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The central issue in high-temperature cuprate superconductors is the pseudogap state appearing
below the pseudogap temperature T ∗, which is well above the superconducting transition temper-
ature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy
below the pseudogap temperature detected by the recent torque-magnetometry measurements on
YBa2Cu3Oy [Y. Sato et al., Nat. Phys., 13, 1074 (2017)]. Applying the spin Green’s function formal-
ism including the Dzyaloshinskii–Moriya interaction arising from the buckling of the CuO2 plane, we
obtain results that are in good agreement with the experiment and find a scaling relationship. Our
analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which
coincides with T ∗, is not a phase transition temperature but a crossover temperature associated with
the short-range antiferromagnetic order.

The central issue in high-temperature cuprate
superconductors[1] is the nature and origin of the nor-
mal state pseudogap. Below the pseudogap temper-
ature, T ∗, which is higher than the superconducting
transition temperature, Tc, a partial gap is observed in
various experiments.[2, 3] The key question about the
pseudogap is whether T ∗ is a phase transition temper-
ature or a crossover temperature. For instance, res-
onant ultrasound spectroscopy measurements exhibited
a discontinuous change in the temperature dependence
of frequency supporting that T ∗ is the phase transi-
tion temperature.[4] The measurement of the second–
harmonic response, which detected the inversion symme-
try breaking below T ∗, also supported the phase tran-
sition picture.[5] Meanwhile, a phenomenological the-
ory describing a crossover scenario was proposed,[6, 7]
and spectroscopic and thermodynamic experiments were
discussed using a model Green’s function with doping-
dependent parameters. On the other hand, recent nu-
clear magnetic resonance[8, 9] and x-ray scattering[10–
12] studies reported a symmetry-breaking phase of the
charge-density wave order in the pseudogap phase. Al-
though the role of this order is unclear, it seems to com-
pete with superconductivity[13] and it appears at a tem-
perature between T ∗ and Tc. It has also been proposed
that these orders are intertwined.[14]

In this Letter, we focus on the recent torque-
magnetometry measurements on YBa2Cu3Oy (YBCO)
reporting a rapid increase in anisotropic spin suscepti-
bility within the a − b plane below T ∗.[15] A magnetic
torque is induced if the magnetization M of the sample
is not parallel to the applied magnetic field H. When
the magnetic field is rotated in the x− y (a− b) plane by
an azimuthal angle ϕ, the magnetic torque is given by

τϕ = µ0V (M ×H)z

=
1

2
µ0V H2 [(χxx − χyy) sin 2ϕ− 2χxy cos 2ϕ] . (1)

Here, µ0 is the permeability of vacuum and V is the
sample volume. The spin susceptibility is denoted by
χαβ = ∂Mα/∂ (µ0Hβ), with α, β = x, y. For the CuO2

plane with fourfold rotational symmetry, C4, we see that
τϕ = 0. In YBCO, τϕ exhibits sinusoidal oscillation with
χxx > χyy and χxy = 0.[15] A rapid increase in the am-
plitude is observed below the characteristic temperature
Tτ that coincides with the T ∗ value determined by other
experiments.[15] The authors in Ref. 15 conclude that Tτ

corresponds to a nematic phase transition temperature
and thus T ∗ is also a phase transition temperature.
We propose a theory to explain this magnetic torque

experiment. The theory is based on a localized spin
model with anisotropic magnetic interaction. For this, we
assume the Dzyaloshinskii–Moriya (DM) interaction[16–
18] arising from the buckling of the CuO2 plane. Usually,
one may neglect this DM interaction owing to its en-
ergy scale. However, it breaks the C4 symmetry and can
play an important role for the physical quantities that
do not vanish when the C4 symmetry is broken. Apply-
ing second-order perturbation theory, we show that τϕ is
proportional to cube of the spin susceptibility, and there
is a scaling relationship. The analysis suggests that Tτ is
the onset of a short-range antiferromagnetic (AF) order.
In describing the localized spins in the parent com-

pound of the cuprate, the renormalization group analysis
of the nonlinear σ model was successful.[19] Mean field
theories such as Schwinger bosons[20] and modified spin
wave theory[21] also gave a good description of the sys-
tem. However, these approaches are useful only in the
low-temperature regime. At high temperatures around
T ∗, we need to take a different approach. Here, we take
the spin Green’s function approach.[22–27]
For the calculation of τϕ, we need to compute the fol-
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Here, Sα
j (α = x, y) denotes the α component of the spin

moment at site j. Note that these correlation functions
depend on i − j because of the translational invariance
in the pseudogap phase. In the absence of any magneti-
cally anisotropic term, the right-hand sides of these equa-
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tions vanish. The Hamiltonian for the localized S = 1/2
moments, on inclusion of the DM interaction mentioned
above, is given by

H = Jp
∑
⟨i,j⟩

Si · Sj +
∑
⟨i,j⟩

Dij · (Si × Sj). (4)

Here, Jp is the exchange interaction between nearest-
neighbor spins, which is assumed to depend on the doped
hole concentration, p. The three-dimensional vector
Dij = Di−j is the DM vector on the bond connecting
sites i and j. For the case of Dz

i−j = 0, the DM interac-
tion term is rewritten as

HDM =
∑
i

∑
δ=â,̂b

(
gδS

−
i Sz

i+δ +H.c.
)
. (5)

Here, â and b̂ are the displacement vectors along the a
and b axes, respectively, and gδ = (iDx

δ −Dy
δ ) /2, with

Dα
δ being the α component of the DM vector. It is ob-

vious from Eq. (5), that its first-order contribution to⟨
S+
i S+

j

⟩
vanishes, but the second-order contribution does

not.
Now, we define the following Matsubara Green’s func-

tion:

Gi−j (τ) = −
⟨
TτS

+
i (τ)S−

j (0)
⟩
, (6)

with τ being the imaginary time. Taking the derivative
of Gi−j(τ) with respect to τ twice, and then applying the
Tyablikov approximation and the Fourier transform, we
obtain[23, 24]

Gk (iωn) =
4Jpc1 (1− γk)

(iωn)
2 − ω2

k

, (7)

with ωn denoting the Matsubara frequency and
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(Hereafter, we set ℏ = 1 and the lattice constant is set to
unity.) The spin excitation energy ωk is given by

ωk =
√
8α |c1|Jp

√
(1− γk) (1 + ∆+ γk), (9)

with γk = (cos kx + cos ky) /2 and ∆ =
(1− αc1 + 3αc′2) / (4α |c1|)−1. The parameter α is intro-
duced while applying the Tyablikov approximation,[23]
which is interpreted as a vertex correction.[24] The
parameter c′2 is defined by c′2 =

∑
δ′ (̸=−δ)

cδ+δ′/3. The

parameters c1, α, and c′2 are determined by solving the
following self-consistent equations[24]:
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Here, N is the number of the lattice sites, and kB is the
Boltzmann constant.
The second-order perturbative calculation with respect

to HDM gives⟨
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where Ri denotes the position of site i. The summation
over i shows that we need only the k = 0 term. The
terms with ωn ̸= 0 vanish if we set k = 0. Therefore, we
may set ωn = 0, and then k = 0. The result is

1
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with Γ =
(
gâ + gb̂

)2
. By using this result, we obtain

∆χ ≡ τϕ
µ0V H2/2

=
µ0µ

2
B

2vc

Γ∥ sin 2ϕ− Γ⊥ cos 2ϕ

J3
pα

3(2 + ∆)
3 , (15)

where vc is the unit cell volume per CuO2 plane, and
Γ∥ = ReΓ and Γ⊥ = ImΓ. ∆χ oscillates with two com-
ponents: one is proportional to sin 2ϕ, and the other is
proportional to cos 2ϕ. We note that[24]
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Therefore, the right-hand side of Eq. (15) is proportional
to the cube of the spin susceptibility.
Now we apply the theory to the experiment.[15] For

YBCO, Dy
â ̸= 0, Dx

b̂
̸= 0, and the other compo-

nents are negligible.[28] Thus, Γ∥ ̸= 0 and Γ⊥ =

−
[
D

(x)
a D

(y)
a +D

(x)
b D

(y)
b

]
/2 = 0. Therefore, we find

τϕ ∝ sin 2ϕ, which is the oscillation pattern observed
in the experiment.[15] Hereafter, we consider the case
Γ⊥ = 0, and denote ∆χ as ∆χ∥. The theoretical for-
mula (15) is compared with the experiment[15] with the
fitting parameters Jp and Γ∥ by including a constant
term consisting of a temperature-independent paramag-
netic component. The results shown in Fig. 1 demon-
strate that the theory is in good agreement with the ex-
periment. From the fitting, we found J0.11 = 241 K,
J0.13 = 183 K, and J0.15 = 170 K as the values of Jp
for p = 0.11, 0.13, and 0.15 respectively. The value of
Jp decreases as p is increased. This monotonic change in
Jp as a function of p was also suggested from an anal-
ysis of the spin susceptibility and a scaling was found
in La2−xSrxCuO4−y.[29, 30] For p = 0.11, there is a
discrepancy between theory and the experiment at low
temperatures. This is because the spin Green’s function
approach is not reliable at low temperatures.[24] We note
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FIG. 1. (color online) Comparisons between the formula (15)
and the experiments[15] for hole concentrations (a) p = 0.11,
(b) p = 0.13, and (c) p = 0.15. The solid lines represent the
theory based on the spin Green’s function.

that this discrepancy starts from 0.40Jp below the min-
imum of ∆χ∥. The data for p = 0.13 and p = 0.15 are
well above this value.

From the formula (15), we see that J3
p∆χ∥ is inde-

pendent of Jp. In order to remove constant components
coming from doped holes, we subtract its minimum value
from ∆χ∥, and then plot it as a function of the normal-

ized temperature in Fig. 2. All the experimental data fall
on a single curve. From this analysis, we may conclude
that Tτ ≃ 1.1Jp. This characteristic temperature has a
simple interpretation. The AF correlation length of the
AF Heisenberg model with the exchange interaction Jp
is given by[21]

ξAF/a ≃ 0.819

T/Jp
exp

(
1.10

T/Jp

)
, (17)

where a is the lattice constant. From this formula, we
find ξAF ≃ 2a at T = Tτ . In Fig. 2 we also plot the values
computed using quantum Monte Carlo (QMC) results
for the uniform spin susceptibility χ on the square lat-
tice AF Heisenberg model.[31] These values are in good
agreement with the data of p = 0.11 at low temperatures.
However, the point computed from the QMC data around
T/Jp = 1.3 does not agree with the experiment and the
Green’s function result. We note that we find Γ∥ < 0
from the fact that the magnitude of the DM vector is
proportional to the difference in the lattice constants in
the orthorhombic phase of YBCO. This is consistent with
the experiment because the maximum of χ corresponds
to the minimum of ∆χ∥. We also note that the exper-
imental data seem to be convex upward for T > Tτ at
p = 0.13 and p = 0.15. However, a similar behavior is
not discernible for p = 0.11. It might be related to the
effect of doped holes and/or CuO chains.
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FIG. 2. (color online) Scaling relationship suggested from
the formula (15). ∆χmin

∥ is the minimum of ∆χ∥ in Fig. 1.

The unit of the vertical axis is K3. For the values of Jp, we
take J0.11 = 241 K, J0.13 = 183 K, and J0.15 = 170 K for
the experimental data. The values computed by using QMC
result[31] are also shown.

Now we discuss the value of Γ∥. From the analy-

sis shown in Fig. 2, we find
√

|Γ∥| ≃ 100 K. This ap-
parently is too large if Γ∥ is associated with the buck-
ling of the CuO2 plane. Here, we need to include the
effect of the doped holes. The exchange coupling be-
tween doped hole spins and the localized spins is de-

scribed by HK = JK
∑
j

Sj ·
(
c†jσcj

)
, where JK =
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t2dp/ (Ud −∆) + t2dp/ (Up +∆), where tdp is the nearest-

neighbor Cu-O hopping and Ud (Up) is the Cu(O)-site
Coulomb repulsion.[32–34] ∆ is the energy difference be-
tween the O-site energy and the Cu-site energy. The

two-component operator c†j (cj) is the creation (annihi-

lation) operator of the doped hole at site j, and σ is
the three component vector of the Pauli matrices. The
easiest way to include HK is the coherent state path in-
tegral. By integrating out the doped hole fields, we find
that the spin susceptibility χ is enhanced as χ/ (1− ηχ)
with η = 3J2

Kχh
0 . Here, χh

0 is the uniform spin suscepti-
bility of the doped holes. Unfortunately no reliable the-
oretical formula for χh

0 is available. Therefore, we use
the formula for the non-interacting system, which is pro-
portional to the density of states, and approximate it as
χh
0 ∼ 1/t where t ∼ t2dp/∆ is the effective hopping pa-

rameter of the doped holes.[32–34] Using the parameter
values evaluated for the CuO2 plane,[33–36] we find that
η/Jp ∼ 10. With this value of η/Jp,

√
|Γ∥| ∼ 2 K. For

η/Jp = 9,
√
|Γ∥| ∼ 15 K. Although this is an approxi-

mate estimate, these values appear to be reasonable from

the fact that Γ∥ is proportional to the difference between
the lattice constants along the a and b axes and also the
buckling angle.
To conclude, we have shown that the result of the the-

ory based on the spin Green’s function with the DM in-
teraction is in good agreement with the recent torque-
magnetometry measurements of YBCO.[15] There is a
clear scaling relationship as shown in Fig. 2. Our analy-
sis shows that the magnetic anisotropy increases rapidly
below Tτ ≃ 1.1Jp at which ξAF ≃ 2a. Therefore, Tτ is
a crossover temperature associated with the short-range
AF order, in contrast to the claim in Ref. 15 where Tτ

is interpreted as an onset of a nematic phase transition.
Given the experimental fact that Tτ coincides with the
onset temperature of the pseudogap, the pseudogap may
also be a crossover phenomenon.
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