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Various synchronizations and related phenomena in discrete-time coupled chaotic ro-
tors are studied. For unidirectional and bidirectional couplings, various dynamical forms of
chaotic phase synchronization (CPS) and their relation to the Lyapunov spectra are shown.
For a small positive maximum Lyapunov exponent of the coupled element in the case of the
unidirectional coupling, the coupling strength at which CPS is achieved almost coincides
with the coupling strength at which generalized synchronization (GS) is achieved. On the
other hand, for a large positive maximum Lyapunov exponent, the coupling strength is much
smaller on the CPS transition point than on the GS transition point. Statistical properties
of the phase difference are analytically and numerically studied by large-deviation analysis.
On the basis of the grand canonical formalism, the fluctuation spectrum is theoretically
derived, which is compared with the numerical results. These agree with the theoretical
estimation, and large deviations are detected out of the domain in which the central limit
theorem cannot be applied.

Subject Index: 055

§1. Introduction

Originating with Huygens’ observation of coupled pendula, various synchroniza-
tion phenomena have been studied, mainly by considering continuous-time dynamical
systems.1) Introducing a suitable Poincaré surface, one can obtain a discrete-time
dynamical system called a Poincaré map. Discrete-time models are also useful for an-
alyzing large-deviation statistics,2),3) singularity spectra,4) and spectral densities5) of
modulational intermittency, also known as on-off intermittency. This phenomenon
occurs when complete synchronization, that is, synchronization between identical
chaotic oscillators,6),7) is slightly broken.

Various synchronization phenomena exist between chaotic oscillators. For a
chaotic dynamical system whose phase and amplitude can be defined, one can obtain
phase-synchronized and amplitude-desynchronized states between chaotic oscillators
in which control parameters are slightly different. This is called chaotic phase syn-
chronization (CPS).8)–12)

For a unidirectionally coupled system consisting of a driving system and a re-
sponse system, generalized synchronization (GS) is observed, in which state variables
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of the response system are given by a function of those of the driving system.13),14)

Starting from an equation of motion of a harmonic oscillator with a periodic
external kicking, Fujisaka et al.15) introduced the following map described with a
phase ψ

ψn+1 = eiωfa(ψn, ψ
∗
n) (1.1)

with

fa(ψ, ψ∗) ≡ ψn + Fa(ψ, ψ∗), (1.2)

where asterisks denote complex conjugates and the natural frequency of the harmonic
oscillator is given by ω. A specific choice of the function fa yields the Ikeda map in
the field of quantum optics.16) We fix the function as

fa(ψ, ψ∗) = (a− (1 + ib)|ψ|2)ψ (1.3)

in the following and define the amplitude R and the phase θ as R ≡ |ψ| and θ ≡
arg(ψ), respectively. Note that, for the choice of Eq. (1.3), Eq. (1.1) possesses a
Lyapunov exponent of zero owing to its invariance under the transformation ψ →
e−iϕψ.

In the same way, coupled equations of motion of a harmonic oscillator with a
periodic external kicking yield the following coupled map:15)

ψ
(j)
n+1 = eiωj+Dfaj (ψ

(j)
n , ψ(j)∗

n ) (1.4)

with the coupling operator D. For a quantity gj concerning the jth oscillator, D
satisfies Dgj =

∑
k Bjkgk with coefficients Bjk and eiωj+Dgj =

∑
k(e

Λ̂)jkgk with the
coupling matrix Λ̂ given by (Λ̂)jk = iωjδjk + Bjk, where δjk denotes Kronecker’s
delta.

In the following, we confine ourselves to a coupled system (ψ(1)
n , ψ

(2)
n ) consisting

of two elements. The instantaneous phase differenceΔθn is given byΔθn ≡ θ
(1)
n −θ(2)

n .
We define the average frequency difference ΔΩ as

ΔΩ ≡ lim
T→∞

(ΔθT −Δθ0)/T, (1.5)

and we define the CPS as the state satisfying

ΔΩ = 0. (1.6)

The average value of the phase difference Δθn obeys

〈Δθn〉 = Δθ0 +ΔΩ · n, (1.7)

where 〈· · ·〉 is the statistical average over an ensemble.
We focus on the following points in this paper. It is easier to adjust a suitable

parameter a of the chaotic map given by Eqs. (1.1) – (1.3) to yield a desired value
of the largest Lyapunov exponent, as shown in the following section. We obtain
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the Lyaponov spectra for a coupled system consisting of undeveloped and developed
chaotic elements with small and large values, respectively, of the largest Lyapunov
exponent. Then, we perform a return map (RM) analysis for unidirectionally and
bidirectionally coupled systems whose elements are weak or developed chaos. From
the RM in the vicinity of the CPS transition point, where the CPS is slightly broken,
we can assume a statistical property of the time interval of the phase slip. On the
basis of this assumption, we derive large-deviation properties of the phase difference.

In §2, we perform RM analyses and study the parameter dependence and cou-
pling strength dependence of the signs of Lyapunov exponents in the vicinity of the
CPS transition for unidirectionally and bidirectionally coupled systems. The rela-
tive relationship between the CPS transition points and the position at which the
Lyapunov exponents change sign on the plane spanned by the parameter a and the
coupling constant differs considerably between weakly and strongly chaotic elements.
This is not the case for the bidirectional coupling. We apply a large-deviation analy-
sis to the fluctuation of phase differences, when the CPS is slightly broken in §3. Our
theoretical estimation agrees with the numerical results. The final section is devoted
to concluding remarks.

§2. Lyapunov spectra and various dynamical forms
of the chaotic phase synchronization

In this section, we show various dynamical forms of the CPS and their relation to
the Lyapunov spectra for unidirectional and bidirectional couplings. The relationship
between the coupling strength at which the magnitude relation of the Lyapunov
exponents changes and that at which the CPS occurs, the RMs (Δθn, Δθn+n0) of
the phase difference Δθn, and the bifurcation diagrams, that is, the dependences
of the amplitude on parameter a, are also analyzed. In the following, we set ω1 =
0.11, ω2 = 0.03, Δω ≡ ω1 − ω2 = 0.08, a1 = a2 = a, and b = 0. This setting always
yields phase-coherent oscillations, different from phase-coherent or phase-incoherent
Rössler oscillations.10)

For a single oscillator ψn under the above parameter setting, the temporal
evolution of the amplitude Rn ≡ |ψn| ≥ 0 is independent of the phase dynamics
θn+1 = θn +ω and governed by the unimodal mapping Rn+1 = (a−R2

n)Rn from the
interval I = [0,

√
a] into I, which takes a local maximum value at R =

√
a/3. The

fixed point R = 0 always exists. The other fixed point R =
√
a− 1 in I exists for

a ≥ 1. The periodic points with period two R =
√

a±√
a2−4
2 in I exist for a ≥ 2.

The bifurcation diagram of the amplitude against the parameter a is shown in Fig.
1. At a � 2.314815 and a � 2.36089376, four chaotic bands merge into two bands
and two bands merge into a single band, respectively. The attractor is destroyed
at a = 3

√
3/2 � 2.598, where the trajectory starting at R0 =

√
a/3 takes the local

maximum R1 =
√
a, and then collides with the unstable fixed point R2 = 0. One

of the Lyapunov exponents is always zero, which originates from the marginal phase
dynamics θn+1 = θn + ω. The sign of the other Lyapunov exponent is determined
by the dynamics of Rn, which is controlled by the parameter a.
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(a) (b)

Fig. 1. Bifurcation diagrams of the amplitude R = |ψ| of the single oscillator ψ plotted against the

parameter a for the whole parameter range 0 ≤ a ≤ 3
√

3/2 in (a) and for the single-band range

2.361 ≤ a ≤ 3
√

3/2 in (b). Chaotic bands and periodic windows are observed.

2.1. Unidirectional coupling

In the case of a unidirectional coupling from ψ(1) to ψ(2), the coupling term is
given by Dg1 = 0 and Dg2 = K(g1 − g2), and the coupling matrix Λ̂ satisfies

Λ̂ =
(
iω1 0
K iω2 −K

)
, (2.1)

where K is the coupling strength. For this setting, from Eq. (1.3) we have{
ψ

(1)
n+1 = eiω1fa1(ψ

(1)
n , ψ

(1)∗
n ),

ψ
(2)
n+1 = A(Δω)(1 − e−K−iΔω)eiω1fa1(ψ

(1)
n , ψ

(1)∗
n ) + e−Keiω2fa2(ψ

(2)
n , ψ

(2)∗
n )

(2.2)

with A(Δω) ≡ K(K − iΔω)/(K2 + (Δω)2). For K → ∞, we have ψ
(2)
n+1 →

eiω1fa1(ψ
(1)
n , ψ

(1)∗
n ) = ψ

(1)
n+1 i.e., two oscillators coincide with each other. One of the

four Lyapunov exponents is always zero as a result of the marginal phase dynamics
of the driving system ψ

(1)
n .

Defining ψ̂n ≡ ψn exp(−inω1), we can rewrite Eq. (2.2) as{
ψ̂

(1)
n+1 = fa1(ψ̂

(1)
n , ψ̂

(1)∗
n ),

ψ̂
(2)
n+1 = A(Δω)(1 − e−K−iΔω)fa1(ψ̂

(1)
n , ψ̂

(1)∗
n ) + e−Ke−iΔωfa2(ψ̂

(2)
n , ψ̂

(2)∗
n )

(2.3)

using the fact that fa → eiϕfa holds for ψ → eiϕψ in Eq. (1.3). Since fa(ψ, ψ∗)∗ =
fa(ψ∗, ψ) holds in Eq. (1.3) for b = 0, the complex conjugate of Eq. (2.3) yields{

ψ̄
(1)
n+1 = fa1(ψ̄

(1)
n , ψ̄

(1)∗
n ),

ψ̄
(2)
n+1 = A(−Δω)(1 − e−K+iΔω)fa1(ψ̄

(1)
n , ψ̄

(1)∗
n ) + e−KeiΔωfa2(ψ̄

(2)
n , ψ̄

(2)∗
n ),

(2.4)
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(a) a = 2.37 (b) a = 2.41

(c) a = 2.445 (d) a = 2.52

Fig. 2. Four Lyapunov exponents plotted against the coupling strength K for a = 2.37 in (a), 2.41

in (b), 2.445 in (c), and 2.52 in (d), in which one of the two exponents originating from the

chaotic driving system is always positive, and the other is always zero.

where ψ̄(j)
n denotes ψ(j)∗

n and A(Δω)∗ = A(−Δω) is used. Equation (2.4) coincides
with Eq. (2.3) under the substitution Δω → −Δω. Thus, the essential parameters
of the system are a1 = a2 = a, K, and |Δω|.
2.1.1. CPS transitions and Lyapunov spectra

The Lyapunov spectrum consists of four Lyapunov exponents. The two of those
originating from the chaotic driving system are independent of the coupling strength
K. One is zero, and the other is positive. As shown in Fig. 2, the other two Lyapunov
exponents depend on the coupling strength K and are not always monotonically
decreasing functions of K.

In Fig. 3, the symbols (•) and (�) are plotted on the K-a plane, at which
the second-largest Lyapunov exponent changes from positive to negative and from
negative to positive, respectively. The CPS transition points given by Eq. (1.6)
are plotted with the symbol (∗) together with a dotted line in the a-K plane in
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Fig. 3. The symbols (•) and (N) are plotted on theK-a plane, at which the second-largest Lyapunov

exponent changes from positive to negative and from negative to positive, respectively, as the

coupling strength K is increased for the unidirectional coupling. The CPS transition points

given by Eq. (1.6) are plotted with the symbol (∗) together with a dotted line in the a-K plane.

Fig. 3. For a � 2.45 with the smaller positive largest Lyapunov exponent, the
CPS transition point (×) almost coincides with the GS transition point (•). For
2.4 � a � 2.44, two positive Lyapunov exponents exist between the upper symbol
(•) and the lower symbol (�) yielding hyperchaos, and a single positive Lyapunov
exponent exists immediately after the CPS is achieved. For a � 2.473 with the larger
positive largest Lyapunov exponent, the coupling strength K is much smaller on the
CPS transition point (×) than on the GS transition point (•) with two positive
Lyapunov exponents, where the second-largest Lyapunov exponent monotonically
decreases with increasing K.

For the unidirectional coupling, GS occurs when one of the positive Lyapunov
exponents becomes negative. To confirm the condition under which GS occurs, it
is also verified that 4 × 106 replicas of the response system with arbitrarily chosen
different initial states collapse in the long run.

2.1.2. Return maps
We consider RMs Δθn+n0 = Rn0(Δθn) of the phase difference Δθn, where n0 is

a suitable time difference. Just before the CPS is achieved, the phase difference Δθn
has a similar mechanism of Type I intermittency owing to the tangent bifurcation,
which consists of a laminar part near the diagonal and a reinjection part correspond-
ing to the phase slip, as shown in Fig. 4. Immediately after the CPS is achieved, the
phase is locked in a finite range.17)

We plot the RMs of the phase difference Δθn in Fig. 5, where RMs of the
phase difference Δθ for the unidirectional coupling (Δθn, Δθn+n0) are plotted. The
left-hand side is given for a = 2.37 and n0 = 10 with a single positive Lyapunov
exponent, and the right-hand side for a = 2.52 and n0 = 10 with two positive
Lyapunov exponents. The coupling strength K is chosen where the CPS is slightly
broken in (a) (K = 0.079 (left) and K = 0.089 (right)) and slightly achieved in
(b) (K = 0.081 (left) and K = 0.09 (right)). The whole RM of the former has
a reinjection branch as shown in Fig. 4. The corresponding trajectory fluctuates
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Fig. 4. RM of the phase difference (Δθn, Δθn+n0) for a = 2.52,K = 0.07, and n0 = 10, immediately

before the CPS is achieved.

Fig. 5. RMs of the phase difference Δθ for the unidirectional coupling (Δθn, Δθn+n0). Left (a =

2.37 and n0 = 10 with a single positive Lyapunov exponent) and right (a = 2.52 and n0 = 10

with two positive Lyapunov exponents). The coupling strength K is chosen, where the CPS

is slightly broken in (a) (K = 0.079 (left) and K = 0.089 (right)) and slightly achieved in (b)

(K = 0.081 (left) and K = 0.09 (right)).

around the diagonal indicating phase locking, but eventually passes through the
reinjection branch indicating unlocking. This process is repeated in an irregular
manner, so that such a fluctuat-nec-mergitur trajectory is one of the characteristics
of the breakdown of the CPS. We see that there are sharp edges in (a) and smooth
edges in (b). The sharpness of the edges is confirmed with a probability density
function of Rn0(Δθn), as shown in Fig. 6.
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Fig. 6. Probability density functions of RMs Rn0(Δθn) for 0.39 < Δθn < 0.41. For (a,K) =

(2.37, 0.81), the symbol (+) is plotted, where GS is achieved, and for (a,K) = (2.52, 0.9), the

symbol (∗) is plotted, where GS is not achieved.

2.2. Bidirectional coupling

We consider here a symmetric interaction between two oscillators ψ(1) and ψ(2),
where the coupling term is given by Dg1,2 = (K/2)(g2,1 − g1,2) and Λ̂ satisfies

Λ̂ =
(
iω1 − K

2
K
2

K
2 iω2 − K

2

)
, (2.5)

so that we have{
ψ

(1)
n+1 = JK(ω1 − ω2)eiω1fa1(ψ

(1)
n , ψ

(1)∗
n ) + J ′

K(ω1 − ω2)eiω2fa2(ψ
(2)
n , ψ

(2)∗
n ),

ψ
(2)
n+1 = J ′

K(ω2 − ω1)eiω1fa1(ψ
(1)
n , ψ

(1)∗
n ) + JK(ω2 − ω1)eiω2fa2(ψ

(2)
n , ψ

(2)∗
n )

(2.6)

with

JK(Δω) ≡ e−
i
2
Δωe−

K
2

[
cosh

√
K2 − (Δω)2

2
+ iΔω

sinh
√

K2−(Δω)2

2√
K2 − (Δω)2

]
, (2.7)

J ′
K(Δω) ≡ e

i
2
Δωe−

K
2
K sinh

√
K2−(Δω)2

2√
K2 − (Δω)2

, (2.8)

which have the following symmetries : Jk(−Δω) = Jk(Δω)∗ and J ′
k(−Δω) =

J ′
k(Δω)∗. Since the system is invariant under the transformation ψ

(j)
n → eiϕψ

(j)
n ,

a vanishing Lyapunov exponent always exists.

2.2.1. CPS transitions and Lyapunov spectra
The Lyapunov spectrum is plotted against the coupling strength K for a = 2.38

in Fig. 7(a) and a = 2.56 in Fig. 7(b). We see that the largest and second-largest
Lyapunov exponents change between positive, zero, and negative. In Fig. 8, we plot
the symbols (•) and (�) on the K-a plane where the largest Lyapunov exponent
changes from positive to a constant value of zero and from a constant value of zero
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(a) a = 2.38 (b) a = 2.56

Fig. 7. Four Lyapunov exponents plotted against the coupling strength K for a = 2.38 in (a) and

a = 2.56 in (b).

Fig. 8. The symbols (•) and (N) are plotted

on the K-a plane where the largest Lya-

punov exponent changes from positive to

a constant value of zero and from a con-

stant value of zero to positive, respectively,

as the coupling strength K is increased for

the bidirectional coupling. The CPS tran-

sition points given by Eq. (1.6) are plotted

with the symbol (∗) together with a solid

line in the a-K plane.

Fig. 9. The second-largest Lyapunov expo-

nent changes from positive to zero (•), from

zero to negative (¨), from negative to zero

(×), and from zero to positive (N), as the

coupling strength K is increased for the

bidirectional coupling. The CPS transition

points given by Eq. (1.6) are plotted with

the symbol (∗) together with a solid line in

the a-K plane.

to positive, respectively, as the coupling strength K is increased. The CPS transition
points given by Eq. (1.6) are plotted with the symbol (∗) together with a solid line
in the a-K plane. In Fig. 9, the second-largest Lyapunov exponent changes from
positive to zero (•), from zero to negative (�), from negative to zero (×), and from
zero to positive (�), as the coupling strength K is increased. The CPS transition
points given by Eq. (1.6) are plotted with the symbol (∗) together with a solid line
in the a-K plane.

Note that multiple attractors and hysteresis phenomena are observed for some
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(a) K = 0.1 (b) K = 0.193

(c) K = 0.22 (d) K = 0.27

Fig. 10. RMs (Δθn,Δθn+n0) for the Lyapunov spectra (+,+, 0,−), (+, 0,−,−), (0, 0,−,−), and

(0,−,−,−), respectively, for K = 0.1 in (a), 0.193 in (b), 0.22 in (c), and 0.27 in (d) with

a = 2.45 for n0 = 10.

regions in the a-K plane. We fix the initial conditions as ψ(1)
0 = 1 − 0.8i and

ψ
(2)
0 = −0.7 in the following.

2.2.2. Return maps
In the case of the bidirectional coupling with a sufficiently large coupling strength,

no positive Lyapunov exponents exist for any a. As shown in Fig. 10, the RM of the
phase difference (Δθn, Δθn+n0) is classified into periodic points for (0,−,−,−), tori
for (0, 0,−,−), chaos for (+, 0,−,−), and hyperchaos for (+,+, 0,−).

We show the RMs (Δθn, Δθn+n0) of the phase difference Δθ in Fig. 11, where
the CPS is slightly broken in (a) (K = 0.0702 (left) and K = 0.061 (right)) and
slightly achieved in (b) (K = 0.075 (left and right)) for a = 2.38 (left) and 2.56
(right) for n0 = 10.

§3. Large-deviation analysis

When the CPS is slightly broken, intermittent phase slips appear, which can be
explained from the plot of Δθn+n0 against Δθn, as shown in Fig. 4. The behavior
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Fig. 11. RMs (Δθn, Δθn+n0) of the phase difference Δθ, where the CPS is slightly broken in (a)

(K = 0.0702 (left) and K = 0.061 (right)) and slightly achieved in (b) (K = 0.075 (left and

right)) for a = 2.38 (left) and 2.56 (right) for n0 = 10.

of the phase slips can be characterized by the large-deviation property of the phase
difference. Following the large-deviation analysis of the stationary temporal fluc-
tuations by Fujisaka and Inoue,18) we study the statistical properties of the phase
difference in this section.

The long-time average of the phase difference is expressed as

ΔΩ = lim
T→∞

ΔθT −Δθ0
T

= lim
T→∞

1
T

T−1∑
n=0

un, (3.1)

where the instantaneous value of the phase difference un ≡ Δθn+1 − Δθn is intro-
duced. For a large but finite time T , the finite-time average

ūT ≡ 1
T

T−1∑
n=0

un =
ΔθT −Δθ0

T
(3.2)

fluctuates around the long-time average ΔΩ and its property gives a useful charac-
terization of the system.8) The probability density function PT (u) of ūT is expected
to obey the following scaling,

PT (u) = 〈δ(u− ūT )〉 ∝ exp(−TS(u)), (3.3)

where 〈·〉 denotes the long-time average, and the fluctuation spectrum S(u), also
known as the rate function, is obtained, for T being much larger than the correlation
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Fig. 12. Time series of the phase difference Δθn for Eq. (2.6) with K = 0.071 and a = 2.51.

decay time of un. On the basis of the statistical property of phase slips, the fluctu-
ation spectrum is derived theoretically in Appendix A, which is compared with the
numerical results in the following.

When the CPS is slightly broken, the phase difference Δθn between the two
oscillators exhibits intermittent behavior similar to Type I intermittency. As shown
in the RM of Fig. 4, a similar structure to tangent bifurcation exists, whereΔθn stays
in a channel around the diagonal for a long time, and passes through the channel
with a characteristic time τ∗ that diverges towards the CPS transition. The latter
motion is called phase slip. These two types of motion of Δθn are clearly seen in its
time series, as shown in Fig. 12.

Hereafter, we assume that the phase slip occurs in the positive direction of
Δθ only, and time intervals between the phase slips are independent of each other.
The probability distribution function ρ(τ) of the phase slip interval τ is assumed as
ρ(τ) = γ exp

( − γ(τ − τ∗)
)

for τ ≥ τ∗ > 0 and ρ(τ) = 0 otherwise, also given in
Eq. (A.10), where the long-time average 〈τ〉 and the minimum phase slip interval τ∗
satisfy the relation 〈τ〉 = τ∗ + γ−1. An exponential function form of ρ(τ) is based
on the assumption that the phase slips are independent of each other and obey a
Poisson process, which may be justified since 〈τ〉 grows as log〈τ〉 ∝ τ∗.9)

Under the above assumptions, as shown in Appendix A, the fluctuation spectrum
is given by

S(u) =
1
2π

(
−u log

(
1 +

2πγ
α

α− u

u

)
− 2πγ

α
(u− α)

)
, (3.4)

which satisfies S(0) = γ, S(u) = ∞ for u < 0 or u > 2π
τ∗ , and lim

u→2π/τ∗−0
S(u) = ∞.

Around the long-time average α = 〈u〉 = ΔΩ, Eq. (3.4) is expanded in the form of
the central limit theorem as

S(u) =
(u− α)2

4D
(3.5)

with D = α3

4πγ2 , which is the phase diffusion constant

D = lim
T→∞

〈(ΔθT −Δθ0 − TΔΩ)2〉
2T

. (3.6)
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Fig. 13. Fluctuation spectrum S(u) for Eq. (2.6) with K = 0.071 and a = 2.51 below the CPS

transition point from the numerical result (+) and the theoretical estimation Eq. (3.4) with

numerically estimated α and D (dashed curve), whose domain is the interval between u = 0 and

u = 2π
τ∗ given by Eq. (A.15). The latter is drawn with a vertical dotted line. The parabola given

by the central limit theorem Eq. (3.5) is drawn as a solid curve. For the sake of comparison,

the curve is extended over the domain in which the central limit theorem cannot be applied.

Thus, the parameter γ in Eq. (3.4) is given in terms of the long-time average α and
the phase diffusion constant D as γ = α

√
α

4πD . We plot the fluctuation spectrum
obtained from the numerically obtained distribution function of the finite-time av-
erage of the phase difference with the symbol (+) for the bidirectionally coupled
system with K = 0.071 and a = 2.51 below the CPS transition point in Fig. 13, in
which the theoretical estimation using Eq. (3.4) with numerically estimated α and
D is also plotted (dashed curve). The parabola given by the central limit theorem
Eq. (3.5) is also drawn as a solid curve. For the sake of comparison, the curve is
extended over the domain in which the central limit theorem cannot be applied. The
numerical results do not reach the upper asymptote owing to the insufficient size of
our statistical ensemble, but large deviations are detected clearly.

§4. Concluding remarks

In this paper, we report on various synchronizations in discrete-time coupled
chaotic rotors. For unidirectional and bidirectional couplings, we show various dy-
namical forms of the CPS and their relation to the Lyapunov spectra. When the
control parameter a is small for unidirectional coupling, the coupling strength K at
which CPS is achieved almost coincides with the coupling strength at which GS is
achieved. On the other hand, for large a, the coupling strength is much smaller on
the CPS transition point than on the GS transition point. The dependence of the
largest Lyapunov exponent on the parameter a for our chaotic map given by Eqs.
(1.1) – (1.3) is very complex owing to the self-similar window structure shown in
Fig. 1. However, the rough dependence given by an upper envelope of the exact de-
pendence is a monotonically increasing function of a, which is similar to the logistic
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map. One may choose the value of a in the vicinity of the Feigenbaum point, the
onset of chaos, where chaos is not developed and the largest Lyapunov exponent is
small and positive. Or one may choose the value of a at which chaos is fully devel-
oped. For a continuous-time system such as the Rössler system, the rough parameter
dependence of the largest Lyapunov exponent is not simple in general. On the plane
spanned by the parameter a and the coupling strength K, the relative relationship
between the position of the CPS transition point and the position at which either
of the four Lyapunov exponents changes its sign is divided roughly into two types
for the unidirectional coupling. One is the left half of Fig. 3 corresponding to the
region between the Feigenbaum point and the leftmost of the period-three window
shown in Fig. 1, where the chaotic attractor consists of multiple bands and chaos
is not developed. The other is the right half of Fig. 3 corresponding to the region
between the three-band crisis point and the attractor-destruction point, where the
chaotic attractor, ignoring minute structures, consists of a single band and chaos is
developed. For the bidirectional coupling, we cannot classify the relative relation-
ship into multiple types, as shown in Figs. 8 and 9. In our results, the a-axis can
be regarded as the axis for the largest Lyapunov exponent. The relative relationship
between the CPS transition point and the sign alternation point of all the Lyapunov
exponents in association with the magnitude of the largest Lyapunov exponent is
quite a novel feature. In our unidirectionally coupled case, the relationship can be
classified into two types, which are distinguishable by observing whether the chaotic
element is fully developed. Osipov et al. also classified a similar relative relation-
ship into three types using the coupled Rössler system.10) In the case of the coupled
Rössler system, the parameter dependence of the largest Lyapunov exponent is not
simple, and the time evolution of the phase obeys a unidirectional rotation called
phase-coherent rotation or a bidirectional rotation called phase-incoherent rotation,
depending on the parameter. Whether the time evolution is phase-coherent is crucial
in the classification into three types. In our case, it is always phase-coherent and
no classification is obtained for the bidirectional coupling. It is thus impossible to
compare our results simply with those obtained by Osipov et al.10)

We study the statistical properties of the phase difference analytically and nu-
merically by large-deviation analysis. On the basis of the grand canonical formal-
ism, we derive the fluctuation spectrum theoretically, which is compared with the
numerical results. The numerical results agree with the theoretical result, and large
deviations are detected out of the domain in which the central limit theorem is appl-
icable. Provided the RM takes the form of a noisy saddle-node bifurcation, as shown
in Fig. 4, our assumption about phase-slip intervals is always satisfied, so that the
large-deviation property of the phase slip is universal in this sense. In contrast, the
relationship between the CPS transition points and the Lyapunov spectra depends
strongly on both individual chaotic elements and the manner of coupling.
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Appendix A
Derivation of Eq. (3.4)

For a real parameter q, we define the following generating function Mq(n):

Mq(n) ≡ 〈eqnūn
〉

=
∫ ∞

−∞
Pn(u)eqnudu. (A.1)

For large n, the following scaling holds:

Mq(n) ∝ exp{nφ(q)}, (A.2)

where the characteristic function φ(q) is introduced in the limit of n → ∞. Substi-
tuting Eq. (3.3) into Eq. (A.1), we have

Mq(n) ∝
∫ ∞

−∞
e−[S(u′)−qu′]ndu′ (A.3)

for large n. Assuming the convexity of S(u) (S′′(u) > 0), we can apply the saddle-
point method to the integral and we have φ(q) as the Legendre transformation of
S(u):

φ(q) = −min
u

[S(u) − qu], (A.4)

which has the inverse transformation

S(u) = −min
q

[φ(q) − qu]. (A.5)

Furthermore, we introduce the grand generating function Ξq(λ) as

Ξq(λ) =
∞∑

n=0

e−λnMq(n) ∼
∞∑

n=0

e(φ(q)−λ)n, (A.6)

where the asymptotic form Eq. (A.3) is used. For λ ≤ φ(q), we have Ξq(λ) = ∞,
and for λ > φ(q), we have Ξq <∞, so that the characteristic function φ(q) and S(u)
are obtained from the grand generating function Ξq.

Let tm be the time when the mth phase slip occurs. For the time n satisfying
tm ≤ n < tm+1, we have

∑n−1
i=0 ui ∼ 2πm. For λ �= 0, the grand partition function is

rewritten as

Ξq(λ) =
∞∑

n=0

e−λnMq(n) =

〈 ∞∑
n=0

e−λneq
Pn−1

i=0 ui

〉

=

〈 ∞∑
m=0

τm−1∑
k=0

e−λ(τ0+···+τm−1+k)e2πmq

〉

=
∞∑

m=0

e2πmq

〈
e−λ(τ0+···+τm−1) 1 − e−λτm

1 − e−λ

〉
, (A.7)
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where the phase slip interval τi ≡ ti+1 − ti is defined. With the assumption that τi
and τj (i �= j) are independent of each other, we have

Ξq(λ) =
∞∑

m=0

e2πmq
〈
e−λτi

〉m 1 − 〈e−λτm〉
1 − e−λ

. (A.8)

Hence, the condition

eq2π〈e−λτi〉 = 1 (A.9)

yields λ = φ(q). Note that, for q = 0, Eq. (A.9) gives λ = φ(0) = 0, which results
Eq. (A.3).

When we hereby assume the probability density function of the phase slip interval
τ as

ρ(τ) =

{
γe−γ(τ−τ∗) (τ ≥ τ∗),
0 otherwise,

(A.10)

we have 〈τ〉 = τ∗ + γ−1 and

〈e−λτi〉 =
∫ ∞

τ∗
γe−γ(τ−τ∗)e−λτdτ =

γe−λτ∗

γ + λ
, (A.11)

so that Eq. (A.9) and λ = φ(q) yield

γe−φ(q)τ∗ = e−q2π[γ + φ(q)]. (A.12)

We thus have the following asymptotic behaviors:⎧⎪⎨
⎪⎩
φ→ −γ, (q → −∞)
φ = 0, (q = 0)
φ→ ∞. (q → ∞)

(A.13)

Differentiating Eq. (A.12) with respect to q, we have

u(q) ≡ dφ(q)
dq

=
2π(γ + φ(q))

1 + γe−φ(q)τ∗+q2πτ∗
=

2π
τ∗

(
1 − 1

1 + τ∗(γ + φ(q))

)
, (A.14)

which leads to the asymptotic behaviors⎧⎪⎨
⎪⎩
u→ 0, (q → −∞, φ→ −γ)
u = 2π

〈τ〉 , (q = 0, φ = 0)

u→ 2π
τ∗ . (q = ∞, φ = ∞)

(A.15)

Let us rewrite Eq. (A.12) as

q =
1
2π

(
φ(q)τ∗ + log(1 + γ−1φ(q))

)
. (A.16)
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From this relation and the Legendre transform Eq. (A.5), we see that the fluctuation
spectrum S(u(q)) as a function of q satisfies

S(u(q)) = q
dφ(q)
dq

− φ(q) =
(γ + φ(q)) log(1 + γ−1φ(q)) − φ(q)

1 + τ∗(γ + φ(q))
, (A.17)

which leads to the asymptotic behaviors⎧⎪⎨
⎪⎩
S → γ, (q → −∞, φ→ −γ)
S = 0, (q = 0, φ = 0)
S → ∞. (q = ∞, φ = ∞)

(A.18)

Equation (A.14) is rewritten as

γ + φ(q) =
1
τ∗

(
1

−τ∗u
2π + 1

− 1
)

=
u

2π − τ∗u
, (A.19)

so that Eq. (A.17) and the relation 1 + τ∗(γ + φ(q)) = 2π
2π−τ∗u yield

S(u) =
u

2π
log
( u

γ(2π − τ∗u)

)
− u− γ(2π − τ∗u)

2π

=
u

2π

(
log
( u

γ(2π − τ∗u)

)
− (1 + γτ∗)

)
+ γ. (A.20)

Substitution of the relation τ∗ = 〈τ〉 − γ−1 with α ≡ 〈u〉 = 2π/〈τ〉 into Eq. (A.20)
yields Eq. (3.4).
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