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The relaxation and hysteresis of a periodically forced Swift-Hohenberg (SH) equation as
a phenomenological model for the magnetic domains of a garnet thin film in an oscillating
magnetic field are studied. It is already known that the unforced SH equation settles down
to a single type of spatial structure called a stripe pattern, and that the relaxation process
yields a scaling law for the structure factor. Two types of temporally oscillating spatial
structure consisting of stripe and polka-dot patterns have also been asymptotically observed
in the case of a periodically forced SH equation. Relaxation scaling behaviors are studied
for these two patterns. It is also shown for the forced case that a hysteresis is observed in
the vicinity of the boundary between two different spatial patterns in the phase diagram.

Subject Index: 051

§1. Introduction

Many studies have been compiled on pattern dynamics far from equilibrium
such as thermal convection, chemical reactions and biological pattern formation.1)–3)

One of the example of such phenomena is the onset of Rayleigh-Benard convection
and the formation of roll patterns. It is well known that the thermal convection
is modeled by the Swift-Hohenberg (SH) equation.4)–6) This equation is derived
by considering the Navier-Stokes equation in the Boussinesq approximation and the
thermal diffusion equation, the boundary conditions of which are given by two infinite
horizontal plates with temperatures T0 and T0 +ΔT . When the Rayleigh number R,
which is a dimensionless temperature difference ΔT , is larger than a critical value
Rc, convection rolls emerge. The linearized equations give two stable eigenvalues
corresponding to two horizontal directions in the velocity field and two unstable
ones corresponding to the vertical direction and another direction in the temperature
field. Neglecting the stable modes and only considering the wavelengths near the
most unstable wavelength k0, which can be set to unity without loss of generality,
we have the SH equation

∂s(r, t)
∂t

=
[
ε − (∇2 + k2

0)
2
]
s(r, t) − {s(r, t)}3, (1.1)

where s(r, t) is a scalar state variable as a function of two-dimensional position r
and time t, and ε is a control parameter that is proportional to the distance from the
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critical point R − Rc. When ε is negative, the values of s(r, t) for t → ∞ uniformly
vanish, which represents thermal conductance without convection. When ε is posi-
tive, the asymptotic spatial structure of s(r, t) is characterized by a stripe pattern,
which represents convection rolls. A generalized SH equation was also proposed,
which shows pattern dynamics different from the original ones.7)

Let S̃(k, t) be the intensity of the Fourier transform of s(r, t), defined by S̃(k, t) ≡
| ∫ s(r, t) exp (ik · r) dr|2, where k is a two-dimensional wave vector. The amplitude
k and angle θ are given by k = (k cos θ, k sin θ) as cylindrical coordinates. Because
S̃(k, t) does not depend strongly on the angle θ but strongly on the amplitude k
owing to the isotropy of the system, we introduce S(k, t), which is referred to as
the structure factor in the following, by averaging S̃(k, t) over the angle direction as
S(k, t) = 2

π

∫ π/2
0 S̃(k, θ, t)dθ, which has a sharp peak at approximately k0.

Not only in a convective system but also in a uniaxial ferromagnetic garnet
thin film, various spatial patterns are observed. The films without an external field
have labyrinthine magnetic domain structures. Upon adding a temporally oscillating
magnetic field perpendicular to the film, the domain structure changes to various
patterns, depending on the amplitude and frequency of the applied field.8),9) Noting
that garnet films have the magnetic easy axis perpendicular to the film plane, we
use a two-dimensional continuous Ising spin system in order to describe the domain
structures. Noting that when no magnetic field is applied, the system has a spin-flip
symmetry and the domain structure is labyrinthine, Tsukamoto et al. considered
the pattern dynamics of the following periodically forced SH equation:10)

∂s(r, t)
∂t

=
[
ε − (∇2 + k2

0)
2
]
s(r, t) − {s(r, t)}3 + h sin(Ωt). (1.2)

They found that a stripe pattern, a polka-dot pattern and a spatially uniform state
with temporal oscillation are observed, depending on the values of the amplitude h
and angular frequency Ω of the external field.10) The phase diagram of the spatial
pattern in the Ω-h plane is shown in Fig. 1. It should be noted that Tsukamoto
et al.10) classified the patterns in more detail. However, we confine ourselves to the
above three patterns.

We assume the following scaling law for the structure factor:

S(k, t) = tαfh,Ω

(
(k0 − k)tα

)
, (1.3)

introduced by Elder et al., who estimated the scaling exponent as α = 1/5 for the
original SH equation and α = 1/4 for the SH equation with additional noise in the
case of ε = 0.25.11),12) Hou et al. found logarithmic behavior, S(k0, t) ∝ log t, for
ε = 0.75 at zero noise.13) Note that the scaling function in our case is not universal
and depends on the amplitude h and angular frequency Ω of the external field.

In this paper, we study relaxation and hysteresis in the case of a periodically
forced SH equation. In §2, we study scaling behaviors for the stripe and polka-dot
patterns and compare them with the results for the unforced case. The bistability
of the stripe and polka-dot patterns is discussed in §3. The final section is devoted
to concluding remarks.
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Fig. 1. Phase diagram of the spatial patterns of s(r, t) in Ω-h space. The symbols ◦ and N represent

the stripe pattern and polka-dot pattern, respectively. A spatially uniform state is stable above

the dashed line. No clear boundary exists between the stripe and polka-dot patterns. Around

the dotted line, both patterns coexist.

§2. Scaling related to relaxation phenomena in a periodically forced
Swift-Hohenberg system

In the stripe and polka-dot regions of the phase diagram (Fig. 1), we integrate
Eq. (1.2) numerically using the Euler difference scheme adopted in the paper of
Elder et al.,11) in which the discretized Laplacian includes contributions from the
nearest and second-nearest neighbors. We also calculate the time evolution of the
structure factor S(k, t). Other parameters are set as follows: k0 = 1, ε = 0.25,
Δx = Δy = π/4, Δt = 0.01 and 512 × 512 system size, unless stated otherwise.
We prepare 196 different sets of initial conditions as an ensemble, and the ensemble
average is used to obtain our results.

The time dependence of the half width of S(k, t) for h = 0.3 and Ω = 0.5,
yielding a stripe pattern, is plotted with the symbols (×) in Fig. 2(a) and compared
with the result for the unforced case (+). The half width is found to decrease in
proportion to t−1/5. We also confirm that the maximum value of S(k, t) diverges
in proportion to t1/5. Hence, the scaling exponent α in Eq. (1.3) is estimated for
a stripe pattern to be α = 1/5, which coincides with that for the original unforced
SH equation. The scaling law (1.3) is also numerically confirmed to have the scaling
exponent α = 1/5 as shown in Fig. 2(b).

The time dependence of the half width of S(k, t) for h = 0.4 and Ω = 0.5, yielding
a polka-dot pattern, is plotted with the symbols (×) for system size 256 × 256, (∗)
for 512× 512 and (�) for 1024× 1024 in Fig. 3 and compared with the result for the
unforced case (+). The half width is found not to decrease simply in proportion to
t−α.
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(a) (b)

Fig. 2. (h, Ω) = (0.3, 0.5), yielding a stripe pattern with the scaling exponent α = 1/5. (a) Half

width of S(k, t) plotted against time t. The symbols + and × represent the unforced case

(h = 0) and the periodically forced case, respectively. (b) S(k, t)t−α plotted against (k − k0)t
α.

The symbols +, × and ∗ correspond to t = 1004.8, 3768.0 and 6280.0, respectively. The values

of the ordinate are normalized so that the maximum is equal to unity.

Fig. 3. Time dependence of the half width of S(k, t) for h = 0.4 and Ω = 0.5, yielding a polka-dot

pattern, plotted with the symbols (×) for system size 256 × 256, (∗) for 512 × 512 and (˜) for

1024 × 1024, compared with the result for the unforced case (+).



Relaxation and Hysteresis in a Periodically Forced Swift-Hohenberg System 1127

Fig. 4. Irregular pattern for h = 0.4 and Ω = 0.5 at t = 126.

Three stages of relaxation exist. In the initial stage, t � 500, a very irregular
pattern is observed as shown in Fig. 4. In the middle stage, 500 � t � 1000, a
patchwork structure appears. A regular polka-dot pattern is found in a single patch.
The size of the patch is widely distributed, and the average size of the patch is much
smaller than the system size. The square lattice on which a polka-dot pattern in
a specific patch exists is directed randomly, as shown in Fig. 5. In the final stage,
t � 1000, the average size of the patch is comparable with the system size, as shown
in Fig. 6. At this stage, there is a marked finite-size effect. The scaling behavior
described by Eq. (1.3) is thought to hold in the middle stage. However, the scaling
region 500 � t � 1000 is too narrow in our case to numerically confirm Eq. (1.3).

§3. Bistability of two patterns near the boundary in the phase diagram

First we set (h, Ω) = (0.375, 0.5), which is located in the boundary region be-
tween the stripe and polka-dot patterns in the phase diagram shown in Fig. 1. Two
different sets of random initial conditions s(r, 0) yield two different asymptotic spa-
tial patchwork-like patterns with temporal oscillation consisting of a stripe part and
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Fig. 5. Patchwork pattern for h = 0.4 and Ω = 0.5 at t = 628. In a single patch, a regular polka-dot

pattern is observed. The average patch size is much smaller than the system size.

a polka-dot part, as shown in Fig. 7.
A set of initial conditions s(r, 0) for (h, Ω) = (0.375, 0.5) is generated as an

asymptotic numerical solution s(r, τ) for (h, Ω) = (0.35, 0.5) with large τ , yielding a
global stripe pattern, which leads to a global stripe pattern s(r, t) for (h, Ω) =
(0.375, 0.5), as shown in Fig. 8(a). Another set of initial conditions s(r, 0) for
(h, Ω) = (0.375, 0.5) is generated as an asymptotic numerical solution s(r, τ) for
(h, Ω) = (0.41, 0.5) with large τ , yielding a global polka-dot pattern, which leads to
a global polka-dot pattern s(r, t) for (h, Ω) = (0.375, 0.5), as shown in Fig. 8(b).

We fix the frequency of the external field as Ω = 0.5 in the following. A set of
initial conditions s(r, 0) generated as an asymptotic numerical solution s(r, τ) with
large τ for a smaller value of h, yielding a global stripe pattern, leads to a global
stripe pattern s(r, t) in the range 0.35 ≤ h ≤ 0.385, which is plotted in Fig. 9 with
the symbol (◦) connected by the lower solid line. For h > 0.385, the above set of
initial conditions is unstable and settles down to a global polka-dot pattern, which
is plotted with the symbol (•). In the same way, a set of initial conditions s(r, 0)
generated as an asymptotic numerical solution s(r, τ) with large τ for a larger value
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Fig. 6. Patchwork pattern for h = 0.4 and Ω = 0.5 at t = 12560. The average patch size is

comparable with the system size.

of h, yielding a global polka-dot pattern, leads to a global polka-dot pattern s(r, t)
in the range 0.371 ≤ h ≤ 0.41, which is plotted with the symbol (
) connected by
the upper solid line. For h < 0.371, the above set of initial conditions is unstable and
settles down to a global stripe pattern, which is plotted with the symbol (�). We
observe a hysteresis loop for 0.371 ≤ h ≤ 0.385 and Ω = 0.5 in Fig. 9. The ordinate
intercept of each horizontal line in Fig. 9 is the number of prominent maxima of
S̃(k0 cos θ, k0 cos θ, τ) as a function of θ for large τ , which is an order parameter
distinguishing different spatial patterns. In contrast, a simple spatial average of the
state variable s cannot distinguish between the stripe and polka-dot patterns, thus
cannot serve as an order parameter.

§4. Concluding remarks

The scaling law (1.3) in the presence of external forcing is numerically confirmed
for a stripe pattern with the scaling exponent α = 1/5. We need a much larger system
size to confirm the scaling law for a polka-dot pattern.
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(a) (b)

Fig. 7. Snapshots of the asymptotic pattern of s(r, t) for (h, Ω) = (0.375, 0.5). The domains are

painted in white for s = 1 and in black for s = −1. A gray scale is used for intermediate values

of s between s = −1 and s = 1. The different sets of random initial conditions given in (a) and

(b) yield different patchwork-like patterns consisting of a stripe part and a polka-dot part.

(a) Starting from stripe-pattern initial

conditions

(b) Starting from polka-dot-pattern ini-

tial conditions

Fig. 8. Snapshots of the asymptotic pattern of s(r, t) for (h, Ω) = (0.375, 0.5) starting from two

different special sets of initial conditions. First, an asymptotic numerical solution s(r, τ) with

large τ for (h, Ω) = (0.35, 0.5), yielding a global stripe pattern, is obtained. Then, this asymp-

totic solution is set as the initial conditions of s(r, 0) for (h, Ω) = (0.375, 0.5) in (a). In the same

way, an asymptotic numerical solution s(r, τ) with large τ for (h, Ω) = (0.41, 0.5), yielding a

global polka-dot pattern, is chosen as the initial conditions of s(r, 0) for (h, Ω) = (0.375, 0.5) in

(b). The domains are painted in white for s = 1 and in black for s = −1. A gray scale is used

for intermediate values of s between s = −1 and s = 1.
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Fig. 9. Set of initial conditions s(r, 0) generated as an asymptotic numerical solution s(r, τ) with

large τ for a smaller value of h, yielding a global stripe pattern, leading to a global stripe pattern

s(r, t) in the range 0.35 ≤ h ≤ 0.385, which is plotted with the symbol (◦) connected by the

lower solid line. For h > 0.385, the above set of initial conditions is unstable and settles down

to a global polka-dot pattern. In the same way, a set of initial conditions s(r, 0) generated as

an asymptotic numerical solution s(r, τ) with large τ for a larger value of h, yielding a global

polka-dot pattern, leads to a global polka-dot pattern s(r, t) in the range 0.371 ≤ h ≤ 0.41,

which is plotted with the symbol (�) connected by the upper solid line. For h < 0.371, the above

set of initial conditions is unstable and settles down to a global stripe pattern. The ordinate

intercept of each horizontal line is the number of prominent maxima of S̃(k0 cos θ, k0 cos θ, τ)

as a function of θ for large τ . Sudden jumps between the stripe and polka-dot patterns are

indicated by arrows. A hysteresis loop is observed.

It is known that the scaling exponents are different for the noiseless and noisy au-
tonomous SH equations.11),12) In this paper, we first reported the pattern-dependent
scaling behaviors in the case of periodically forced SH equation through the use of
numerical simulations. Although we are still not able to give any theoretical ar-
gument to explain the pattern-dependent scaling behaviors, it will be important to
show that the interactions between defects in the stripe pattern differ from those
between defects in the polka-dot pattern.

Using the Ginzburg-Landau equation with a long-range interaction, Tsukamoto
et al. studied the stability of a planar front with respect to transverse perturbations
in bistable systems.14) It is well known that when a bistable system has competing
short-range and long-range interactions, the front connecting two stable states can
exhibit transverse instability. They focused on the effects of the nonlocal nature of
the interaction, using long-range interactions with exponential decay (weak nonlo-
cality) and power-law decay (strong nonlocality), and found that in the former case,
the planar front can be stabilized by varying a parameter value, while in the latter
case, the strong nonlocal nature of the interaction prevents stabilization of the front.
As far as the final pattern shown in Fig. 1 is concerned, there is not much difference
between the SH equation and the Ginzburg-Landau equation. This implies that the
SH equation is a good phenomenological model of the magnetic domains of a garnet
thin film in an oscillating magnetic field,8),9) whose experimental studies indeed mo-
tivated and inspired our investigation reported in this paper. It is a future problem
to propose more realistic models that can be directly compared with the results of
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these experiments.
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