around W/h = 1, which corresponds to the point where the bone and
the implant stops being in contact, so that Kc suddenly decreases to 0. Moreover, this decrease is
more pronounced for higher values of h.

Figure 7 presents the evolution of Kana
c , Kana

st and Kana as a function of the ratio the soft
tissues thickness W and the roughness amplitude h for h = 20 µm and for different values of L.
Figure 6 shows that for L = 50 µm, Kc and Kst are within the same range of values for h = 20
µm. Fig. 7 shows that for higher values of L (L = 75 µm and L = 100 µm), Kc is lower than Kst,
while for lower values of L (L = 40 µm and L = 25 µm), Kc is higher than Kst.

Figure 6: Variation of the analytical total stiffness of the BII Kana and of the stiffness contributions Kana
c and Kana

st

corresponding to the bone-implant contact and to soft tissues, respectively, as a function of the ratio of the soft
tissues thickness W and the roughness amplitude h for L = 50 µm and (a) h = 5 µm, (b) h = 10 µm, (c) h = 20 µm,
(d) h = 40 µm.

3.4. Comparison between analytical and numerical reflection and transmission coefficients

Figure 8 shows the variation of rnum and rana as a function of W/h for L = 50 µm and for
different values of h. Figure 9 shows the variation of tnum and tana as a function of the ratio W/h
for L = 50 µm and for different values of h. The reflection coefficient increases as a function of
W/h and of fc, while the transmission coefficient decreases as a function of W/h and of fc.

Overall, a good agreement is obtained between analytical and numerical results. In particu-
lar, a steep increase (respectively decrease) of the reflection coefficient (respectively transmission
coefficient) is observed both analytically and numerically around W/h = 1, especially for high
roughness and high frequencies. However, for higher h and for higher fc, significant differences are
obtained between analytical and numerical results. In particular, for h = 40 µm and fc = 10 and
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Figure 7: Variation of the analytical total stiffness of the BII Kana and of the stiffness contributions Kana
c and

Kana
st corresponding to the bone-implant contact and to soft tissues, respectively, as a function of the ratio of the

soft tissues thickness W and the roughness amplitude h for h = 20 µm and (a) L = 25 µm, (b) L = 40 µm, (c)
L = 75 µm, (d) L = 100 µm

15 MHz, (i) for W/h < 0.25, the values of rnum are significantly lower than values of rana and (ii)
for W/h > 1.5, rnum (respectively tnum) reaches a constant value, while rana (respectively tana)
still increases (respectively decreases) as a function of W/h.

Figure 10 shows the evolution of the error e1 between analytical and numerical results and of
the error e2 corresponding to the difference between rstatic and rnum as a function of h for L = 50
µm. Both error functions increase as a function of h. Furthermore, while considering numerical
stiffness values Knum leads to lower errors than considering analytical stiffness values Kana, the
error difference between the two approaches remains relatively low (around 2.5 × 10−3). For all
the configurations tested, the error between analytical and numerical models remained lower than
2.6× 10−2.

4. Discussion

4.1. Originality and comparison with the literature

The originality of this work is to provide an analytical model describing the interaction between
an ultrasonic wave and the BII. The proposed model was validated through a comparison with
numerical results obtained with FEM studies. Moreover, while most studies in the literature
dealing with ultrasonic propagation at rough interfaces were performed in the frequency domain
[3, 21, 42, 43], the present study was performed in the time domain, which is closer to configurations
of interest.
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Figure 8: Variation of the reflection coefficient of the BII as a function of the ratio of the soft tissues thickness W
and the roughness amplitude h for L = 50 µm, for different frequencies fc and for (a) h = 5 µm, (b) h = 10 µm,
(c) h = 20 µm, (d) h = 40 µm. Solid lines represent the analytical values rana whereas the symbols represent the
numerical values rnum.

The present work is related to the studies performed in Heriveaux et al. [18, 17]. In particular,
the numerical model and the sinusoidal description of the BII considered herein were taken from
these previous studies. Given the equivalence between profilometry-measured implant profiles and
sinusoidal profiles established in Heriveaux et al. [17], the analytical model described herein could
be generalized to real implant surface profiles. However, the macroscopic roughness of implants
(e.g. threading of dental implants) was not considered in the present study because it would lead
to interference phenomena [18], which could not be taken into account with a 2-D analytical model.
In particular, Heriveaux et al. [18] evidenced significant interferences of the echoes from summits
and valleys of the rough interface, and multiple scattering phenomena.

Similarly as in Dwyer-Joyce et al. [7], the present study separately assessed the stiffness con-
tributions due to liquid and solid contact in order to determine the equivalent stiffness of a rough
interface. In this former study, a lubricant layer was confined at the interface, while soft tissues
were considered between the bone and the implant in the present study. In both studies, the
analytical spring model was validated through comparisons with experimental or numerical re-
sults. However, lubrication aims at impeding the direct contact of surfaces, so that the contact
stiffness contribution always remained lower than the lubricant layer contribution in Dwyer-Joyce
et al. [7], which is a different situation compared to the present study. At the beginning of the
osseointegration process (W ≥ 0.8 h), the BIC ratio is relatively low, so that Kc is low compared
to Kst. However, at the end of the osseointegration process (W = 0) the bone and the implant
are in intimate contact, so that Kc may be higher than Kst. Therefore, both Kc and Kst may be
predominant herein depending on the configuration of the BII (see Fig. 6 and 7). Different models
of contact stiffness [23, 22] had thus to be considered in the present study and in Dwyer-Joyce
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Figure 9: Variation of the transmission coefficient of the BII as a function of the ratio of the soft tissues thickness
W and the roughness amplitude h for L = 50 µm, for different frequencies fc and for (a) h = 5 µm, (b) h = 10 µm,
(c) h = 20 µm, (d) h = 40 µm. Solid lines represent the analytical values tana whereas the symbols represent the
numerical values tnum.

Figure 10: Evolution of the error functions e1 and e2 as a function of the the roughness amplitude h for L = 50 µm

et al. [7]. Moreover, the loss of validity of the analytical formula of Kana
st for low values of W (see

Fig. 5) may be due to the fact that this formulation was designed for a configuration with low
contact area at the interface (Kc <Kst).

Figure 8 showed that the reflection coefficient increases as a function of W , which may be
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explained by the increase of the gap of acoustical properties when soft tissues are in contact with
the implant surface compared to a fully bonded interface. This result is in qualitative agreement
with previous experimental [28, 53, 51] and numerical studies [49, 50]. Note that it is also possible
to change the properties of bone tissue in the analytical model (see Eq. 14) in order to take
into account the evolution of the biomechanical properties of bone, similarly to what was done in
Heriveaux et al. [18]. In particular, Heriveaux et al. [18] investigated the influence on rnum of a
decrease of the bone mass density ρ by 20% compared to its reference value ρ0. Table 3 shows the
values of rnum and rana obtained for ρ = ρ0 and for ρ = 0.8 ρ0 for a given configuration (h = 5
µm; L = 50 µm; W = h/2 and fc = 10 MHz). The low difference between rnum and rana when
decreasing ρ by 20% further validates the analytical model.

Table 3: Values of the numerical and analytical reflection coefficients rnum and rana obtained considering a bone
mass density ρ equal to its reference value ρ0 or to 80% of ρ0. Other parameters were set to the following values : h
= 5 µm; L = 50 µm; W = h/2 and fc = 10 MHz

rnum rana

ρ = ρ0 0.5508 0.5575

ρ = 0.8 ρ0 0.6215 0.6280

4.2. Error between analytical and numerical results

Figures 8 and 9 show that analytical reflection and transmission coefficients (rana, tana) are in
good agreement with numerical results. However, the error e1 between analytical and numerical
models was only estimated based on values of rana and not of tana because the reflection coefficient
is the parameter of interest when investigating the properties of the BII with QUS [28, 53, 51, 20].
In particular, e1 could be compared with the experimental precision P = 0.011 on the estimation
of the reflection coefficient assessed in Mathieu et al. [28]. For roughness amplitudes h lower than
20 µm, the error between analytical and numerical models remains lower to the experimental error
(see Fig. 10). Consequently, for standard values of implant roughness, the analytical modeling of
the BII should be sufficient to derive an accurate description of its ultrasonic response.

Moreover, Figs. 4 and 5 show that there are some differences between the values of Knum

and Kana, especially for low values of W and high values of h. In particular, the loss of validity
of the analytical formula of Kana for higher values of h may be due to the fact that the model
from Lekesiz et al. [23] assumes an interface with flat cracks with vanishing volume. However, e1

and e2, which represent the error between rnum and rana and the error between rnum and rstatic,
respectively, are within the same order of magnitude. Therefore, the errors between Kana and
Knum have a relatively weak influence on the estimation of the reflection coefficient. It may be
explained as follows. Equation 14 shows that the evolution of rana is especially sensitive to K
when it has values around (ZtiZbω)/(Zti + Zb), which corresponds to K = 7.2 × 1013 N/m3 at
2 MHz, and K = 5.4 × 1014 N/m3 at 15 MHz. However, errors between Kana and Knum are
most significant for stiffness values superior to 5 × 1014 N/m3, which therefore weakly affect the
reflection coefficient. Furthermore, the higher sensitivity of rana and tana to values of K around
(ZtiZbω)/(Zti +Zb) also explains that the errors between the analytical and numerical models are
lower for lower frequencies (see Fig. 8 and 9).
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4.3. Contributions of Kc and Kst

Figures 6 and 7 show that the contribution of the contact stiffness Kc is predominant compared
to the one soft tissues when the implant roughness is high, i.e. for high values of h and for low
values of L. It may be due to the fact that a higher implant roughness leads to a higher contact
area between the bone and the implant, and therefore to an increase of Kc. Moreover, for higher
roughness, a steeper increase (respectively decrease) of rana and rnum (respectively of tana and
tnum) is observed around W = h. It may be explained as follows. Since Kc is predominant
compared to Kst for higher roughness, the sudden decrease of Kc when W approaches h has a
higher influence on the ultrasonic propagation at the BII in that configuration. Moreover, the
steep increase of r around W = h also depends on the frequency since r is especially sensitive to
K for a given range of values which depends on the frequency, as described in last section.

4.4. Limitations

This study has several limitations. First, the flat spring-interface model used for the analytical
model is a strong approximation that may not take into account interference phenomena, which
are known to occur for high implant roughness [18]. In particular, reflection coefficients cannot
be lower than 0.55 using the analytical model (which corresponds to (Zti − Zb)/(Zti + Zb), see
Eq. 14), while numerical results showed lower reflection coefficients for high roughness (see Eq.
14). The error between numerical and analytical results may also be related to the geometrical
approximation of the BII by an array of periodic cracks to assess analytical contact stiffness (see
Section 2.3.1), which may lose in validity for higher roughness. In particular, it may explain that
the difference between Kana

c and Knum
c (respectively between Kana

st and Knum
st ) increased as a

function of h in Fig. 4 (respectively in Fig. 5).
Second, only the direction of propagation from the implant to the bone tissue was taken into

account because it corresponds to the experimental situation of interest [28, 53, 51]. Future studies
should account for oblique incidences.

Third, the variation of the periprosthetic bone geometrical properties is rather simple and
modeled by a bone level given by the parameter W , while the bone geometry around the implant
surface is likely to be much more complex.

Fourth, the sinusoidal description of the implant surface profile is a strong approximation.
However, this approach was validated in Heriveaux et al. [17] through a comparison with ultrasonic
responses of real implant surface profiles measured by profilometry.

Fifth, bone materials properties were assumed to be elastic, homogeneous and isotropic, simi-
larly as what was done in some previous studies [25, 49, 50]. However, bone tissue is known to be a
strongly dispersive medium [12, 14], which was neglected herein. Moreover, although mature bone
tissue is known to be anisotropic [11, 40], the anisotropic behavior of newly formed bone tissue
remains unknown [26, 45]. In future works, the heterogeneity of bone tissue could be considered
using the approach of Argatov and Iantchenko [2], that developed an acoustical model in the case
of continuously stratified tissues.

Sixth, adhesion phenomena at the BII [28], which may lead to a non-linear ultrasonic response
[4] were not taken into account in the present study.

5. Conclusion

This study provides an analytical model of the ultrasonic propagation at the BII. The proposed
model allows to replace the rough and multiphasic BII by a simple bi-spring model but still provides
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a good prediction of the reflected and transmitted coefficient measured from time-domain signals.
The use of this analytical model may save computation costs for future numerical studies, which can
be complex due to the multiscale nature of the interaction between an ultrasonic wave and the BII.
However, the analytical model was validated considering an ultrasonic wave in normal incidence.
Therefore, it should be carefully used when modeling real implant geometries, in which multiple
reflections and thus oblique incidence of the ultrasonic wave on the BII should be considered.
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