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A method for motor model order reduction is developed using the Cauer ladder network. The analyzed domain is decomposed into 

stator and mover domains, where the multiport Cauer ladder network of each domain is constructed independently from the other. 

The two domains are connected through electromagnetic field modes at the boundary. The boundary condition is derived from the 

coordinate transformation. The reduced model accurately reconstructs the induction motor property affected by slot harmonics.  
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I. INTRODUCTION 

ODEL order reduction (MOR) [1]–[5] has been 

intensively studied for the efficient description of the 

magnetic field. The Cauer ladder network (CLN) [5][6] is one 

of the promising MOR frameworks. The representation of the 

network is easy to combine with control theory and a circuit 

simulator. One emerging demand for MOR is the application 

to motor control for electric vehicles and robots. Studies have 

addressed motor MOR [2][3], realizing magnetostatic MOR 

depending on the rotation angle. However, motor MOR 

including the motional electromotive force (EMF) remains an 

open problem.  

This study develops a systematic motor MOR method based 

on the multiport CLN method [7] and domain decomposition 

to handle the induced current in moving conductors for 

analysis of the induction motor. To confirm the basic concept 

of connecting decomposed domains reduced to multiport 

CLNs with spatial harmonic components, the two-dimensional 

eddy-current (EC) field in a linear motor is analyzed as a 

simple example.  

II. MULTIPORT CLN METHOD  

Vector potential A and electric field E are represented in 

finite element (FE) space as  
1 1,i i i ii i

a e= = A w E w ,  (1) 

where ai and ei are line integrals of A and E on edge i and w1
i 

is the edge element.  

The EC field is described in FE space as  

 

T d
,

dt
= = −

a
C νCa σe Ce C ,   (2) 

where a = [a1, a2, …]T, e = [e1, e2, …]T, C is the face-edge 

incidence matrix, and CTνC is the stiffness matrix for FE EC 

analysis. The conductivity matrix σ and reluctivity matrix ν 

are given as 

 2 21
{ }, dkl kl k lv v


= =  v w w ,  (3) 

 1 1{ }, dij ij i j  


= =  σ w w ,  (4) 

where μ is the permeability and σ is the conductivity; i, j and k, 

l are indices of edges and faces, respectively, while w2
k is the 

facial element of face k. 

Let the number of ports be M. The multiport CLN [7] is 

constructed using the recurrence relation as  
T

2 1 2 1 2 2( )n n n n+ −− =C νC a a σe R  ,  (5) 
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−
+ + +− = −e e a L  ,  (6) 
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2 2 2 2 1 2 1 2 1,n n n n n n

−
− − −= =R e σe L a C νCa  , (7) 

where R2n and L2n−1 are multiport resistance and inductance 

matrices while e2n = (e1,2n, ..., eM,2n) and a2n−1 = (a1,2n−1, ..., 

aM,2n−1) are matrices of the n-th basis vectors. The m-th 

columns em,2n and am,2n−1 are field basis vectors when the unit 

and zero power sources are fed to port m and other ports, 

respectively. The basis vector matrices have the orthogonal 

property  

 
T 1 T T
2 2 2 2 1 2 1 2 1δ , δi j ij i i j ij i

−
+ + += =e σe R a C νCa L , (8) 

where δij is Kronecker’s delta.  

The electromagnetic fields are expanded using the basis 

vectors obtained above as  

2 1 2 1 2 2,n n n nn n− −= = a a I e e V  . (9) 

Therein, I2n−1 and V2n are coefficient vectors, which are 

determined by the matrix Cauer network shown in Fig. 1.  
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Fig. 1. Matrix Cauer form. 

 

 
Fig. 2. Linear induction motor (unit: millimeter). 

 

III. MOTOR MOR 

A. Connection of Stator and Mover Domains 

As a simple example, the linear induction motor shown in 

Fig. 2 is analyzed, where x and x’ are the stator-fixed and 

mover-fixed coordinates, respectively. The stator domain and 

mover domain are connected through the magnetic field Hx, 

electric field Ez, and/or the vector potential Az = − ∫Ezdt. The 

magnetic fields Hx and Hx′ at the boundary surface on the 

stator and mover domain sides, respectively, are expanded into 

spatial harmonic components as 

c sodd
( , ) 2 [ ( )cos( ) ( )sin( )]x m mm

H x t H t mkx H t mkx= + , 

c sodd
( , ) 2 [ ( )cos( ) ( )sin( )]x m mm

H x t H t mkx H t mkx        = +
      (10) 

where k = π/w and w is half the spatial period [Fig. 1]. 

The harmonic components of the magnetic field are denoted  

   I = [Hc1, Hs1, …, Hc2K−1, Hs2K−1],  

I’ = [H’c1, H’s1, …, H’c2K−1, H’s2K−1] , (11) 

where the components over the (2K−1)-th harmonics are 

truncated. The harmonic components of the electric field and 

vector potential are similarly denoted  

 V = w [Ec1, Es1, …, Ec2K−1, Es2K−1],  

 V’ = w [E’c1, E’s1, …, E’c2K−1, E’s2K−1], 

   Φ = w [Ac1, As1, …, Ac2K−1, As2K−1],  

   Φ’ = w [A’c1, A’s1, …, A’c2K−1, A’s2K−1], (12) 

where  

 
d

dt
= −

Φ
V  ,  

d

dt


 = −



Φ
V .   (13) 

The coordinate relation is given as 

x’ = x − vt ,  t’ = t ,   (14) 

where v is the velocity of the mover domain. The boundary 

condition is obtained from (10)–(14) as 

I’ = TI ,  Φ’ = TΦ ,   (15) 

where 

T = blockdiag(T1, …, T2K−1) ,  (16) 

cos( ) sin( )

sin( ) cos( )
m

mkvt mkvt

mkvt mkvt

 
=  

− 
T  (m = 1, 3, ...) . (17) 

The boundary condition between V and V′ is derived as 

follows. It follows from By = − ∂Az/∂x that   

s codd
( , ) 2 [ ( )cos( ) ( )sin( )]y m mm

B x t mk A t mkx A t mkx= − + , 

      (18) 

where the harmonic components are denoted  

 B = kw [−As1, Ac1, …, −(2K−1)As2K−1, (2K−1)Ac2K−1] .  

      (19) 

Considering that ∂/∂t′ = ∂/∂t + v∂/∂x and that (15) is 

independent of x,  

 
d d d

( )
d d d

v
t t t


 = − = − − = +



Φ T Φ
V Φ T T V B  (20) 

is obtained, where vB represents the motional EMF. 

B. Matrix Cauer Form Representation  

The three-phase currents and voltages are denoted  

IS = [IU, IV, IW] ,  VS = [VU, VV, VW]. (21) 

The multiport CLN procedure is executed independently in 

the stator and mover domains to derive the respective 

multiport transfer functions: 

=V ZI ,  V′ = Z′I′,    (22) 

S 
=  
 

V
V

V
, 

S 
=  
 

I
I

I
, 

T
S

 
=  
 

Z z
Z

z Z
. (23) 

These variables are used in both the frequency and time 

domains for the simplicity of notation. The CLN procedures 

for the stator and mover domains are started by setting  

 1 2 3, , K+=I u u ,  1 2, , K =I u u ,   (24) 

where um is a unit vector whose m-th element is 1 and other 

elements are zero such that there is a unit source current or a 

unit magnetic-field component at the boundary. The latter is 

given by a Neumann boundary condition. Relations (22) and 

(23) are represented in Fig. 3(a) and (b), where z is a mutual 

impedance matrix. Note that the CLN procedure for the mover 

domain yields the transfer function as in Fig. 3(c), where I′′ = 

− I′ and Z′′ = −Z′. The multiport transfer functions above are 

given in matrix continued fraction forms, which means that 

they are represented by matrix Cauer forms as shown in Fig. 1. 

Corresponding to Fig. 3(a), a sub-blockwise representation of 

the matrix Cauer form for the stator domain is shown in Fig. 4, 

where m2n−1 and r2n (n = 1, 2, …) are respectively mutual 

inductance and resistance matrices. A detailed representation 

of the matrix Cauer form for the mover domain is shown in 

Fig. 5 when I′ = [H′c1, H′s1]. These multiport networks for 

stator and mover domains are connected through relation (15). 
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Fig. 3. Multiport transfer functions: (a) stator domain, (b) mover domain to be 

connected with stator domain, and (c) mover domain generated by the CLN. 
 

 
Fig. 4. Matrix Cauer form for the stator domain corresponding to Fig 3(a). 

 

 
Fig. 5. Matrix Cauer form corresponding to Fig. 3(c) when I′ = [H′c1, H′s1]. 

 

C. Homogenization of a Laminated Core 

A laminated iron core is usually used to reduce the eddy-

current loss. Even though it is possible for three-dimensional 

analysis to take account of the laminated structure, its 

computational cost is generally high because of the thinness of 

the sheet. Homogenization methods are often used to avoid 

mesh division on the sheet-thickness scale. The 

homogenization method in [8] is a useful method to be 

combined with FE analysis and can thus be built into the CLN 

method. The present paper focuses on motor MOR based on 

domain decomposition, combining simple zeroth-order 

homogenization with the CLN method.  

Zeroth-order homogenization gives the constitutive relation 

between B and H as  
2 2d d

curl curl
12 d 12 d

d d

t t

 
 = + = +

B A
H B A , (25) 

where d is the sheet thickness. Using (25), governing equation 

(2) is rewritten as   

T d

dt
= −

a
C νCa σ ,    (26) 

where  
T = +σ σ C ν C  ,    (27) 

  
2

2 2{ }, d
12

kl kl k l

d
v v




  = =  v w w  .  (28) 

Replacing σ with σ′, the multiport CLN procedure is executed 

as in section II. The combination of higher-order 

homogenization with the CLN method will be reported in 

future work.  

D. Circuit Equation 

The circuit equation for the stator domain is given as 

2 1 2 1
2 1 2 1

2 1 3 2 1

d d

d d

( )

n n
n n

n n

t t

− +
− +

−

−

= − − − −

I I
L L

R I I I I

 ,   (29) 

        
2 11 s

1 3 2 1 2 2 1s s s

d

d

N

N N N
t

−−
− −= + + + +

I
I I I I R L ,  (30) 

where the circuit is terminated by the Ns-th resistor matrix R2Ns. 

Similarly, the circuit equation for the mover domain is given 

as 

2 1 2 1
2 1 2 1

2 1 3 2 1

d d

d d

( )

n n
n n

n n

t t

− +
− +

−

 
 −

    = − − − − −

I I
L L

R I I I I

,   (31) 

2 11 m
1 3 2 1 2 2 1m m m

d

d

N

N N N
t

−−
− −


     = − − − − −

I
I I I I R L , 

     (32) 

where the circuit is terminated by the Nm-th resistor matrix 

R2Nm. To connect the two domains, (15) is written as  

    I’(t) = T(t)I(t) ,  L1’I1’(t) = T(t)[m1IS1(t)+ L1I1(t)] ,  (33) 

where L1 and I1 are the first inductance matrix and its current 

vector in the stator CLN [Fig. 4] while L1′ and I1′ are the first 

inductance matrix and its current vector in the mover CLN 

[Fig. 5].  

The air-gap power P2 transferred to the mover domain is 

given by P2 = VTI which corresponds to the Poynting vector. 

The thrust force Fx = ∫0
wHxBy dx at the boundary is obtained 

from (11) and (19) as 

 Fx = ITB .    (34) 

IV. NUMERICAL RESULTS  

Sinusoidal three-phase current IS with an amplitude of 1 AT 

is fed to the linear induction motor [Fig. 2]. The relative 

permeability of the iron core is 1000 and the conductivity of 

the mover bar is 3 × 107 S/m. The sheet thickness and 

conductivity of the laminated core are respectively 0.35 mm 

and 2 × 106 S/m. The resistance of stator windings is not 

included in the stator-side CLN and can be inserted between 

the power source and stator-side CLN. Fig. 6 shows the 

magnetic flux ∫VVdt and voltage VU at 50 Hz with slip s = 1 – 

kv/ω = 0.25, where root mean squared errors from the FE EC 

analysis are shown in parentheses. The slot harmonic 

components are exactly converted to the time harmonics by 

including up to the 17th spatial harmonics. Fig. 7 shows the 

impedance R + jωL seen from one of the three-phase ports 

whereas Fig. 8 shows the speed dependence of the air-gap 

power and thrust force. Differences of computed values from 

those obtained by the FE EC analysis are indicated in 

parentheses. When only the fundamental components are 

considered, the thrust force is zero when s = 0. However, the 

thrust force is negative because of the higher harmonic 
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components, as is accurately reproduced by the reduced model. 

On the basis of expansion (9), the vector potential and 

magnetic flux lines are reconstructed as in Fig. 9(a), where s = 

0.25. A comparison with the FE EC analysis [Fig. 9(b)] shows 

that the vector potential is accurately reconstructed. In the 

numerical experiment above with up to the 17-th harmonics, 

the construction of stator and mover CLNs with three stages 

takes 2.59 ms using a personal computer. The time-dependent 

computation of 144 steps × 25 periods requires 0.73 and 145 

ms for the reduced network computation and FE EC analysis, 

respectively. Consequently, in this case, the speed-up ratios 

for the total computation and time-dependent analysis are 

respectively 43.7 and 198. 

V. CONCLUSION 

A method for motor MOR was developed. The domain 

decomposition into stator and mover domains allows multiport 

CLNs to be constructed independently. The two domains are 

connected through electromagnetic field modes with the 

boundary condition derived from the coordinate 

transformation. The reduced model accurately reconstructs the 

induction motor property affected by slot harmonics. The 

application of the developed method to rotational machines is 

straightforward. The non-linearization of CLN method [9] will 

be combined for practical motor analyses. 
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Fig. 6. Waveforms: (a) magnetic flux ΦV and (b) voltage dΦU/dt where root 

mean squared errors from FE EC analysis are indicated in parentheses. 
 

 
Fig. 7. Frequency dependence of the input impedance: (a) resistive and (b) 
inductive components. Discrepancies at 100 Hz are shown in parentheses. 

 

 
 Fig. 8.  Speed dependence of (a) the air-gap power and (b) the thrust force. 

Discrepancies from FE EC analysis at s = 0.5 are indicated in parentheses. 

 

 
Fig. 9.  Snapshots of the vector potential distribution and magnetic flux lines 

given by (a) motor MOR and (b) FE EC analysis. 


