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Highlights: 

• Subtropical marine copepod community production is low when prey molar C:N and C:P 

ratio is high. 

• However, the variation of copepod production was large when prey C:N and C:P ratios 

were low. 

• Multivariate regression indicates that prey C:N ratio explains the variation of copepod 

production most, followed by phytoplankton and copepod composition. 

• Primary production exerts a weak influence on copepod production. 

 

Abstract. Manipulative laboratory studies provide strong evidence that phytoplankton primary 

production (PP), stoichiometry and taxonomic composition affect marine copepod (biomass- 

dominant zooplankton group) production (CP). However, field observations investigating the 

simultaneous effects of prey stoichiometric quality, PP, and phytoplankton and copepod 

taxonomic composition on CP remain relatively scarce. Here, we examined how in situ CP is 

affected by carbon:nitrogen:phosphorus (C:N:P) molar ratios of prey, PP, and phytoplankton and 

copepod composition in the East China Sea (ECS) and Dongsha Atoll in the South China Sea. 

Field estimates of CP were measured directly as the product of in situ instantaneously growth 

rate estimates by artificial cohort method and copepod biomass. We found that CP was low when 
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prey C:N and C:P ratios were high (i.e. prey C exceeds copepod metabolic requirements), but the 

variation of CP was large when prey C:N and C:P ratios were low. CP did not, however, show a 

strong relationship with PP. Multivariate regression indicates that prey C:N ratio explains most 

of the variation of CP, followed by phytoplankton and copepod compositions, while PP exerts a 

weak influence on CP. Our findings suggest that copepod community production is affected by 

prey stoichiometry, with further modification by copepod and phytoplankton compositions in the 

ECS. However, the total variance explained by those key factors is less than 50 %, indicating 

that marine copepod growth and biomass production are influenced by complex factors in nature. 

 

Keywords: Ecological stoichiometry; subtropical marine copepod production; artificial cohort 

method; in situ incubation; phytoplankton and copepod composition.  
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1. Introduction 

Copepods represent the dominant zooplankton group and serve as an important trophic link 

between primary producers and higher trophic levels in the ocean (Alcaraz and Calbet, 2007). 

Identification of which factors influence copepod production (CP; mg C m-3 d-1) is essential to 

understanding the dynamics of pelagic food webs in the oceans. Measuring egg production rate 

and biomass (assuming a constant growth rate) are two popular approaches used to assess CP in 

field studies (Castonguay et al., 2008; Hay et al., 1991; Hopcroft et al., 1998; Kiørboe and 

Nielsen, 1994; Mayor et al., 2009). However, neither egg production rate nor biomass fully 

represent CP and each prompts different ecological interpretation. Biomass production rates 

reflect the flux of carbon and energy from phytoplankton to copepods, which is viewed as the 

trophodynamic currency (Sheldon et al. 1977, Longhurst 1984). Egg production rates indeed 

reflect a part of CP, but this measurement does not include somatic growth during naupliar and 

copepodite stages (Hirst and McKinnon, 2001). The production of copepods may not be 

supported in the long term if egg production rate or biomass is high but somatic growth rates are 

slow. Thus, we need studies of in situ copepod community somatic growth-based production rate 

in order to better understand energy transferring in pelagic food webs. 

Copepod growth and production rates can be limited by prey carbon supply, i.e., 

phytoplankton (Campbell et al., 2001; Hirst and Bunker, 2003). Thus, primary production (PP; 
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mg C m-3 d-1) would be an important factor to support copepod production. However, copepod 

production is influenced not only by phytoplankton carbon supply, but also by the nitrogen 

content of phytoplankton (Kiørboe 2007). Thus, apart from carbon, stoichiometric constraints 

(the relative imbalance of elemental composition between consumers and prey) may limit 

copepod growth and production. Previous studies have indicated that crustacean consumers can 

grow efficiently only within an optimal range of prey stoichiometry (e.g. Laspoumaderes et al. 

2015) and tend to be more stoichiometrically homeostatic than phytoplankton (Acharya et al., 

2004; Sterner and Elser, 2002). The stoichiometric knife-edge hypothesis predicts that crustacean 

consumers must expend energy in order to respire and excrete assimilated elements in excess of 

their homeostatic demands (i.e. suboptimal prey C:N:P ratio; Boersma and Elser, 2006; Elser et 

al., 2016; Hessen et al., 2004). Occasionally, when phytoplankton C:N and C:P ratios are too low, 

crustacean consumers can be carbon-limited and must excrete the excess N and P; under this 

condition, crustacean growth also decreases. 

Nitrogen (N) and phosphorus (P) play essential but distinct roles in animal growth and 

development (Elser et al., 2000). N is key to maintaining proteinaceous body structures, whereas 

P is essential to forming the rRNA backbone and thus controls protein synthesis and by 

extension, organism growth rate (Vrede et al., 2004). Given the physiological roles of both 

elements, low prey N and P contents lead to low rates of protein synthesis and rRNA production 
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for crustacean zooplankton and consequently hinder their biomass production and growth (Giani, 

1991; Vrede et al., 2002). In addition, N- and P-deficiency of growth are not independent: under 

N-deficiency, the amounts of P and rRNA are decoupled from growth rate (Acharya et al., 2004). 

Thus, investigating the link between both N and P supplies versus copepod production provides a 

more detailed insight into CP variation. Considering the more strictly stoichiometric homeostasis 

of crustacean consumers, we expect that CP exhibits a unimodal pattern relative to prey C:N and 

C:P ratios. 

In addition to the elemental stoichiometry of prey, the composition of biomolecules such as 

fatty acids (Müller-Navarra, 2008) may further constrain crustacean growth and development. 

Adding supplementary essential fatty acids or phytoplankton species with highly unsaturated 

fatty acids can improve crustacean growth (Brett and Müller-Navarra, 1997; Ferrão-Filho et al., 

2003). Also, different copepod taxa and their life stages vary in growth strategy and responses to 

prey stoichiometry (Laspoumaderes et al., 2010; Villar-Argaiz et al., 2002), indicating that 

copepod taxonomic and stage composition may also influence CP. Thus, we should consider the 

effects of phytoplankton composition, copepod composition and copepod life stage structure on 

CP. 

Understanding the link between CP versus PP, prey stoichiometry and composition in 

natural systems faces at least two challenges: First, estimation of in situ growth-based CP 
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requires intensive effort for onboard incubations and analyses (Runge and Roff, 2000); Second, a 

broad sampling area and/or time range should be covered to encompass sufficient light and 

trophic gradients (Finkel et al., 2006). Here, we addressed these challenges by applying the 

‘improved’ artificial cohort method (Lin et al., 2013b) to measure copepod community growth 

and production rates in the East China Sea and around the Dongsha Atoll in the South China Sea. 

Both growth and production rate estimates were accompanied by measurements of prey 

stoichiometry, PP, and phytoplankton and copepod compositions. The large variation of nutrient 

supply and sea surface light intensity in the sampling areas ensured sufficient variation in PP, 

prey stoichiometry, and phytoplankton and copepod compositions for this study (Table A.1). 

Given the broad set of conditions, we were able to test the following hypotheses: (H1) CP 

decreases when prey molar C:N and C:P ratios are high (excessive C supply) or too low 

(excessive N and P supply) according to the stoichiometric knife-edge; (H2) CP increases with 

PP according to classical bottom-up effects; and (H3) phytoplankton and copepod compositions 

affect CP. 

 

2. Materials and methods 

2.1. Estimation of in situ copepod growth rate and production 
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We conducted 54 experiments during 2009-2016. The sampling cruises were mainly in the 

southern East China Sea, while cruises in the northern East Chinas Sea and around the Dongsha 

Atoll were also included (Fig. A.2, Table A.1). Growth (d-1) and production (mg C m-3 d-1) rates 

were estimated for copepod communities, which account for about 70% of the mesozooplankton 

biomass in the study area (Tseng et al., 2012). We applied the ‘improved’ artificial cohort 

method (see modifications to Kimmerer and Mckinnon 1987 by Lin et al. 2013b) to estimate the 

specific growth rate GRi for each juvenile group; where, i corresponds to each of five copepodite 

groups (calanoid, cyclopoid, corycaeid, oncaeid, and harpacticoid copepodites) and three 

naupliar groups (calanoid, cyclopoid, and harpacticoid nauplii). We performed shipboard 

incubations of two size fractions, 50-80 µm (nauplius) and 100-150 µm (copepodite) copepods, 

in 3 replicates of 20-L collapsible polyethylene cubitainers. We collected the natural assemblage 

of phytoplankton smaller than 50 µm and excluded large phytoplankton for juvenile copepod 

incubation, considering that nauplii and copepodites of our target size range mainly feed on 

small prey of about 10 µm (an optimal length ratio of 18; Hansen et al. 1994). Seawater with 

phytoplankton at 10-m depth was collected using 20-L Go-Flo bottles, and screened it through 

50-µm mesh prior to filling of cubitainers to ~90% capacity. Seawater accompanying the 

size-fractionated copepods made up the remaining volume of the 20-L cubitainers (Fig. A.1 in 

Appendix A). 
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We used two Norpac nets, a 50- and a 100-µm mesh to collect live animals (mainly copepods) 

for incubations of size-fractionated copepods. At each sampling site, the nets were set to 10-m 

depth and allowed to drift with the ship for 5−10 min. The contents of each net were carefully 

re-suspended in buckets filled with pre-screened incubation seawater. After gentle mixing, the 

contents of the 50-µm net were reverse-filtered through an 80-µm mesh and siphoned (~2 L) into 

cubitainers for the 50−80 µm artificial cohort incubations. Another subsample from the 80-µm 

mesh reverse filtrate was preserved in 5% formalin-buffered seawater to calculate the biomass 

distribution at the start of the incubation. The same process was applied to the contents of the 

100-µm mesh net, but reverse-filtered with a 150-µm mesh, to establish the 100−150 µm 

artificial cohort. All cubitainers were incubated in 200-L dark black tanks filled with circulating 

seawater pumped constantly from the sea surface layer (Fig. A.1 in Appendix A). 

We set the incubation time to 24 h for the 50−80 µm and 48 h for the 100−150 µm size 

fraction in order to ensure that growth was measurable (Lin et al., 2013a). The environment in 

the cubitainers was assumed to be similar to in situ conditions during the incubation, except that 

the tanks were always kept dark during incubation.	Such a design aims to limit the growth of 

primary producers during incubation. At the end of shipboard experiments, we terminated the 

incubations and preserved the individuals in 5% formalin-buffered seawater (Lin et al., 2013a). 
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We estimated the body size distribution of copepodites and nauplii at the start and end of 

incubations. For samples collected early in the study period (29 samples), we used a dissecting 

microscope. We identified and enumerated copepod groups in the preserved samples (in total 

~500 individuals), and took individual images with a CCD camera mounted on the microscope 

(Olympus DP71 with the software analySIS LS Starter 2.6). From these copepod digital images, 

we measured individual prosome length and width and calculated the biovolume of each 

individual nauplius and copepodite as: Biovolume (µm3) = prosome length × width2 (Lin et al., 

2013a; Wong et al., 2017). For samples collected later (25 samples), we measured body size 

automatically with the FlowCAM. We set the FlowCAM to the 4X objective (effective 

magnification = 40X) and 300-µm flow cell (optimal for size range 30−300 µm) to capture the 

copepodite and naupliar images in autoimage mode. We then transformed the area-based 

diameter (ABD) biovolume to equivalent microscope-measured biovolume applying the 

equations reported by Wong et al. (2017). This transformation ensures that the growth rates 

estimated by the two methods are comparable in our study. We then calculated specific growth 

rates (d-1) of all juvenile groups based on the assumption of exponential growth (Lin et al., 2013a) 

as follows:   GR i = ln(WiT / Wi0 ) / T , where Wi0 and WiT are the modes of biovolume (µm3) at the 

start and end of incubation, respectively, and T is the incubation time: 1 day (24 hours) for the 

50−80 µm and 2 days (48 hours) for the 100−150 µm size fraction (Lin et al. 2013b). 
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Some issues and caveats associated with our in situ artificial cohort incubations and efforts to 

account for and minimize them are worth discussion. We selected specific size ranges (50-80 and 

100-150 µm) to represent the nauplius and copepodite cohorts by reverse filtration (McKinnon 

and Duggan, 2003; Runge and Roff, 2000), but some adult individuals might still leak into the 

incubation; we have excluded these adult individuals when classifying and measuring juvenile 

body sizes to avoid bias. Furthermore, using peak instead of mean body size, we were able to 

avoid the influence of extreme body sizes in the cohort (Lin et al., 2013b). One potential source 

of bias that we were not able to quantify is mortality during incubations. In addition to mortality, 

competition among copepods and other zooplankton may also influence the growth rate, though 

the low density of non-copepod species and sufficient food and space conditions in the 

cubitainers should serve to reduce this effect. 

To eliminate effects of temperature on growth, we standardized all the GRi to 20 °C through 

the Van’t Hoff-Arrhenius equation (Brown et al., 2004). To calculate copepod community 

production rates, we measured the biomass (Bi) of each copepod group. To obtain group-specific 

biomass, we collected copepodites and nauplii with a 50 µm mesh Norpac net equipped with a 

mechanical flow meter (HYDRO-BIOS) and preserved the samples in seawater-buffered 10 % 

formalin. We sorted and counted the number of individuals for each group. Volumes filtered by 

the nets were estimated from the flow meter and applied group-specific abundances to calculate 
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density (ind m-3). Densities were then multiplied by mean C biomass for each group. The mean C 

body mass of each copepod group was calculated from the individual biovolume distribution at 

the start of each incubation. Copepod biovolume was transformed to wet weight (WW) following 

Svetlichny (1983): WW = Kc × Biovolume, where Kc is 0.6 for calanoids and 0.705 for 

cyclopoids (see McKinnon and Duggan 2003), and 0.65 for groups where conversion factors 

were not available. The wet weight was then transformed to C body mass (CB) by dry weight 

(DW) = 0.135×WW (Postel et al., 2000) and CB = 0.42 × DW (Beers, 1966). Assuming 

exponential growth, the daily group-specific biomass increment of group-specific production 

  CPi = Bi(e
GR i −1)  and community 

  
CP = CPi

i
∑ . 

 

3.2. Prey stoichiometry, biomass and PP measurements 

As a proxy for prey (mainly phytoplankton) stoichiometry, we measured the C:N:P molar 

ratio of particulate organic matter (POM) from the euphotic zone, where photosynthesis and 

grazing are focused. We collected POM < 50 µm from 50-µm sieve-filtered water samples (5 L 

water was filtered from 20 L Go-Flo bottles each depth; sampling 4 depths in the euphotic zone) 

onto pre-combusted GF/F papers (500°C, 6 hours), and froze the POM samples at −20 °C on 

board. Prior to elemental analysis, samples were acidified and dried for at least 24 hours to 

remove inorganic carbon. We used an elemental analyzer (EA1108, Fisons, Italy, and FLASH 
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2000, Thermo SCIENTIFIC, USA) to measure the C and N content in the POM. The P content 

was measured using molybdate spectrophotometric analysis following wet digestion of POM 

samples with nitric acid (Parsons et al., 1984). The P content in 17 of the 54 samples was below 

detection limit. The prey C:N:P molar ratios were then calculated from the C, N, and P contents 

in POM. Finally, PP (mg C m-3 d-1) was estimated with an on-board carbon radioisotope 

incubation method (Gong and Liu, 2003). 

 

3.3. Assessing phytoplankton and copepod compositions 

In addition to prey stoichiometry and PP, we also considered the taxonomic/group 

compositions of copepods and phytoplankton as potential factors affecting CP. Phytoplankton 

composition (biovolume composition of morphological groups) from the euphotic zone was 

enumerated for only 34 of the 54 experiments. We used the biovolume composition of 

phytoplankton considering that phytoplankton biomass, instead of abundance, limits zooplankton 

growth. The relative biovolume of phytoplankton group i was calculated as: 

  

R iB =
BioVi,m

m
∑

BioVj ,n
n
∑

j≠detritus
∑ , 

where BioVi,m is the ESD biovolume (µm3) of cell m classified as group i (small phytoplankton, 

medium phytoplankton, large phytoplankton, diatoms, dinoflagellates, ciliates, and cyanobacteria; 
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see Appendix C), and the denominator is the total phytoplankton biovolume excluding detritus. 

The copepod composition was calculated for all incubations. Here, we focused on abundance 

composition of the copepod juvenile groups included in the artificial cohort experiment, given 

that the interactions between copepod juveniles are at the individual level. The abundance ratio 

of copepod group i (copepodites of calanoid, cyclopoid, corycaeid, oncaeid, harpacticoid, and 

nauplii; see Appendix C) was calculated as 
  
R i# = ni nj

j
∑ , where ni is the abundance (ind m-3) 

of group i and the denominator is the sum of all copepod group abundances. See Apppendix C 

for detailed descriptions of phytoplankton and copepod grouping procedures. 

 

3.4. Statistical analysis  

To test if CP decreases with high and/or excessively low prey C:N and C:P ratios (H1), we 

first plotted CP against prey C:N or C:P ratio. Visually, we saw no evidence of low CP under 

low prey C:N or C:P ratio, rather we observed a declining trend (Fig. 1). Thus, we applied linear 

regressions of CP versus prey elemental ratios. To test if CP increases with PP (H2), we applied 

linear regression of CP versus PP. The regression relationships were estimated with the lm 

functions of the R package stats. We also depicted PP by color on the CP versus C:N (C:P) ratio 

scatter plot, and C:N ratio on the CP versus PP scatter plot to visualize the additive effects of 

prey stoichiometry and PP on CP (see Fig. 1). We further applied quantile regressions (rq 
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function in R package quantreg) to investigate the relationships between CP versus prey 

stoichiometry and PP under different levels of CP (Fig. B.1). 

In addition, we employed multivariate linear regression to investigate the relative effects of 

prey stoichiometry, PP, phytoplankton and copepod compositions on CP (H3). The relative C 

biomass of dominant phytoplankton groups (RMediumB and RLargeB as medium and large 

phytoplankton ratios, RDiatomB as diatom ratio) and dinoflagellates (RDinoB) that occasionally 

bloom (Fig. C.1a in Appendix C), and relative abundance of the dominant copepodite groups 

(RCal# and RCyc# as calanoid and cyclopoid ratios) and nauplii (RNau#) (Fig. C.1b in Appendix C) 

were incorporated into the full model of multivariate regression (see details in Appendix C). We 

identified the most parsimonious model on the basis of Akaike’s information criterion (AIC) 

following a stepwise model selection using the stepAIC function of the R package MASS. 

Furthermore, the relative importance of these variables on CP in the most parsimonious model 

was assessed by their R2 contribution using the R package relaimpo. 

 

4. Results 

4.1. Does CP decrease with suboptimal prey C:N and C:P ratios (H1)? 

Linear regression analyses indicates a statistically significant decline of CP with prey C:N 

ratio (Fig. 1a; CP = −0.088 Prey C:N+0.768, R2 = 0.190, p = 0.001, n = 54), but the linear 
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regression of CP versus prey C:P ratio was not significant (Fig. 1b; CP = −9.852×10−5 Prey C:P 

+ 0.290, R2 = 0.042, p = 0.224, n = 37). The quantile regressions exhibited that only the quantiles 

≥ 50 % showed significantly negative relationships between CP and prey C:N (50% and 90% 

quantiles) and between CP and prey C:P (75% quantile) (Fig. B.1a and b).  
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Figure 1. Relationship between copepod production (CP) versus (a) POM C:N ratio, (b) POM 
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C:P ratio and (c) PP. The vertical dashed line indicates the Redfield ratio in (a). The color of the 

symbols in (a) and (b) represents PP (mg C m-3 d-1). The vertical dashed line in (a) indicates the 

Redfield molar C:N ratio. The color of the symbols in (c) represents POM C:N ratio (mole:mole). 

The solid (p < 0.05) lines represent the results of linear regression. 

 

4.2. Does CP increase with high PP (H2)? 

PP could be a determinant factor influencing CP (Fig 1c; CP = 0.004 PP + 0.148, R2 = 0.095, 

p = 0.024, n = 54); however, the regression becomes non-significant (CP = 0.005 PP + 0.129, R2 

= 0.072, p = 0.052, n = 53) after removing an extremely high PP outlier value (> 100 mg C 

m-3d-1). Moreover, the quantile regressions were not significant for any quantile (Fig. B.1c). 

 

4.3. Is CP influenced by copepod and phytoplankton compositions (H3)? 

Along with prey C:N ratio (the main stoichiometric ratio that influences CP) and PP, we 

incorporated the relative biomass of dominant phytoplankton groups, and the relative abundance 

of the dominant nauplii and copepodite groups into the multivariate model (Appendix C). The 

most parsimonious model explaining variation in the CP includes: prey molar C:N ratio (Prey 

C:N), cyclopoid copepodite abundance ratio (RCyc#), and dinoflagellate biomass ratio (RDinoB) 

(Table 1; the best multivariate linear model: CP = −0.182 Prey C:N – 1.092 RCyc# + 0.602 RDinoB 
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+ 1.385, R2 = 0.418, p = 0.001, n = 34). The relative importance of the three variables follows the 

order: Prey C:N > RCyc# > RDinoB (Table 2). 

 

Initial model: CP = Prey C:N + PP + RMediumB + RLargeB + RDiatomB + RDinoB + RCal# + RCyc# + 
RNau# 
Step AIC 
 −95.37 
− PP −97.35 
− RDiatomB −99.20 
− RMediumB −100.94 
− RLargeB −102.66 
− RNau# −102.83 
− RCal# −103.45 
Most parsimonious model: CP = 1.385 − 0.182 Prey C:N + 0.602 RDinoB – 1.092 RCyc# 

Table 1. AICs of multivariate linear regressions and stepwise model selection for investigating 

the factors that determine copepod production (CP). RMediumB, RLargeB, RDiatomB and RDinoB 

represents the biomass ratios of medium, large phytoplankton, diatoms, and dinoflagellates to 

total phytoplankton biomass. RCal#, RCyc#, and RNau# represents the abundance ratio of calanoid 

copepodites, cyclopoid copepodites, and all nauplii to total copepod abundance. There are 34 sets 

of experiments with complete CP, stoichiometry, PP, and plankton composition data. 
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Variable Relative importance 

Prey C:N 0.762 

RCyc# 0.191 

RDinoB 0.047 

Table 2. Relative contributions of variables explaining the variation of copepod production (CP) 

in the most parsimonious model. 

 

5. Discussion 

5.1. Prey stoichiometry, especially prey C:N ratio, affects CP 

CP is lower when prey molar C:N and C:P ratios are high (Fig. 1a and C:P ratio > 500 in Fig. 

1b), inferring that low N and P in food may limit CP. It is worth noting that we found a clearer 

reduction of CP with high prey C:N than with high C:P ratio, which infers that N limitation 

seems to be more important to copepod community production rate in our studied marine areas. 

The biomass of copepods also decreased significantly with increasing prey C:N ratio, showing a 

similar trend to CP with prey C:N ratio (Fig. 2; Copepod biomass = −0.511 Prey C:N + 4.723, R2 

= 0.085, p = 0.032, n = 54). This may be due to our focus on marine copepods, which are more 

sensitive to N limitation than cladocerans (Hassett et al., 1997; Sterner and Elser, 2002). 

Furthermore, CP and copepod biomass were dominated by copepodites (Fig. B.3 and B.4), which 
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have higher N demand than nauplii (that is, copepodites have significantly lower C:N and 

slightly higher N:P ratio than nauplii, Fig. B.2a and c in Appendix B; also see Villar-Argaiz et al. 

2002 and Meunier et al. 2015). Though naupliar abundance is high in tropical copepod 

communities, naupliar biomass and production rates are usually much lower compared with 

copepodites, due to the low body mass of nauplii (Hopcroft et al., 1998). Thus, prey 

N-deficiency that decreases copepodite growth should affect copepod community production 

more strongly. 

 

Figure 2. Relationship between copepod community carbon biomass versus POM C:N ratio. 

The color of the symbols represents PP (mg C m-3 d-1). The solid (p < 0.05) line represents the 

result of linear regression. 
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We found that low CP is associated with high prey C:N ratio, suggesting that copepod carbon 

biomass production is more limited by N, rather than C, in our study area. However, we found 

large variation of CP when the C:N ratio of prey is below or approximately the same as that of 

copepods (below Redfield ratio 6.625 in Fig. 1a; Gismervik 1997). This contradicts to the 

knife-edge hypothesis that CP should decrease when prey nitrogen is in excess. To find out what 

may explain the high variation of CP when the prey molar C:N ratio is below Redfield (< 6.625), 

we applied stepwise multiple linear regression to explain CP considering the relative abundance 

of copepod groups. We found that the model includes only the naupliar abundance ratio 

(considering only data of prey C:N ratio < 6.625: CP = 0.579 RNau# − 0.110, R2 = 0.130, p = 

0.043, n = 32; Table 3), suggesting that dominance of nauplii increases CP when prey N is 

higher than the need of copepods. That is, when naupliar and copepodite growth is not 

nitrogen-limited, the higher abundance of fast-growing early life stages (i.e. nauplii) would 

increase the total biomass production of the copepod community (Hopcroft et al., 1998; Hopcroft 

and Roff, 1998; Hygum et al., 2000; Leandro et al., 2006).  
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Initial model: CP = RCal# + RCyc# + RNau# 
Step AIC 
 −68.52 
− RCal# −69.22 
− RCyc# −70.56 
Most parsimonious model: CP = 0.579 RNau# − 0.110 

Table 3. AICs of multivariate linear regressions and stepwise model selection for investigating 

the factors that determine copepod production (CP) when POM C:N < 6.625 (Redfield ratio). 

RCal#, RCyc#, RNau# represents the abundance ratio of calanoid copepodites, cyclopoid copepodites, 

and all nauplii to total copepod abundance. There are 32 sets of experiments with POM molar 

C:N < 6.625, CP, and plankton composition data. 

 

5.2. Primary production influences CP, but is not the main limiting factor for CP 

The classical bottom-up effect was observed in the East China Sea and the Dongsha Atoll, 

but did not affect CP as strongly as the prey C:N ratio (Fig. 1c). We found that the most 

parsimonious multivariate regression model does not include PP; that is, PP may not be the most 

important factor explaining CP (Table 1). In particular, at low PP (PP < 30 mg C m-3 d-1), we 

found that high CP occurred with lower prey C:N ratios (Fig. 1c). This indicates that low PP may 

still support appreciable CP when prey nitrogen content is sufficient. Whereas previous studies 

reported an interactive influence of phytoplankton P content and PP on the production of 
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freshwater herbivores (Persson et al., 2007; Urabe et al., 2002), we found that sufficient prey N 

is related to high CP in this subtropical marine system. 

 

5.3. Prey and copepod compositions affect CP 

While prey C:N ratio has the highest relative importance in the multivariate model, the 

abundance ratio of cyclopoid copepodites and the biomass ratio of dinoflagellates also makes 

significantly contributions to variation of CP (Table 1 and Table 2). The negative relationship 

between CP and cyclopoid copepodites may be due to the lower growth rates of cyclopoid 

relative to calanoid copepodites (Hirst and Lampitt, 1998; Lin et al., 2013a). The positive 

correlation between CP and the dinoflagellate biomass ratio has been supported by diet 

manipulation experiments, where copepods consuming a mixture of dinoflagellates and 

microzooplankton grow better than feeding on a diatom-dominant diet (Nejstgaard et al., 2001). 

We infer from this result that prey and copepod compositions potentially influences the trophic 

interactions and CP, as proposed in our third hypothesis. In this study, we have focused on 

investigating total CP. Whereas, contrasting the difference in production among copepod 

taxonomic groups and stages could be interesting. These taxonomy- and stage-specific analyses 

will be reported in a separate work. 
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5.4. Other trophic interactions and environmental conditions that may determine CP 

Though we found that CP decreases with high prey C:N ratios and that it is additionally 

affected by both prey and copepod composition, these three factors together explain less than 

half the variation of CP (R2 = 0.418). The quantile regressions also showed that only the 

regressions of quantiles ≥ 50 % are significant (Fig. B.1a; regressions are significant at quantiles 

90% and 50%), indicating that stoichiometry alone could not explain those observations of low 

CP well. The other source of CP variation may be due to the reaction time needed for prey 

stoichiometry to change. The study of Malzahn and Boersma (2012) found that exposure to 

P-limiting food cause long-lasting reduction of copepod growth even after re-feeding with a 

P-sufficient prey. However, the C:N and C:P ratio of POM we measured is a snapshot of prey 

stoichiometry at the start of our incubations and does not necessarily reflect what the copepods 

experienced before incubation. Thus, if copepod growth has not adapted to change of prey 

stoichiometry, we may see a mismatch of observed prey stoichiometry and CP. 

We also noted some caveats associated with our measurements of prey C:N and C:P ratio: 

POM ≤ 50 µm includes phytoplankton as well as microzooplankton, mixotrophic protists (Flynn 

et al., 2013), and detritus (non-living particles; Postel et al. 2000). Microzooplankton and 

mixotrophic protists are key organisms in microbial food webs (Azam et al., 1983) and influence 

energy transfer to mesozooplankton (Calbet and Saiz, 2005), but we did not investigate the effect 
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of the microbial food web in this study. Furthermore, the existence of C-rich detritus (dead 

biomass) in the POM may increase the C:N or C:P ratio that we observed. Nevertheless, 

copepods can selectively choose living cells which have lower C:N and C:P ratios instead of 

ingesting dead biomass (Demott, 1988; Paffenhöfer and Sant, 1985), suggesting that the realized 

prey C:N and C:P ratios consumed by copepods may be lower than the POM C:N and C:P ratio 

we measured. With our current data, we could not separate the stoichiometric contribution of 

phytoplankton, microzooplankton and detritus to POM, and thus in this study we are not able to 

investigate these hidden trophic interactions. 

 

6. Conclusions 

In summary, our study demonstrates that copepod biomass production is mainly limited by 

prey stoichiometry in the subtropical marine ecosystems. In particular, when prey molar C:N or 

C:P ratio is high, CP is low. However, when prey molar C:N or C:P ratio is low, CP variation is 

large, highlighting the complexity of understanding CP in natural systems. Furthermore, copepod 

and phytoplankton compositions influence copepod community production as well. Interestingly, 

PP explained only a minor portion of the variation in copepod community production in the East 

China Sea and South China Sea. In conclusion, our in situ incubation experiments highlight the 

knowledge gained by measuring copepod growth and production rates for understanding 
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stoichiometric effects on copepod community, and also apprehend the complexity of copepod 

production variation in nature. 
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Appendix A: Graphical illustration of artificial cohort incubation procedure and 
basic environmental conditions in the sampling areas 

To better explain the procedure of our on board in situ artificial cohort incubation, we 
present a flow-chart to describe each methodological step in Figure A.1. We prepared 
three replicates of incubation for both naupilar (50-80 µm) and copepodite (100-150 µm) 
stages and incubated the two copepod life stages for 24 and 48 hours, respectively. The 
details of the experimental design are described in 2. Materials and methods section in 
the main text. 

Our sampling program focused on three areas: (1) the southern East China Sea (black 
dots); (2) the northern East China Sea (red dots); and (3) the Dongsha atoll (green dots) in 
the South China Sea (Fig. A.2). Detailed information on date, geographic coordinates and 
environmental conditions of each sampling and experiment, as well as primary and 
copepod production data are provided in Table A.1. The wide ranges of nutrient and 
chlorophyll a concentrations reflect the large gradient of trophic status in our study data. 
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Table A.1. Table of sampling dates latitude (°), longitude (°), weight-specific growth rate 
(GR; d-1), temperature-standardized copepod production (CP; mg C m-3 d-1), primary 
production (PP; mg C m-3 d-1), and environmental conditions (xls file 
TableA1_CPdatabase.xls). 
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Figure. A.1. Procedure of in situ artificial cohort incubation experiment. 
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Figure A.2. Map of sampling area. Black symbols indicate sampling sites of the southern 
East China Sea transect; red symbols indicate sampling sites in the northern East China 
Sea; green symbols represent sampling sites around the Dongsha atoll. 
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Appendix B: Stoichiometry, growth rate and production of copepod juvenile stages 
The quantile regressions showed complex relationship between copepod production (CP) and 

prey stoichiometry. The associations between CP and prey C:N and C:P ratios are not clear for 
low CP quantiles (quantile regressions were not statistically significant below 50 % quantiles; 
Fig. B.1), indicating that other factors influence low CP when nitrogen and phosphorus are not 
limiting. To further investigate the stoichiometry and life stages of copepod consumers and its 
possible link to production and growth rates, we measured the C:N and C:P ratios of plankton 
size fractions 50−104 µm (dominated by nauplii), and 104−200 µm (dominated by copepodites). 
The samples collected by the 50-µm mesh size Norpac net were processed through analytical 
sieves of 200-, 104-, and 50-µm mesh. C, N, P contents of the two target size fractions were 
measured following the same protocol as POM stoichiometry (see 2. Materials and Methods 
section). Previous studies have found that C:N and C:P ratios vary with copepod life stages, due 
to their different energy allocation strategies. In general, the naupliar stages have lower C:P but 
higher C:N ratios than the copepodite stages (Villar-Argaiz et al., 2002). Results of our field 
analyses also show that copepodites have significantly lower C:N ratio than nauplii (Fig. B.2a). 
This suggests that copepodites require more N to attain stoichiometric balance. In contrast, 
nauplii have slightly lower and less variable N:P ratio than copepodites (Fig. B.2c), and C:P 
ratios do not differ significantly between naupliar and copepodite stages (Fig. B.2b). This 
indicates that nauplii may require phytoplankton with higher P relative to N and a more stable 
N:P ratio of their food. Some samples exhibited extremely high C:N or C:P ratios, which may be 
due to the influence of C-rich detritus when processing samples through analytical sieves. 
Nevertheless, we still observed this general stoichiometric pattern of nauplii and copepodites. 

In most cases, copepodite production and biomass dominates the total community CP and 
zooplankton biomass (Fig. B.3 and B.4). The dominance of copepodites in CP and their apparent 
requirement for lower C:N in food may explain why phytoplankton C:N ratio plays a more 
important role than C:P ratio in influencing total CP (Fig. 1a and 1b). 

Interestingly, though CP is only significantly correlated with POM C:N ratio, community GR 
is significantly correlated only with prey C:P ratio (Fig. B.5). This implies that P is a more 
important element to growth (Main et al., 1997). Copepod community mean growth rate is 
calculated as the biomass weighted-mean growth rate of all copepodite and nauplius groups 

  
GR =

BiGR i∑
Bi∑ . The community mean GR is not significantly correlated with POM C:N ratio (y 

= −0.018 x + 0.284, R2 = 0.026, p = 0.242; Fig. B.5a), but is significantly and negatively 
correlated with POM C:P ratio (y = −9.298×10-5 x + 0.203, R2 = 0.117, p = 0.038; Fig. B5b), 
although the trend is heavily influenced by the extremely high C:P ratio. The reason why CP is, 
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but GR is not, significantly correlated with prey C:N ratio is that sufficient N in prey is necessary 
for copepodite biomass production. We infer that total CP decreases with high prey C:N ratio 
because a high prey C:N ratio reduces the efficiency to maintain and produce proteinaceous body 
structures of copepods (Carrillo et al., 2001). 
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Figure B.1. Quantile regressions 
between copepod production (CP) 
versus POM (a) molar C:N, (b) C:P 
ratios, and (c) PP. The regressions of 
10%, 25%, 50%, 75% and 90% quantile 
regressions are shown. Solid lines 
represent regressions with p < 0.05 and 
dotted lines represent regressions with p 
≥ 0.05. 
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Figure B.2. C:N and C:P and N:P ratio of 
naupliar and copepodite stages. The mean 
C:N ratio (a) of naupliar stages is 
significantly greater than that of copepodite 
stages (t-test. t = −2.914, p = 0.0046). The 
mean C:P (b) and N:P (c) ratios of naupliar 
and copepodite stages are not significantly 
different (t-test. t = −0.349, p = 0.729; t = 
0.713, p = 0.479). 
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Figure B.3. Production of naupliar and copepodite stages, and the entire copepod community 
(All). Community copepod production (CP) is usually dominated by copepodites. 
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Figure B.4. Ratios of C mass of naupliar and copepodite stages to total copepod C biomass. 
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Figure B.5. Relationship between copepod community growth rate (GR) versus (a) POM C:N 
ratio and (b) POM C:P ratio. The solid red line represents the result of significant linear 
regression (p < 0.05). 
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Appendix C: Phytoplankton and copepod compositions 
The phytoplankton community was sampled using 20 L Go-Flo bottles. The procedures have 

been explained in García-Comas et al. (2016) and are briefly described here. From sea surface to 
the Chl-a maximum, 333 or 250 mL of seawater was sampled at 3 or 4 depths and was then 
thoroughly mixed (making up the total water volume of 1000 mL) to represent the phytoplankton 
community in the euphotic zone. The samples were preserved in 0.2% paraformaldehyde 
(nanophytoplankton, <50 µm) and 2% acidic Lugol’s solution (microphytoplankton, 50−200 µm) 
and stored at 4 °C. Due to the low particle density, 100 mL of microphytoplankton sample were 
condensed by sedimentation for 24 hours to 3.6−4.5 mL. Nanophytoplankton samples were not 
concentrated before analysis. We subset 0.5−5 mL (nanophytoplankton) and 3.6−4.5 mL 
(concentrated microphytoplankton) samples for each run. The cells of phytoplankton were 
measured with the FlowCAM (Álvarez et al., 2014, 2011; Ide et al., 2008). Following the 
manufacturer’s manual, the 10X objective was used with a 100 µm flow cell for 
nanophytoplankton and the 4X with a 300 µm flow cell for microphytoplankton. The 
phytoplankton images were captured and processed in autoimage mode. Phytoplankton images 
were thereafter manually checked, and detritus images were removed. Non-detritus particles 
captured by FlowCAM were further classified into 7 groups: Small (<5 µm phytoplankton), 
Medium (5−50 µm), Large (50−200 µm phytoplankton that are not diatom, dinoflagellate, ciliate, 
or cyanobacterium), Diatom (chain-forming and single diatom), Dino (shelled and naked 
dinoflagellate), Ciliate (tintinnid and other naked ciliate), and Cyano (filamentous 
cyanobacterium, mainly Trichodesmium (Chang et al., 2000)). We ran 3 replicates and 2 
replicates, respectively, for nanophytoplankton and microphytoplankton, and took the average of 
the replicate runs. 

The boxplots of phytoplankton biomass composition ratio (Fig. C.1a) showed that small 
phytoplankton, ciliates and Trichodesmium spp. are very low in biomass. Due to the detection 
limit and resolution of the FlowCAM, cells <5 µm were difficult to identify and their density was 
likely underestimated (Dashkova et al., 2017). Ciliates, especially naked ciliates, may suffer 
from shrinkage and biomass underestimation (Choi and Stoecker, 1989). The contribution of 
Trichodesmium to phytoplankton production is low (Chang et al., 2000), and is probably not a 
major dietary component for copepod. In addition, although Trichodesmium can be grazed by 
some harpacticoid species (Roman, 1978), a stable isotope study also revealed that 
Trichodesmium does not dominate the diet of copepods in nature (Eberl and Carpenter, 2007). 
Given the factors above, we did not include these three groups in the multivariate regression 
analysis. 

The zooplankton community samples were collected with oblique net hauls using a 50-µm 
mesh Norpac plankton net and were preserved in sea water-buffered 10% formalin. We manually 

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728



	 14	

counted copepodites and nauplii under a dissecting microscope to obtain the abundance of each 
group. Naupliar stages were the most abundant group and calanoids and cyclopoids dominated 
the copepodite community (Fig. C.1b). The other three groups were low in abundance and their 
contribution to CP is small. Thus, we mainly considered nauplii, and calanoid and cyclopoid 
copepodites abundance ratios in our multivariate regression model.  
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Figure C.1. Boxplots illustrating the phytoplankton biovolume (µm3 mL-1) ratio (a) and copepod 
composition based on the abundance (ind m-3) ratio (b). In (a), Small, Medium and Large 
represents the phytoplankton of size range <5 µm, 5-50 µm, and 50-200 µm; Dino and Cyano 
indicates dinoflagellate and cyanobacteria, respectively. In (b), nCN, nON, and nHN represents 
the nauplii of calanoid, cyclopoid, and harpacticoid. Cal, Cyc, Cory, Onc, and Har represents the 
copepodites of calanoid, cyclopoid, corycaeid, oncaeid, and harpacticoid. 
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