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The mean square distance σ2(t) of the diffusion induced by on-off intermittency is derived based on the
continuous-time random walk theory. It obeys a scaling law σ2(t) = 2Dtφ(t/τ) with diffusion constant D
and characteristic time τ, which is confirmed by the use of numerical iterations of a specific periodic map.
The scaling function φ and the power spectrum of the on-off intermittency variable I(ω) are analytically
obtained from the distribution function of the laminar duration. Normal diffusion (φ(z) ∼ 1) and slow
diffusion (φ(z) ∼ 1/

√
z) are observed, respectively, for t � τ and t � τ). The former and latter correspond to

the flat part (I(ω) ∼ const) and the power law (I(ω) ∼ 1/
√
ω), respectively, for the power spectrum.
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Many studies have been reported on the phenomenon
of on-off intermittency which is typically observed when
a synchronized chaotic motion in a coupled oscillator sys-
tem becomes unstable.1,2) On-off intermittency has been
observed not only in numerical models3–5) but also in lab-
oratory experiments.6–11) Recently, Ott and Sommerer
proposed a new dissipative dynamical model showing
onoff intermittency.12) In their model, on-off intermit-
tency is observed when a specific one-dimensional mo-
tion loses its stability and two-dimensional motion sets
in. Furthermore, Lai and Grebogi13) extended the Ott-
Sommerer model in such a way that two equivalent sub-
spaces show physically equivalent 1d motion. Namely,
this model has two symmetric invariant subspaces. As
the control parameter of the system is varied, the largest
Lyapunov exponent of the motion transverse to the in-
variant subspaces changes its sign from negative to pos-
itive. When this transverse Lyapunov exponent is posi-
tive, the state point shows an intermittent switching mo-
tion between the invariant subspaces which is similar to
on-off intermittency. This is termed two-state, on-off in-
termittency.

Harada, Hata, and Fujisaka14) extended the Lai-
Grebogi model for two-state on-off intermittency in such
a way that the system exhibits an infinite-state on-off in-
termittency by utilizing a periodic potential. The prop-
erty of the potential to be periodic implies the possibil-
ity of a diffusive behavior of a particle. They termed this
phenomenon on-off diffusion.

On the other hand, Geisel and Thomae considered
one-dimensional periodic maps, the elements of which
generate intermittent chaos, to show that the maps
cause anomalous diffusion characterized by the nonlinear
growth of the mean square deviation.15) On-off diffusion
can be also modeled by a periodic map, as we shall see
later.

The diffusion process discussed by Geisel and Thomae
and the on-off diffusion we consider have many common
features. The trajectory remains long in a cell, i.e., in

one of the elements of the periodic map, and then jumps
to its neighboring cell. The intra-cell motion and the
jumping motion alternate in an irregular manner, which
can be reduced to a one-dimensional random walk with
a waiting time during the intra-cell motion.

Thus, the continuous-time random walk theory proves
to be very helpful in analyzing such correlated diffu-
sions.16) Let σ2(t) = 〈∆x2(t)〉 be the mean square dis-
placement, the Laplace-transform of which is given by

σ̃2(s) = L[σ2(t)] =
ψ̃(s)

s − sψ̃(s)
,

where ψ̃(s) denotes the Laplace-transform of the prob-
ability density distribution ψ(t) of the waiting time t in
the cell: ψ̃(s) = L[ψ(t)]. In the case of on-off diffusion, the
distribution ψ(t) can be regarded as that of the laminar
duration of the on-off intermittency.

Yamada and Fujisaka17) analyzed the on-off intermit-
tency using a multiplicative noise process:

l(t) = (λ⊥ + ξ(t))l − l3,

where ξ(t) denotes Gaussian white noise with a vanish-
ing average. This Langevin equation has a stable equi-
librium solution l = 0 for λ⊥ < 0. On the other hand,
the equilibrium solution becomes unstable for λ⊥ > 0.
When λ⊥ is slightly greater than 0, numerical solutions of
the Langevin equation yield such temporal evolutions as
on-off intermittency. The laminar duration is measured
according to the interval between the neighboring inter-
secting points between the time series l(t) and the thresh-
old l = l0. In the vicinity of the critical point λ⊥ = 0, the
nonlinear term can be neglected, so that the distribution
function of the first passage time with the start l = lc
and with the goal l = l0 (lc < l0) is analytically obtained
as follows:18)

ψ(t) =
c

√
4πD⊥

t−3/2 exp[−
(λ⊥t − c)2

4πD⊥
],
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where D⊥ denotes half of the variance of the transverse
local expansion rates whose average is equal to λ⊥, and
c = log(l0/lc). Here we approximate the temporal evolu-
tion in such a way that the amplitude l(t) which reaches
the threshold l = l0 is suddenly reinjected to the same
place l = lc, and that the amplitude l(t) increases again
with fluctuation. This distribution function involves the
power law ψ(t) ∝ t−3/2, which is one of the most remark-
able characteristics of the on-off intermittency.19) The
average laminar duration is given by

t̄ =
∫ ∞

0
tψ(t)dt =

c
λ⊥

When we compare ψ(t) with experimental data, we
should first determine t̄ for a fixed threshold, as well as
λ⊥ and D⊥. The three parameters λ⊥, D⊥, and c = λ⊥ t̄ of
ψ(t) are determined without ambiguity.

The Laplace-transform of the above-mentioned ψ(t) is
given by

ψ̃(s) = eα[1−
√

1+4τs],

where α = λ⊥
2D⊥

c = t̄
2τ and τ = D⊥

λ2
⊥

. For τs � 1 or 1 � τs �
1
α2 , we can approximate ψ̃(s) as

ψ̃(s) = 1 + α[1 −
√

1 + 4τs],

so that

L[σ2(t)] =
ψ̃(s)

s − sψ̃(s)
,

≈
1

4ατs2 +

√
1 + 4τs
4ατs2 −

1
s
,

∝

s−2 (τs � 1),
s−3/2 (1 � τs � 1

α2 ).

Hence, we have

σ2(t) =


1

4α
t
τ

(t � τ),

1
√
πα

√
t
τ

(α2τ � t � τ).

The mean square deviation is given by the inverse
Laplace-transform as

σ2(t) = L−1[
1

4ατs2 +

√
1 + 4τs
4ατs2 −

1
s

],

=
t

4ατ
+

2
α
√
π

√
t

4τ
e−

t
4τ M(2,

3
2
,

t
4τ

) − 1,

where M denotes the Kummer20) Since the following
asymptotic form holds20)

M(2,
3
2
, z) →

√
π

2
ez √z(1 + O(|z|−1))

for z→ ∞,

we obtain σ2(t) → 2Dt for t → ∞ with D = 1
4ατ =

λ⊥
2c , so

that we have the following scaling relation

σ2(t)
2Dt

= φ(
t
τ

),

with the scaling function

φ(z) =
1
2
+

√
4
πz

e−z/4M(2,
3
2
,

z
4

)
= 1 (z � 1),

∝
1
√

z
(α2 � z � 1).

For α2τ � t � τ, the time series of on-off intermittency
has a self-similar structure.21) The physical origin of the
power law φ(z) ∝ 1/

√
z is this fact.

We confirm the scaling relation σ2(t)
2Dt = φ( t

τ
) by a nu-

merical simulation using the following piecewise linear
map:

Xt+1 =


Xt

a
(0 ≤ Xt < a),

1 − Xt

1 − a
(a ≤ Xt < 1),

xt+1 = f (xt)

=



b−2xt (0 ≤ xt < b2, 0 ≤ Xt < a),
bxt (0 ≤ xt < b2, a ≤ Xt < 1),

b − xt

b(1 − b)
− 1 (b2 ≤ xt < b),

xt − b
1 − b

+ 1 (b ≤ xt < 1),

where f (xt) is periodic in xt,

f (xt + k) = f (xt) + k, (k = 0,±1,±2, · · · ).

This map is a generalization of the map introduced
by Hata and Miyazaki to describe the on-off intermit-
tency,22) where the reinjection branches are replaced by
the branches causing the jump to the neighboring cell.

We term the unit interval [k, k + 1) the k-th cell here-
after. When xt falls in the interval [b2 + k, b + k) belong-
ing to the k-th cell, xt+1 jumps to the (k − 1)-th cell.
In the same way, xt+1 jumps to the (k + 1)-th cell when
xt ∈ [b + k, 1 + k). Thus, diffusive motion occurs.

Following Grossmann and Fujisaka,23) we decompose
xt into the integer part Nt = [xt] and the fractional part
yt: xt = Nt+yt. The map f becomes Nt+1+yt+1 = Nt+ f (yt),
which is then decomposed into

Nt+1 − Nt = [ f (yt)] ≡ ∆(yt),

yt+1 = f (yt) − [ f (yt)] ≡ g(yt),

so that Nt =
∑t−1

n=0 ∆(yn) for N0 = 0.
The mean square distance is given by

〈Nt〉 =

t−1∑
j,k

〈∆(y j)∆(yk)〉,

where the angle brackets denote the average for all initial
conditions y0. We select the parameter b of the map as a
function of a in such a way that no drift motion appears,
namely 〈Nt〉 = 0. We have, therefore,

〈N2
t 〉

t
=

1
t

t−1∑
k=0

〈∆(yk)2〉 ≈

∫
dyρ(y)∆2(y),

for t � τ, where τ is the characteristic correlation time of
the map g, and ρ(y) is an invariant density of g satisfying
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ρ(y) =
∫

dxδ[g(x) − y]ρ(x),

which is explicitly given as a step function by Hata and
Miyazaki,22) so that 〈N2

t 〉 = 2Dt for t � τ with a diffusion
constant D = 1

2

∫
dyρ(y)∆2(y), which can be evaluated an-

alytically in our case.
On the other hand, the characteristic time τ can also

be obtained analytically. The transverse Lyapunov expo-
nent λ⊥ and its variance 2D⊥ are given by

λ⊥ = (1 − 3a) log b,
2D⊥ = 9a(1 − a)(log b)2,

with a = ac(1 + ε). As ε → 0, λ⊥ ∝ ε, D⊥ ∼ const, t̄ ∝ ε−1,
and τ ∝ ε−2, so that we have α2τ = t̄2

2τ = O(1). The critical
point is given by ac =

1
3 , at which on-off intermittency

occurs in the map g, and on-off diffusion occurs in the
periodic map.22)

We obtain the mean square distance 〈N2
t 〉 from the nu-

merical iteration of the periodic map, and plot 〈N
2
t 〉

2Dt ver-
sus t

τ
for ε = 0.0005(×), 0.001(�), 0.003(◦), 0.005(·), and

0.01(�) with the theoretical curve in Fig. 1. A good agree-
ment between the theory and the numerical experiment
is observed over four decades of t/τ.

The scaling law obeyed by the mean square distance
can be reproduced by the following scaling assumption.
Assume the scaling form 〈N2

t 〉 = ε
δφ(εβt), with the scaling

function

φ(z) ∝
{

z−γ (0 < z � 1),
const (z � 1).

As we mentioned previously, on-off intermittency has the
characteristic time τ ∝ ε−2, so that we have β = 2. For
t � τ, normal diffusion is observed, and therefore, we
have D ∝ εδ. For t � τ, it follows that 〈N2

t 〉 = εδ−2γt−γ.
Assume that this does not depend on ε, and we have
δ−2γ = 0. In the case of the periodic map which we con-
sidered above, the diffusion constant is proportional to ε,
so that we have δ = 1. Hence, we obtain γ = 1/2, which is
consistent with the asymptotic form of the theoretically
derived scaling function.

The characteristic time τ = D⊥
λ2
⊥

appears in the scaling
law of the power spectrum:24)

I(ω) = h/
√

1 +
√

1 + (4τω)2,

with h ≈ 0.263046. A similar expression was derived by
Fujisaka and Yamada for the generalized power spectrum
Iq(ω).25) This scaling form can also be derived from ψ(t)
as follows. The correlation function for the discrete vari-
able ln:

C(m) = lim
N→∞

1
N

N∑
m=0

ln+mln,

is related to the power spectrum:

I(ω) ∝ lim
N→∞

1
N

N∑
m=0

cos(mω)C(m),

via the Wiener-Khinchine theorem. Following Schus-

Fig. 1. Scaling function φ vs scaled time t/τ.

ter,26) C(m) can be expressed with ψ(m) as

C(m) =
m∑

k=0

C(m − k)ψ(k) + δm,0,

where ψ(0) = 0 and C(0) = 1. The Laplace-transform of
both sides yields

C̃(s) =
1

1 − ψ̃(s)
,

so that we have

I(ω) =

∫ ∞
0

dt cos(ωt)C(t),

=
1
2

[
1

1 − ψ̃(iω)
+

1
1 − ψ̃(−iω)

]
,

where we pass on to the continuous time variable. For
τs � 1 or 1 � τs � 1/α2, ψ(s) can be approximated as
1+α(1−

√
4τs). Substituting this approximation into the

above expression, we obtain

I(ω) =
1
√

2α

1√
1 +
√

1 + (4τω)2

It should be noted that τs � 1 (t � τ) and 1 �
τs � 1/α2 (α2τ � t � τ) correspond to the flat re-
gion I(ω) ∼ const and the power-law (self-similar) re-
gion I(ω) ∝ 1/

√
ω, respectively. Thus it is proved that

the characteristic time τ separates the two time regions.
Aside from the numerical factor, the above expression
I(ω) coincides with the scaling form previously obtained
by Miyazaki and Hata for a piecewise linear map24) as
well as by Fujisaka and Yamada for a multiplicative noise
process.25) This surprising result may imply that the
scaling function is universal. The validity and the foun-
dation of this universality are left for future study.
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