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In most Dirac semimetals, time-reversal and inversion symmetries are believed to play a crucial
role in their stability. We demonstrate that these symmetries are broken in Dirac fermions in the
organic conductor α-(BEDT-TTF)2I3 due to the bond correlation created by the strong inter-site
electronic correlation. The system is a three-dimensional type-II Dirac semimetal in the coherent
inter-layer tunneling regime. A chiral anomaly is predicted to be observed in the magnetoresistance
when the magnetic field is tuned to the inter-layer tunneling direction. Our result suggests that
α-(BEDT-TTF)2I3 is a useful platform to explore interplay between the chiral anomaly and the
strong correlation and/or dimensionality.

Recently, the topological Dirac and Weyl semimetals
have attracted intense theoretical and experimental in-
terest because of their intriguing topological and elec-
tronic properties.1,2 In nodal semimetals, the conduction
and valence bands touch only at certain points in the
Brillouin zone (BZ), and the low-energy excitations are
described by a relativistic Dirac or Weyl equation, where
the velocity of light is replaced by the Fermi velocity.3

Two-dimensional (2D) Dirac semimetals are realized in
graphene,4 as is clearly demonstrated by the Dirac nature
of the electronic transport, and the surface state of the
three-dimensional (3D) topological insulators,5,6 where
spin-orbit coupling plays a significant role. Based on the-
oretical and experimental efforts, 3D Dirac semimetals
are now realized experimentally, for instance, in Na3Bi

7,8

and Cd3As2.
9,10 Remarkably, the topological semimet-

als have deep connections with particle physics because
they provide solid state analogues of relativistic chi-
ral fermions2,11 and lattice realizations12 of the chiral
anomaly of the quantum field theory.13,14 Experimen-
tal evidence has been accumulated about the existence
of Fermi arc surface states15–18 and the novel responses
of the chiral anomaly to applied electronic and magnetic
fields.19–23

Now it is well accepted that symmetries and spin-orbit
coupling are the keys to realizing 3D Dirac semimetals
in general. Spin-orbit coupling can create a linear energy
dispersion and a 3D Dirac semimetal appears when the
symmetry conditions are met. Since the net Chern num-
bers at each contact point are zero, we need additional
crystal symmetries.7,9,24–26 In such 3D Dirac semimetal
systems, Dirac points are on the symmetry lines in the
BZ. Our current understanding of the condition of the
Dirac semimetal is mostly based on symmetry consider-
ation and spin-orbit coupling, though the latter is not
necessary for some exceptional cases.27

In this Letter, we demonstrate that the quasi-2D
organic conductor, α-(BEDT-TTF)2I3, is an unprece-
dented type of Dirac semimetal that does not fit into
our current understanding of Dirac semimetal conditions.
We show that contrary to other Dirac semimetals, both
the time-reversal symmetry (TRS) and inversion sym-

metry are broken and spin-orbit coupling plays no role.
In the symmetry broken state, the energies of the Dirac
points are shifted asymmetrically from the Fermi energy
and their positions are not symmetrically located with
respect to the origin of the BZ. We also show that the
system exhibits a dimensional crossover from a type-I 2D
Dirac semimetal to a type-II 3D Dirac semimetal28 upon
entering the coherent inter-layer tunneling regime.

The organic conductor α-(BEDT-TTF)2I3 with the
space group P1 is a 2D Dirac semimetal with a
layered structure comprising of Dirac fermion lay-
ers and insulating layers.29 The Dirac points are at
non-high-symmetry points in the BZ similar to cer-
tain inorganic materials with the P1 space group.27,30

In α-(BEDT-TTF)2I3, the unit cell is composed of
four BEDT-TTF molecules, where BEDT-TTF is
bis(ethylenedithio)tetrathiafulvalene, A, A′, B, and C,
in the conduction layer,31,32 as shown in Fig. 1(a). The
system is metallic above 135 K but undergoes a metal-
insulator transition33–35 at 135 K where a charge order
stripe pattern forms as confirmed by 13C-NMR (nuclear
magnetic resonance) measurement.36 Here, the short-
range inter-site Coulomb repulsion plays a key role.37,38

The 2D Dirac semimetal appears when the charge or-
der is suppressed under high-pressure as revealed by
the tight-binding model calculation39 and confirmed by
the first-principles calculations.40,41 It should be stressed
that the band filling is fixed to 3/432 and the Fermi en-
ergy is exactly at the Dirac point within these calcula-
tions. The inter-layer magnetoresistance, which is nega-
tive and is in inversely proportional to the applied mag-
netic field, clearly demonstrates the presence of the zero-
energy Landau level.42–45 Furthermore, the phase of the
Dirac fermions is confirmed by the Shubnikov-de Haas
oscillation of the hole-doped sample, where the sample is
placed on polyethylene naphthalate substrate.46

Thus far, the presence of the massless Dirac fermion
spectrum has been established in α-(BEDT-TTF)2I3 but
the role of the strong electronic correlation is unclear:
The charge order stripe pattern at ambient pressure is
replaced by charge disproportionation,47,48 where nA =
nA′ and nB ̸= nC with charge density at molecule α
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FIG. 1. (Color online) (a)Configuration of BEDT-TTF
molecules in a conducting plane of α-(BEDT-TTF)2I3. The
rectangle shows a unit cell that contains four molecules, A,
A′, B, and C. The molecules stacked in the a axis, which is
taken as the y axis and the b axis is taken as the x axis. (b)
Conduction and valence bands are plotted as functions of kx
and ky at P = 0.8. There are two Dirac points at different
energies, which are encircled by dotted circles, and they are
located at the generic wave vectors. The horizontal plane de-
notes the Fermi energy. Magnified views of the Dirac nodes

at k
(1)
D and k

(2)
D are shown in (c) and (d), respectively. The

Dirac point at k
(1)
D is below the Fermi energy, while the Dirac

point at k
(2)
D is above the Fermi energy.

denoted by nα. The on-site Coulomb repulsion plays
a central role in the determination of the charge densi-
ties but the inter-site Coulomb interaction plays a minor
role. The purpose of this study is to demonstrate that
the inter-site Coulomb interaction plays a crucial role in
stabilizing a non-trivial Dirac semimetal state.

The Hamiltonian of electrons within a conduction layer
is given by H = H0 +Hint. The first term describes the
hopping between the molecules and in the momentum
space,

H0 =
∑

k,σ=↑,↓

c†kσH
0
kckσ, (1)

where c†kσ =
(
c†k1σ, c

†
k2σ, c

†
k3σ, c

†
k4σ

)
is the four-

component creation operator for an electron with two-
dimensional momentum k and spin component σ. The
indices 1, 2, 3, and 4 represent molecules A, A′, B,
and C, respectively. The matrix elements of H0

k are(
H0

k

)
12

= ta3e
−ik·d1 + ta2e

ik·d1 ,
(
H0

k

)
13

= tb3e
−ik·d3 +

tb2e
ik·d2 ,

(
H0

k

)
14

= tb4e
−ik·d2 + tb1e

ik·d3 ,
(
H0

k

)
23

=

tb2e
−ik·d2 + tb3e

ik·d3 ,
(
H0

k

)
24

= tb1e
−ik·d3 + tb4e

ik·d2 ,

and
(
H0

k

)
34

= ta1e
ik·d1 + ta1e

−ik·d1 , where the displace-
ment vectors, d1, d2, and d3, respectively, are defined by

d1 = (0, a/2), d2 = (b/2,−a/4), and d3 = (b/2, a/4).29

Hereafter, we measure the energies in units of eV and
we set a = 1 and b = 1 for the lattice constants. The
transfer energies are pressure dependent and given by48

tα = Cα (1 + bαP ). Here, the pressure P is in units of
GPa. The numerical coefficients Cα are Ca1 = −0.028,
Ca2 = 0.048, and Ca3 = −0.020 for the stacking direc-
tion and Cb1 = 0.123, Cb2 = 0.140, Cb3 = −0.062, and
Cb4 = −0.025 for the other directions. The numerical
constants bα are ba1 = 0.89, ba2 = 1.67, ba3 = −0.25,
bb1 = 0, bb2 = 0.11, bb3 = 0.32, and bb4 = 0.
The interaction termHint describes a strong electronic

correlation that is given by

Hint = U
∑
j,α

njα↑njα↓ +
∑

i,j,α,β

Viα,jβniαnjβ . (2)

Here, the charge density of the electrons with spin σ at
molecule α in site j is denoted by njασ, and we define
njα = njα↑ + njα↓. The first term in the right-hand
side describes the on-site Coulomb interaction while the
second term describes the Coulomb interaction between
nearest neighbor molecules. We set Vi1,j2 = Vi3,j4 = Vc

along the stacking direction of the BEDT-TTF molecules
(the a-axis) and Viα,jβ = Vp otherwise. These interac-
tions lead to an insulating state, which is a charge ordered
state,37,38 under ambient pressure and lead to dynami-
cal TRS and inversion symmetry breaking in the Dirac
semimetal phase as we illustrate below.
It has not yet been considered explicitly, except for in

limited cases,49,50 but the significant electronic correla-
tion in the Dirac semimetal state, in the presence of the
inter-molecule interaction Vαβ , is the bond correlation
described by

χασ,βσ′,± =
1

N

∑
k

e−ik·d(±)
αβ

⟨
c†kασckβσ′

⟩
, (3)

where N is the number of BZ points and d
(+)
13 = d2,

d
(−)
13 = d3, etc. Non-zero values of χασ,βσ′,± can break

the TRS and inversion symmetry. We also include the
site order defined as

nασ =
1

N

∑
k

⟨
c†kασckασ

⟩
, (4)

which exhibits charge disproportionation in the Dirac
semimetal.47,48 The resulting mean field Hamiltonian is
denoted by

Hmf =
∑

k,σ,σ′

c†kσ [H (k)]σσ′ ckσ′ . (5)

The matrix H (k), with two-dimensional momentum k,
is 8 × 8 matrix.51 We solve the self-consistent equations
for χασ,βσ′,± and nασ.
Now we describe symmetries of the system. To de-

scribe the symmetry operations, we define

Xµνλ = σµ ⊗ σν ⊗ sλ, (6)
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where µ, ν, λ = 0, 1, 2, 3. Here, σµ, σν , and sλ denote the
Pauli matrices and σ0 and s0 are the 2×2 unit matrix. In
the definition of Xµνλ, the first two Pauli matrices act on
the four molecules and the last Pauli matrix acts on the
spin index. Denoting the basis kets for the first two Pauli
matrices by |σ1, σ2⟩, the σ1 =↑ state represents either
the molecule A or A′ and the σ1 =↓ state represents
either the molecule B or C. For the former case, σ2 =↑
(↓) represents the molecule A (A′). For the latter case,
σ2 =↑ (↓) represents the molecule B (C). The TRS is

X002H∗ (−k)X002 = H (k) . (7)

The system has an inversion center32,52,53 between A and
A′. The symmetry operation associated with this inver-
sion is

IH (−k) I = H (k) , (8)

where I = i (X103 + X133 + X003 −X033) /2. In the ab-
sence of the interactions, we see that the system is invari-
ant under these symmetry operations. The situation does
not change if we include the on-site Coulomb repulsion. If
we restrict the self-consistent calculation to the Hartree
level, these symmetries are unbroken but the exchange
correlation associated with the inter-site Coulomb repul-
sion leads to breaking of both symmetries. We note that
the combination of the inversion symmetry and TRS is
broken as well. This is simply understood as the absence
of the particle-hole symmetry, or charge conjugation that
is clear from the asymmetric shifts of the Dirac point en-
ergies from the Fermi energy. This is in stark contrast
to the other Dirac semimetal state with broken inversion
symmetry and TRS but reserves their combination.54 We
also note that there is still spin degeneracy despite these
symmetry breakings.

We present the energy dispersion of the conduction and
valence bands in Fig. 1(b), (c), and (d). The conduction
and valence bands are both spin degenerate. Contrary
to the naive expectation, there is no mass gap in the
Dirac fermion spectrum. We find that the two Dirac

points are at k
(1)
D = (0.9250,−0.7978) where energy

ε
(1)
D = 1.2788 and at k

(2)
D = (−0.8988, 0.7631) where en-

ergy ε
(2)
D = 1.2822. Here, the Fermi energy is εF = 1.2807

and we note that k
(1)
D ̸= −k

(2)
D and ε

(1)
D < εF < ε

(2)
D . By

changing the pressure, the Dirac points move in the BZ
and the electronic correlation changes as well. Hereafter,
we take U = 0.4, Vc = 0.17, Vp = 0.05, and P = 0.8. This
set of interaction parameters reproduces the experimen-
tally observed stripe pattern in the insulating state.48

Although the renormalized hopping parameters break
the inversion symmetry, the charges do not. In fact, we
find that nA = nA′ = 1.4554 where nB = 1.2204 and
nC = 1.8696. This symmetry is protected by the strong
correlation associated with U , whereas Vc favors breaking
this symmetry. The system undergoes a quantum phase
transition as we increase the value of Vc, merging the two
Dirac points.55

Now we investigate the dimensional crossover from the
2D electronic state to the 3D electronic state. Since
α-(BEDT-TTF)2I3 has a layered structure and high-
mobility29 ∼ 105cm2V−1s−1, the system undergoes a di-
mensional crossover. When the interlayer tunneling is
incoherent, the electronic structure is 2D, and we may ap-
ply the mean field calculation described above to the sys-
tem. When the interlayer tunneling becomes coherent56,
the electronic structure is 3D. Due to the high-mobility
value of α-(BEDT-TTF)2I3, the crossover temperature is
in the order of the inter-layer tunneling amplitude. We
describe the inter-layer tunneling between adjacent lay-
ers with the matrix t1X000 + t2X010, where the first term
is the tunneling between the same molecules. The sec-
ond term is the tunneling between A and A′ and between
B and C, where these pairs of molecules are aligned in
the stacking direction.57 We note that the interlayer tun-
neling parametrized by t2 is crucial to have the linear
dispersion in the z direction. We note that these terms
do not break either the TRS or inversion symmetry, I.
Therefore, the contact points are stable against them.
Because of the mirror reflection about the a-b plane, two
copies of each Dirac point appear at kz = ±π/2. Since
interlayer hopping parameters t1 and t2 are much smaller
than the intralayer parameters, we include their effects
based on the 2D result. We observe that the Dirac cone
is tilted along the kz direction by t1 as shown in Fig. 2.
For t1/t2 > η1 (Fig. 2(c) and (d)), both Dirac cones are
type-II,28 which is to be applied to α-(BEDT-TTF)2I3,
while for t1/t2 < η2 (Fig. 2(a) and (b)), both Dirac cones
are type-I. Here, η1 = 0.6867 and η2 = 0.6827. Interest-

ingly, for η2 < t1/t2 < η1, the Dirac cones at k
(1)
D with

kz = ±π/2 are type-I and the Dirac cones at k
(2)
D with

kz = ±π/2 are type-II, where we can expect the partial
chiral anomaly effect to be associated with the type-I
Dirac cones.
Now we consider the chiral anomaly in this system.

When a magnetic fieldBz is applied along the z-direction,
the spectrum of the Landau levels is given by

ε±,τ
n,kz

= −2t1 cos kz ±
√
ε2nτ + 4η2τ t

2
2cos

2kz, (9)

where εnτ is the 2D Landau level at the Dirac point k
(τ)
D

(τ = 1, 2) given by44,45

εnτ =
(
1− λ2

τ

)3/4 ℏv2Dτ
ℓz

√
2|n|. (10)

Here, n is an integer, λτ is the tilt parameter of the

Dirac cone, v2Dτ is the averaged Fermi velocity, and

ℓz =
√

ℏ/|eBz| is the magnetic length, where ℏ is the
reduced Planck constant and e is the electron charge. In

α-(BEDT-TTF)2I3, λτ and v2Dτ can be estimated experi-
mentally from the analysis of the interlayer magnetoresis-

tance. It is found that
(
1− λ2

τ

)3/4
v2Dτ ≃ 5×10−4 m/s,58

where
√
1− λ2

τ ≃ 0.05.59
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FIG. 2. (Color online) Type-I Dirac node for t2/t1 = 4 (a)
and its energy dispersion along the kz axis (b). Type-II Dirac
node for t2/t1 = 1 (c) and its energy dispersion along the kz
axis (d). In both cases, we set t1 = 0.001. The horizontal
planes in (a) and (c) denote the energies of the Dirac points.
In (b) and (d), the Fermi energy is denoted by the solid lines
and the Dirac point energies are denoted by the dotted lines.

Since the system is a 3D Dirac semimetal, the n = 0
Landau level has a chiral mode, ε±,τ

0,±π/2+δkz
= ±ℏvτz δkz,

such that

vτz =
2az
ℏ

(t1 − ητ t2) , (11)

where the lattice constant az is explicitly shown. The
plus (minus) sign is for the Dirac cone at kz =
π/2(−π/2). Because of the current flow between the two
Dirac nodes, the negative magnetoresistance is observed
when the magnetic field is tuned, within the angle δθ, to

the direction of the inter-layer hopping, which is taken
as the z-axis here for simplicity. We emphasize that the
effect is limited to the magnetic field directions close to
the inter-layer tunneling direction because of the type-II
nature of the chiral anomaly.28 We note that δθ is ap-
proximately proportional to 1/t1, and we find δθ ≃ 0.36◦

when t1 = 0.001.
The calculation above can be extended to include the

effect of spin-orbit coupling.60,61 Due to the configura-
tion of the molecules in the unit cell, there is no spin-
orbit coupling along the molecule stacking direction. We
reach a clear conclusion that the spin-orbit coupling does
not create any mass gap at the Dirac points. Here, the
exchange correlation effect also plays a crucial role as
well.
In conclusion, we have demonstrated that α-(BEDT-

TTF)2I3 is a new type of Dirac semimetal with remark-
able features. Contrary to other Dirac semimetals, both
the TRS and inversion are broken in a non-trivial way by
bond order created by the strong inter-site electronic cor-
relation. This result clearly extends our current under-
standing of the symmetry condition for Dirac semimetals.
In particular, our new Dirac semimetal can be used to
deepen our understanding of chiral anomaly; we expect
chiral anomaly to exist in 3D but not in 2D and the tran-
sition between them can be investigated in α-(BEDT-
TTF)2I3 through the negative magnetoresistance in the
direction of the inter-layer tunneling. One limitation is
that the sample must be in a pressure cell, though the
pressure is useful to control the electronic correlation of
the system and investigate the interplay between chiral
anomaly and other electronic states.
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Supplementary Material

EXPLICIT FORM OF THE MEAN FIELD
HAMILTONIAN

The mean field Hamiltonian (Eq. (5) in the main text)
is written as

Hmf =
∑

k,σ,σ′

c†kσ [H (k)]σσ′ ckσ′

=
∑

k,α,β,σ,σ′

c†kασ[H (k)]ασ,βσ′ckβσ′ (S1)

The matrix elements are given by

[H (k)]ασ,βσ′ =
[
H

(+)
k

]
ασ,βσ′

eik·d
(+)
αβ

+
[
H

(−)
k

]
ασ,βσ′

e−ik·d(−)
αβ

+H
(c)
kασδαβδσσ′

]
, (S2)

where [
H

(±)
k

]
ασ,βσ′

= t
(±)
αβ − Vαβχ

∗
ασ,βσ′,± (S3)

with t
(+)
13 = tb3, t

(−)
13 = tb2, etc. The on-site term is given

by

H
(c)
kασ = 2

∑
γ

Vαγnγ + U ⟨nασ⟩ , (S4)

where σ is flipped to σ.

In our self-consistent calculation, we diagonalize this
mean field Hamiltonian at each momentum. We take
200×200 for the number of the BZ points. χασ,βσ′,± and
nασ values are computed by calculating the expectation

values,
⟨
c†kασckβσ′

⟩
.

SYMMETRIES OF THE HAMILTONIAN AT
THE DIRAC POINTS

As discussed in the main text, the exchange correlation
breaks both the TRS and the inversion symmetry. How-
ever, some components of the Hamiltonians at the Dirac
points retain the inversion symmetry. To clarify this
point, we represent the Hamiltonian at each Dirac point
in terms of Xµνλ, where the coefficients are as shown in
Table S1. In case of U = 0.4 and Vc = Vp = 0, the Dirac
points are located at k = kD,−kD and both the TRS
and the inversion symmetry are unbroken. Under these

symmetries, the Hamiltonian, in general, has the form

H (k) =


a x− iy p q

x+ iy a p∗ q∗

p∗ p −a+ b c
q∗ q c −a− b

 , (S5)

where a, b, c, x, and y are real functions of k and p and
q are complex functions of k. The terms y, Im p, and
Im q are odd, while the others are even. Based on this
form, we see that some of the coefficients are the same,
such as X020 and X320, and some of the coefficients have
opposite signs, such as X200 and X210.
When U = 0.4, Vc = 0.17, and Vp = 0.05, both the

TRS and the inversion symmetry are broken but the sym-
metries in the coefficients are preserved. The symmetries
are broken by the functions multiplied to Xµν0 that are
neither even nor odd with respect to k. Despite the pres-
ence of such symmetry breaking factors, part of the in-
version symmetry is still preserved. In fact, we find

tr
[
X030H

(
k
(1,2)
D

)]
= −tr

[
X330H

(
k
(1,2)
D

)]
. (S6)

This is indispensable because X030−X330 and X300 com-
bined with the identity matrix lead to degenerate and
other separated levels. We note that these generators are
diagonal matrices and that diagonal components arise
from the charge at each molecule. Therefore, they are
associated with the inversion symmetry between nA and
nA′ .

TABLE S1. Decomposition of the Hamiltonian at each
Dirac point into Xµνλ. For the case of U = 0.4 and
Vc = Vp = 0, both the TRS and inversion symmetry are
unbroken. The Dirac points are at k = kD,−kD, with
kD = (1.5516,−0.8044). Meanwhile, for the case of U = 0.4,
Vc = 0.17, and Vp = 0.05, these symmetries are broken, and

the Dirac points are at k = k
(1)
D ,k

(2)
D , with k

(1)
D ̸= −k

(2)
D ,

k
(1)
D = (0.9296,−0.8009), and k

(2)
D = (−0.9018, 0.7618). The

breaking of the TRS and the inversion symmetry is clearly
illustrated through the comparison of these two cases.

Xµνλ kD −kD k
(1)
D k

(2)
D

X010 0.0000387 0.0000387 0.0097423 -0.0092337
X020 0.0610626 -0.0610626 0.0617559 -0.0603957
X030 -0.0102378 -0.0102378 0.0227222 0.0227222
X100 -0.0687389 -0.0687389 -0.0237383 -0.0105359
X110 -0.0687389 -0.0687389 -0.0237383 -0.0105359
X120 -0.1041172 0.1041172 -0.1511936 0.1524187
X130 -0.0650720 -0.0650720 -0.1106209 -0.1070677
X200 0.0173256 -0.0173256 -0.0398026 0.0484009
X210 -0.0173256 0.0173256 0.0398026 -0.0484009
X220 -0.0650720 -0.0650720 -0.1106209 -0.1070677
X230 -0.1041172 0.1041172 -0.1511936 0.1524187
X300 -0.0160446 -0.0160446 -0.0152960 -0.0152960
X310 0.0290397 0.0290397 0.0265949 0.0379016
X320 0.0610626 -0.0610626 0.0617559 -0.0603957
X330 0.0102378 0.0102378 -0.0227222 -0.0227222



S2

THE HAMILTONIAN WITH THREE-DIMENSIONAL WAVE VECTOR

In the presence of the inter-layer hopping, the Hamiltonian is given by

H (kx, ky, kz) = H (kx, ky) +


2t1 cos kz 2t2 cos kz 0 0
2t2 cos kz 2t1 cos kz 0 0

0 0 2t1 cos kz 2t2 cos kz
0 0 2t2 cos kz 2t1 cos kz

⊗ s0. (S7)

Here, we denote dependence of kx, ky, and kz, explicitly. The first term H (kx, ky) is defined in Eq. (S2).
As discussed in the main text, we obtain the linear energy dispersion of the three-dimensional Dirac semimetal

phase from the diagonalization of Eq. (S7). However, its demonstration requires numerical calculations. In order
to analytically illustrate the linear energy dispersion of the three-dimensional Dirac semimetal phase, we consider a
simple model:

H(1) (kx, ky, kz) =


2t1 cos kz 2t2 cos kz v (kx − iky) 0
2t2 cos kz 2t1 cos kz 0 −v (kx − iky)

v (kx + iky) 0 2t1 cos kz 2t2 cos kz
0 −v (kx + iky) 2t2 cos kz 2t1 cos kz

⊗ s0. (S8)

Here, v is a constant. Setting kz = π/2 + κz, we obtain

E
(1)
kx,ky,kz

= ±
√
v2

(
k2x + k2y

)
+ 4t22sin

2κz − 2t1 sinκz (S9)

If |κz| ≪ 1, we obtain the linear energy dispersion of the three-dimensional Dirac semimetal phase with the tilt in kz
direction,

E
(1)
kx,ky,kz

= ±
√

v2
(
k2x + k2y

)
+ 4t22κ

2
z − 2t1κz. (S10)

Note that these energy dispersions with either plus sign or minus sign are doubly degenerate along with spin degeneracy.
A more realistic model is the following Hamiltonian:

H(2) (kx, ky, kz) =


−2t1kz A+ ivky − 2t2kz B + vkx 0

A− ivky − 2t2kz −2t1kz 0 B − vkx
B + vkx 0 −2t1kz −A+ iky − 2t2kz

0 B − vkx −A− iky − 2t2kz −2t1kz

⊗ s0, (S11)

where A, B, v are constants. Here, cos kz is replaced by −kz. The energy dispersions are obtained as follows:

E
(s1,s2)
kx,ky,kz

= s1

√√√√A2 +B2 + v2
(
k2x + k2y

)
+ 4t22k

2
z + 2s2

√
A2 +B2

√
v2

(
k2x +

B2

A2 +B2
k2y

)
+ 4t22k

2
z − 2t1kz, (S12)

with s1,2 = ±1. One can confirm that this is the energy dispersion of the three-dimensional Dirac semimetal phase
with the tilt in kz direction as follows. We set

η =
1√

A2 +B2

√
v2

(
k2x +

B2

A2 +B2
k2y

)
+ 4t22k

2
z , (S13)

and

aη =
A

A2 +B2
vky. (S14)

Equation (S12) is rewritten as

E
(s1,s2)
kx,ky,kz

+ 2t1kz
√
A2 +B2

= s1fs2 (η, a) , (S15)



S3

where

fs (η, a) =
√
1 + 2sη + (1 + a2) η2. (S16)

Now we find

∂f±
∂η

∣∣∣∣
η→0

= ±1 (S17)

Therefore, E
(s1,s2)
kx,ky,kz

+ 2t1kz is linear in η for η ≪ 1. This observation confirms that Eq. (S12) describes the energy
dispersion of the three-dimensional Dirac semimetal phase with the tilt in kz direction.

When v2
(
k2x + k2y

)
+ 4t22k

2
z ≪ A2 +B2, the approximate form is obtained as follows:

E
(s1,s2)
kx,ky,kz

≃ s1
√
A2 +B2 + s2

√
v2

(
k2x +

B2

A2 +B2
k2y

)
+ 4t22k

2
z − 2t1kz. (S18)

There are four energy bands and the upper two bands describe the energy dispersion of the three-dimensional Dirac
semimetal phase as in α-(BEDT-TTF)2I3. However, there is an additional symmetry in this model. The lower two
bands is a copy of the upper two bands. The difference is just the origin of the energy. The lower two bands are
obtained by shifting the energy of the upper two bans by 2

√
A2 +B2. There is no such symmetry in α-(BEDT-

TTF)2I3, though one can show that the lower two bands also have Dirac cones.


