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Extension of Bing Maps

FURKEHFER MEAXAB (Hisao Kato)
FRAPMEMREEMRE MEXD (Eiichi Matsuhashi)

Abstract

In [7], M. Levin proved that the set of all Bing maps of a com-
pact metric space to the unit interval constitutes a Gs-dense subset
of the space of maps. In [6], J. Krasinkiewicz independently proved
that the set of all Bing maps of a compact metric space to an n-
dimensional manifold (n > 1) constitutes a Gs-dense subset of the
space of maps. In [9], J. Song and E. D. Tymchatyn solved some
problems of J. Krasinkiewicz [6]: They proved that the set of all Bing
maps of a compact metric space to a nondegenerate connected polyhe-
dron (or a 1-dimensional locally connected continuum) constitutes a
Gs-dense subset of the space of maps. In this note, by using methods
of Levin [7] and Krasinkiewicz [6], we prove the extension theorem of
Bing maps which is slightly precise than the theorem of J. Song and
E. D. Tymchatyn.

1 Introduction

In this note, all spaces are separable metrizable spaces and maps are
continuous functions. We denote the unit interval [0,1] by I. An arc is a
space which is homeomorphic to I. If X is a compact metrizable space and
Y is a space, C(X,Y) denotes the space of all continuous maps from X to Y
endowed with sup metric. A compact metrizable space is called a compactum,
and a continuwm means a connected compactum. A map f is called a e-map
if all diameters of fibers of f are smaller than €. A continuum is said to be
indecomposable if it is not sum of two proper subcontinua. A compactum
is called a Bing compactum (or said to be hereditarily indecomposable) if
each of its subcontinua is indecomposable. A map is called a Bing map if
each of its fibers is a Bing compactum. In [7], M. Levin proved the following
theorem.



Theorem 1 (M. Levin [7]) For each compactum X, the set of all Bing maps
in C(X,1) is a Gs-dense subset in C(X,I).

On the other hand, J. Krasinkiewicz proved the next theorem indepen-
dently.

Theorem 2 (J. Krasinkiewicz [6])Let X be a compactum and let Y be an
n-dimensional manifold (n > 1). Then the set of all Bing maps in C(X,Y)
is a Gs-dense subset in C(X,Y).

Note that Theorem 2 is a generalization of Theorem 1. In [6] , J. Krasinkiewicz

poses the following problem: If Y in Theorem 2 is an other space (for ex-
ample, dendrite, dendroid, polyhedron, locally connected continuum, the
Menger universal curve, AR, ANR), does Theorem 2 hold? In [9], J. Song
and E. D. Tymchatyn solved the problems of J. Krasinkiewicz: In particular,
they proved the following;:

Theorem 3 (J. Song and E. D. Tymchatyn [9]) The set of all Bing maps
of a compact metric space to a nondegenerate connected polyhedron (or a
1-dimensional locally connected continuum) constitutes a Gs-dense subset of
the space of maps.

~In this note, we prove the following theorem by using methods of Levin
(7] and Krasinkiewicz [6], which is more precise than the above theorem of
J. Song and E. D. Tymchatyn. The proofs are somewhat different from one
of J. Song and E. D. Tymchatyn [9]. For case of graphs, we use an idea of

M. Levin [7], and for general case of polyhedra, we will use an idea of J.
Krasinkiewicz [6].

Theorem 4 (Extension Theorem of Bing Maps) Let X be a compactum and
let A be a closed subset in X. Let K be a finite simplicial complex such that
|K| is a nondegenerate connected polyhedron and let L be a subcomplez of K.
Iff A — |L] is a Bing map and f : X — |K| is a map with flA=f and

“(|L]) = A, then for any € > 0 there exists a Bing map g : X — |K| such
tha,t glA= f and d(f,g) <e.

As a corollary, we obtain the theorem of J. Song and E. D. Tymchatyn.
Also, we investigate surjective Bing maps from continua to polyhedra.
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2 Preliminaries
In this section, first we give some definitions which are used in this paper.

Notation 5 Let X be a space and let d be a metric on X. We denote
the identity map of X by idx. For a subset A C X and § > 0, denote
B(A,8) = {z € X | there exists a € A such that d(z,a) < 4}, diamA =
sup{d(z,y)| z,y € A}, clA = {r € X| if U is a neighborhood of z then
UnN A # 0}, intA = {z € X| there exists a neighborhood V of z such that
V C A}. If Ais a family of subsets of X, denote mesh.A = sup{diamA|A ¢
A}. If o is a simplex, we denote the boundary of o by do. If K is a simplicial
complex and n € N, we denote K™ = {0 € K|dim ¢ < n} and |K| = |, 0.
For each arc I and z # y € I, [z,y]; means an arc in ] from z to y and [z, y);,

(z, ylr, (z,y)r mean [z,y]r \ {y}, [z,9]r \ {z}, [z,9]r \ {z,y} respectively.

Now we will give the definition of D-crooked. The definition of D-crooked
was originally introduced in [2], and the definition below was given in [7].

Definition 6 Let D = {(Fy, F1, Vo, V1) | Fo, F1 are disjoint closed subsets
in I* and V;, V; are disjoint open neighborhoods of Fy, F} in "} and D =
(Fo, F1,Vp, Vi) € D. A subspace X C IM is D-crooked if there exists an
open neighborhood U of X in I® such that for any map f: I > U with the
property f(0) € Fy and f(1) € Fi, there exist to,t; with 0 < ¢y < ¢; < 1
such that f(to) € V4 and f(t;) € Vo. A map is said to be D-crooked if each
of its fibers is D-crooked.

Clearly, subspaces of D-crooked spaces are also D-crooked. ‘M. Levin
obtained the following propositions in [7].

Proposition 7 (M. Levin [7]) If A C I¥ is D-crooked, then there ezists a
neighborhood U C I’ of A such that U is D-crooked.

Proposition 8 (M. Levin [7]) A compactum A C I’ is a Bing compactum
if and only if A is D-crooked for each D € D.

Proposition 9 (M. Levin [7]) There ezist Dy, Dy, ... € D such that for any
compactum A C I, A is a Bing compactum if and only if A is D;-crooked
for eachi=1,2,...



The next theorem was proved by R. H. Bing. Many authors used the
theorem to reach important conclusions (for example, the theorem is used in
the proof of Theorem 1).

Theorem 10 (R. H. Bing [2])Let X be a compactum and let A, B be disjoint
closed subsets in X. Then there ezists a Bing compactum L such that L is a
partition between A and B.

Now, we recall the definition of inverse limits. Let {X;, f:}2, be a dou-
ble sequence of spaces X, called coodinate spaces, and maps f; : Xi11 —
Xi, called bonding maps. Then inverse limit of {X;, f;}32,, denoted by
IiIP{Xi, fi}, is the subspace of [];°, X; defined by 1}31 {Xi, fi} = {(z:) €
[12, Xilfi(zis1) = z; for each i = 1,2,...}. For Y = l‘iﬂa{X,-,f,»} and
= 1,2,...,, amap p; : Y — X; is called a i-th projection if p; satis-
fies pi((z;)52;) = =z for each (z;)32; € Y. It is well known that every
n-dimensional continuum is an inverse limit of n-dimensional compact con-
nected polyhedra with onto bonding maps.

3 Bing maps to Peano curves

A space is called a Peano space if the space is locally connected. A space
X is called a Peano curve if X is a 1-dimensional Peano continuum. In this
section, we prove the theorem of J. Song and E. D Tymchatyn for graphs
by using Levin’s idea [7].

Theorem 11 (J. Song and E. D. Tymchatyn [9]) Let X be a compactum
and let Y be a Peano curve. Then the set of all Bing maps in C(X,Y) is a
Gs-dense subset in C(X,Y).

Before we prove Theorem 11, we prove some lemmas. The next lemma
follows from Theorem 10 which plays very important role in the proof of
Lemma 13.

Lemma 12 Let X be a compactum and let Fy, Fs, . .., Fy, (k > 2) be pairwise
disjoint closed subsets in X. Then there ezxist pairwise dzsyomt open subsets
Uy, Us,...,Ug such that F; C U; fori=1,2,...,k andX\U U; is a Bing
compactum. '

=1
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Proof.. We will prove Lemma 12 by the induction on k. For k = 2,
Lemma 12 holds by Theorem 10. Suppose that Lemma 12 holds for k =
2,3,...,m—1(n>3). Let F1, F3,..., F, be pairwise disjoint closed subsets
in X. By the inductive assumption there exist pairwise disjoint open subsets
Ul, Ug, e ,Un_g,Vn_l such that Fl C U]_, F2 C Uz, ceey Fn_z cU, -2, Fn_]_ U
F, C Vpyand L; = X \ (U U; U V,_,) is a Bing compactum. Since
F,_, and (X \ V,-1)UF, are disjoint, there exist disjoint open subsets Uy,
W,_1 such that Fy,_; C Up_1, (X \ Va1 )JUF,C Wyoq and X \ (Up—1 UW,—y)
is a Bing compactum. Let U, = W,_1 \ (X \ Va-1). We see that F; C
U; for i = 1,2,...,n and Uy, Us,...U, are pairwise disjoint. And since
X\(U1UU2U' . 'UUn)= L1U(X\(U _1UW _1)) and Ll, X\(Un_lLJW _1) are
pairwise disjoint Bing compacta, X \(U; UU,U...UU,) is a Bing compactum.
So Uy, Us, ..., U, have the required property. This completes the proof.

The proof of the next lemma is inspired by the proof of Theorem 1. Let
us recall that a compactum X is called a graph if X is a 1-dimensional
polyhedron.

Lemma 13 Let X be a compactum and let G be a connected graph. Then
the set of all Bing maps in C(X,G) is a Gs-dense subset in C(X,G).

Proof. Let X C I' be a compactum, f € C(X,G) and € > 0. Set D
as in Definition 6 and Dy, D, ... € D as in Proposition 9. Put D;(X,G) =
{g € C(X,G) | g is a D;-crooked map} for each i =1,2,...

By Proposition 8 and 9, {g € C(X,G) | gis a Bing map} = N2, D:(X, G).
By Baire theorem it is sufficient to show that D;(X, G) is an open dense sub-
set in C(X,G).

Claim 1. D;(X,G) is an open subset in C(X,G). This result has been
proved in [7]. For completeness, we give the proof. '

Proof of Claim 1. Let g € D;(X,G). By Proposition 7 and Since g is a
closed map, we can take an open cover V of G such that f~'(V) is D;-crooked
for each V € V. Let d be a Lesbegue number of the restriction of this cover
to g(X). Then h € D;(X,G) for each h € C(X, G) with d(h,g) < /2.

Claim 2. D;(X,G) is a dense subset of C(X, G).

Proof of Claim 2. Let f € C(X,G) and € > 0. Take a simplicial com-
plex K of G such that mesh £ < €. At first we will show that f can be



approximated by a map f' € C(X,G) with the property that f'~'(p) is a
Bing compactum for each p € K©@. Let {p,;}7, = K@\ {p € KO|p is an
endpoint of G}. For j = 1, let I, I,,..., [, € KO be all edges which
contain p; as their endpoint, and let p;, be the another endpoint of L, for
£=1,2,...,k Taker, € L, \{p1,p,} for £=1,2,... k. Let A, = Jt_, I,,.
Since f—-l([rhpll]hl)) f—l([r2)p12]hz)7 ey f—l([rk;plk]hk) are pa'irWise dis-
joint closed subsets in f~!(4;), by Lemma 12, there exist open subsets
Ul, Ug, ceey Uk in f—l(Al) such that f‘l([rg,plt]ht) C Ue for £ = 1, 2, ey k‘,
and L, = f~1(A;) \ Ule U, is a Bing compactum. Now, we construct f, :
LUV, = L, such that fol f~}([re, p1,]1,) = fIf " ([rex 1, )1,) and £y} (p1) =
L, for £=1,2,...,k. We can take a map fy, : Ly U (U, \ f((re, p1ln,)) =
[p1, 7)1, such that f;'(p;) = L, and fel(re) = f7Y(r¢). Then a map f; :
LyuU, — Ilg defined by fg((L‘) = fgl((L‘) ifxre LU (Ue \ f“l(('rg,plt]hl) and
fe(z) = f(z) if z € f~2([ry, P1,]r,,) has the required property. Define f'; :
f7HAL) = Ay by f'i(z) = fu(z) if £ € LyU U, for € = 1,2,.... k. Define
fi: X = Gy fil) = f(a) if 3 € (X \ f(4y)) and fi(x) = f4(z) i
z € f7(A1). Then d(f, f1) < € and f;"!(p,) is a Bing compactum.

If the step above has been done for j <n—-1(2<n < m), then do the
same step for j = n. Then f can be approximated by a map f, : X — G
such that f~'(p;) is a Bing compactum for j = 1,2,...,n. So we can take a
map f': X — G such that d(f, f') < € and f’-l(pj) is a Bing compactum
for each j = 1,2,...,m. And we may assume that f’(z) is not an endpoint
of G for each z € X. So f can be approximated by a map f' : X — G such
~ that f'""}(p) is a Bing compactum for each p € K. So we may assume that
A = U,exo f1(p) is a Bing compactum.

Now, we will use an idea of the proof of [7, Theorem 1.8]. Let D; =
(Fo, F1,V5, V1) € D. Take closed neighborhoods Ey, E; of Fy, Fy such that
Fy CEyCVyand Fy C E; C V;. Since D; = (Ey, E1,Vp,V1) € D and A
is a Bing compactum, by Proposition 8 A is D’;-crooked. By Proposition 7
there exists a neighborhood B of A such that B is D’;-crooked. We claim
that H = B U intEy U intF,; is D;-crooked.

Let ¢ : I — H be a map with p(0) € Fy and (1) € F;. Let by =
max{b € I | ¢(b) € Eo} and b; = min{b € L | b > by and ¢(b) € E;}. Since
B is D’;-crooked, there exist to, t; € I with by < t; < ¢; < b; such that
o(to) € V1 and ¢(t;) € Vy. So H is D;-crooked.

Since (X \H)N Fy=¢=(X\ H)N F;, X\ H is D;-crooked and since
(X\H)N A= ¢, AU (X\H) is D;-crooked. Let XV) = {I,,I,,...,1,}. For
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each I; € KV, let pj,, p;, be the endpoints of I;, and X; = f~1(I;) and S; =
(X \ H) N X;. Define g; : X; — I, such that g;7*(p;,) = f~}(p;;,) U S; and
g (pj,) = Y (pj,) for j =1,2,...,s. Define g : X — G by g(z) = g;(z)
if z € X;. Then, d(f,g) <€ and foreach y € G, g7 (y) C H or g7*(y) C
(X \ H) U A. In both cases, g~*(y) is D;-crooked. This completes the proof.

Remark 14 In the proof of Claim 1 we only use the fact that X is compact.
So for each compactum X and space Y, the set of all Bing maps in C(X,Y)
is a Gs-subset in C(X,Y).

The following definition was given in [6].

Definition 15 Let Y be a space. We say that Y is free if for every com-
pactum X the set of all Bing maps in C(X,Y) is a dense subset in C(X,Y).

A map f: X =Y is called an n-dimensional map if dimf~*(y) < n for
each y € Y. Note that 0-dimensional maps are Bing maps. By the theorem of
Hurewicz for mappings and dimension, we see that if X is a compactum and
P is a polyhedron such that dim X > dim P, then there is no 0-dimensional
map f from X to P.

We need the next lemma.

Lemma 16 LetY be a space. If for each € > 0 there exist a free compactum
Z andmapsp : Y - Z andq : Z— Y such that d(gop,idy) < € and q is
a 0-dimensional map, then 'Y is a free space.

Proof. Let X be a compactum and let A : X — Y be a map. By
the assumption there exists a free compactum Z and maps p: ¥ — Z
and ¢ : Z — Y such that d(q o p,idy) < € and q is a O-dimensional map.
Since ¢ is uniformly continuous, there exists § > 0 such that if a,b € Z
satisfy d(a,b) < 6, then d(q(a),p(b)) < €. Since Z is free, there exists a
Bing map ¢ : X — Z such that d(po h,p) < §. Let ¥ = go ¢, then
1 is a Bing map because g is (-dimensional and ¢ is a Bing map. And
d(h,¥) =d(h,qop) <d(h,gopoh)+d(gopoh,gop)<e+e=2e SoY
is a free space.

Now, we will give the proof of Theorem 11.

Proof of Theorem 11.- By Remark 14, it is sufficient to show that Y is free.
So we will show that Y satisfies the condition of Lemma 16. Let h € C(X,Y)



and € > 0. Since Y is a 1-dimensional continuum, Y can be written as Y
= 1&111 {G;, fi}2,, where G; is a graph and f; : Gi4; — G; is surjective for
t = 1,2,... Since Y is Peano continuum, there exists £; > 0 such that if
z,y € Y satisfy d(z,y) < &;, then there exists an arc A in Y such that A
contains z and y as its endpoints and diamA < €. Let £, = min{e,e;}. Take
1 sufficient large so that the projection p; : Y — G; is an €,-mapping. Since
p; is a closed map to a compactum, there exists €3 > 0 such that if B C G;
satisfies diamB < &3, then diamp;~1(B) < &;. Let K be a subdivision of G;
with meshK < e3. Let K = {v;}7, and K = {I,}}_,. Take a; € p~*(v;)
for j = 1,2,... Let I, € K*) and let v,,vs, be endpoints of I,. Since
diaml, < €3, it follows that diam(p; = (1;)) < €2. Take ag, € p~'(ve, )N {a;}7,
and ag, € p~'(vs,)N{a;}7,. Since d(ay,,as,) < €2, there exists an embedding
q : I, = Y such that diam(gy(I;)) < €, qe(pe,) = ae, and go(pe,) = ay,.
Define q; : G; = Y by gi(z) = qz) if z € I, for £ = 1,2,...,n. Then
d(idy,giop;) < 2, and |g;*(y)| < oo for each y € Y. So Y satisfies the
condition of Lemma 16. This completes the proof.

Remark 17 In the proof of Lemma 13, we used an idea of M. Levin (see
the proof of [7, Theorem 1.8]). Also, we can prove Lemma 13 by using an
idea of J. Krasinkiewicz [6, Lemma (5.2)] (compare the proof of Lemma 13
with the proofs of Lemma 22, 23 and Theorem 24 in the next section).

4 Bing maps to polyhedra

In this section, by the method of J. Krasinkiewicz [6] we prove Theorem
24 and as an application of this theorem, we show the theorem of J. Song
and E. D. Tymchatyn: the set of all Bing maps in C(X,P) is a Gs-dense
subset in C(X,P), where X is any compactum and P is any nondegenerate
connected polyhedron. The next definition was given in [6)].

Definition 18 Let X be a compactum and let p € C(X,I). We say that X

is folded relatively p (folded rel p) if there exist closed subsets Fy, Fi2, Fy
such that '

(LFo U FipUF =X.

(2)FyN Fy = 0.

(3)p~1(0) C Fy, p7Y(1) C F.

(4)Fo 1 Fija € p71((1/2,1]), Fije 0 Fy € p73((0,1/2)).
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A subset X’ C X is said to be folded rel p if X' is folded rel p|X’. A map
f from X to a compactum Y is said to be folded rel p if f~'(y) is folded rel
pforeachyeY.

Lemma 19 (J. Krasinkiewicz [6]) Let X be a compactum and let Y be a
space. Then for each p € C(X,I) we have:

(1) If X is folded rel p, then for each g € C(Y,X) Y is folded rel po q.
In particular every subset of X is folded p.

(2) If F is a subset of X folded rel p, then some neighborhood of F' in X
is folded rel p.

Lemma 20 (J. Krasinkiewicz [6]) For each compactum X, there ezists P =
{p:}2, € C(X,1I) such that a closed subset B C X is a Bing compactum if
and only if B is folded rel p; for eachi=1,2,...

Lemma 21 (J. Krasinkiewicz [6]) Let X be a compactum and let Y be a
space. Then for each p € C(X,1), the set {f € C(X,Y)|f is folded rel p} is
an open subset in C(X,Y).

The next lemma is a key lemma in this paper. The proof is based on an
idea of J. Krasinkiewicz (6, Lemma (5.2)].

Lemma 22 Let X be a compactum and let A be a closed subset in X. Let
€ >0, 0" (n > 1) an n-dimensional simplez, and p : X = L a map. If f :
A — 80™ is a Bing map and f : X = o™ is a map with flA = f, then there
ezists a map g : X — o™ such that g|A = f, d(f,g) < € and g is folded rel
.

Proof. Let € > 0. Let f : A — Oo™ be a Bing map andletf: X - o™

be a map with f]A = f. Let ¢ : o"xI — o"and ¢ : 0" xI — 1 be
projections. We may assume that f satisfies f~ 1(fo™) = A. Since fisa
closed map, by (2) of Lemma 19 there exists V which is a family of open
subsets in o™ such that do™ C |JV and f~1(V) is folded rel p for each
V eV. Let r = d(do™, 0™\ UV) and let Z = {y € o™|d(y,00™) > r/2}.
There exists § > 0 such that if B C o™ satisfies diamB < 6 and BN {y €
o™ d(y,d0™) = r/2} # 0 then B is contained in some member of V. Let
U = {U;}*_, be a finite family of open n-discs in o™ such that Z C{JU and
mesh U <min{d/2,7/2,e}. We can assume that no proper subfamily of &
covers Z. Take a; € U;\ U, U; for @ = 1,2,... There exist compact sets



71,2, ..., 7Z such that Ule Z;=Zand Z; CcU;fori=1,2,...,k. For each
i=1,2,...,k there exists a PL n-disc D; in U; such that Z; C intD;. For each
i=1,2,...,k, there exists an open n-disc G; such that D; U {a;} C G; C
clG; c U;. For each ¢ = 1,2,...,k, there exists a neighborhood W; of a;
such that W; C G; \ U;4 G- Let 01,04, ...,04 be pairwise disjoint open
intervals in (0,1/2). For each 1 =1,2,...,k, take 7;, s;, t; € O; such that
Ty < 8; <t;. Foreachi=1,2,. k there exists PL (n + 1)-disc E; such
that (a,-,3/4) € intEi C Ei C G,; X Oi U VViX (t;,l), D,; X [T‘,;,ti] N E-,; C
0D; x [ri,t;] and @; = D; X [r;,t;] U E; is closed PL (n + 1)-disc. Since
{G; x O; UW; x (t;,1)}r_, is pairwise disjoint and @; C G; x O; UW; x (t;,1)
for i =1,2,...,k, @1,Qq,...,Q are pairwise disjoint. So there exists an
isotopy H; : o™ x I — o™ x I (¢t € I) such that H;|(o™ x I\ UL,int@;)
= idynx|(o™ x T\ UF_,intQ;), H;|Q; is a homeomorphism of Q; to itself and
Hy(Zs x {s:}) C ¥ H((1/2,1)) for i =1,2,..., k. Let g = po H o (f xp)
X — o™. Since Hy|80™ X1 = idgonx1, g|A = f. Since meshld < €, d(f,g) < e.
Let y € o™. Now we consider next three cases.

Case 1. If y € 0™ \ YU, then there exists V' € V such that y € V. Since
g Y y) = fHy) € FHV), g7 (y) is folded rel p.

Case 2. Suppose that y € YU N (o™ \ Z). Let Uy, Uy, ...,U; be the
all members of U which contain y. Let U’ = {Ji_, U;. Since U' N {y €
o"|d(y,00™) = r/2} # 0 and diamU’ < 4, there exists V' € V such that
U' CV'. Then g7}(y) = (f xp)t o Hiop ' (y) C (f xp) 1o (V') =
YU C f7Y(V'). So g~ (y) is folded rel p.

Case 3. If y € Z, there exists ¢ = 1,2,...,k such that y € Z;. Since
Hy({y}xI) = Hi({y} %[0, sz])Uﬂl({y}X[sut])UHl({y}X[tul]) H;({y}xI)

is folded rel 9. Since g~(y) = (fxp) Lo Hyop~(y) = (f ><p) Yo Hi({y} xI)
and by (1) of Lemma 19 g~1(y) is folded rel 4 o (f x p) =

So g is folded rel p. This completes the proof.

Lemma 23 Let X be a compactum and let A be a closed subset in X. Let
e >0, o™ (n > 1) an n-dimensional simplez. If f : A — Oo™ is a Bing map
and f : X — o™ is a map with f |A = f, then there ezists a Bing map g :
X — o™ such that d(f,g) < € and g|A = f.
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Proof. Set P as in Lemma 20. Let C(X, f|4) = {g € C(X,0™)|glA = f}.
For each p; € P, let C(X, flA,m) = {g € C(X, f|A)|g is folded rel p;}.
Let B(X, f|A) = {g € C(X, flA)|g is a Bing map}. Since B(X, f|A) =

., C(X, flA,p;), by Lemma 21, 22 and Baire theorem B(X, f|A) is dense
in C(X, f|A). This completes the proof.

The following theorem is a more precise result than the theorem of J.
Song and E. D. Tymchatyn.

Theorem 24 (Extension Theorem of Bing Maps) Let X be a compactum
and let A be a closed subset in X. Let K be a finite simplicial complez such
that |K| is a nondegenerate connected polyhedron and let L be a subcomplez
of K. If f : A— |L]| is a Bing map and f : X — |K| is a map with flA = f
and f~Y(|L]) = A, then for any € > 0 there exists a Bing map g : X — |K|
such that g|A = f and d(f,g) <e.

Proof. First, we prove the following claim:
The set Cro(X, |K|) = {f € C(X,|K]) | f~!(v) is a Bing compactum for
each vertex v € K°} is a Gs-dense subset of C(X, |K|).

Let v = vp € K° and let p : X — I be a map. We shall prove that
C.(X,|K|,p) = {f € C(X,|K]|) | f~'(v) is folded rel p} is an open and dense
subset of C(X,|K|). We can easily see that C,(X, |K|,p) is an open set of
C(X,|K!|). We prove that C,(X, |K|,p) is dense in C(X, |K]).

Let e > 0and 0 < a < B < 1. Consider the star St(v,K) =U{c € K|v €
o} of K with v. For each simplex o = [vo, v1, .., Um] € K (v0 = v,m > 1), put

—{Zt_ot'vi ‘t 0 (Z——O 1 2, ,m) Et_ot =1, tOZa}

o = {ZPotivi | t: >0 (:=0,1,2,..,m), 22t =1, to > B}.

Let
M = UyeoekOas N = Uveoex0g-

Choose positive numbers sq, s;, and s; with 0 < 89 < 51 < 1/2 < 83 < 1.
Consider the following set

= (M x [s0,51]) U (cl(M — N) x [s1,89]) C St(v,K) x [0,1].

For each (m-dimensional) simplex ¢ containing v (m > 1), put 0z = Z N
(o x T). Also, consider the following map ¢ : Z — T = ([0,1 —a] x [so, s1]) U



(I8—0,1~a] x[s1,0]) CIx I defined by ¢(z) = (1 —to,t) = (T, t;, 1) for
z=(z,t), t € T and z = T t;v; € [vg, V1, .., Um]. By identifying each z € Z
with ¢(z) € T, we obtain the adjunction space W = (St(v,K) x ) Us T Let
q: (St(v,K) x I) - W be the natural projection.

Let D be a closed disk (=2-cell) and consider an embedding u : {v} x
[0, 81] = O(D), where (D) is the manifold boundary of D. Also, consider
the adjunction space E = (St(v,K) x I) U, D. Note that for each simplex
o containing v, cl(g(c x I) — g(0z)) is naturally homeomorphic to ¢ x I
and ¢(Z) is homeomorphic to D. Hence W is homeomorphic to E. More
precisely, for each simplex ¢ = [v, 1, .., v,,] € K containing v (m > 1) there
is an embedding h, : g(o xI) — E such that h,(cl(g(c xI)—g(0z))) = o x I
and h,(q(cz)) = D and h,(q(H,)) = {v} x I, where

Hy = {v} x ([0, 50] U [s1, 55]) U (0 X {80}) U (Ha X [50, 2] )U

(Hp X [s1,8]) U (cl(0a — g5) x {82}) U (0 X {s1}),
and

. .Ha = {Ef;ot,’(h | t:‘, 2 O (i = 0, 1,2, .y m), Ezr;otf, = 1, to = a},

Hﬁ = {Z;n=0ti'”¢ l t 2 0 (Z = 07 112’ ")m)’ E:’,?:Oti = 17 b= ﬂ}

Also, choose a map v : E = (St(v,K) x I)U, D — St(v,K) x I such that
u/|(St(v, K) xI) = id and v~} ({v} xI) = {v} xI. By using these maps, we can
obtain a map h : |K|xI — |K| xI such that for each simplex [v, vy, .., V] € K
containing v, h|[vq, .., vm] = id and A~ ({v} x I) = Uyeoex H,. Consider the
map g =poho(f xp): X — |K|, where ¢ : |K| x I = |K| is the natural
projection. Since H, is crooked with respect to p, we see that g~'(v) is
folded rel p (see the following figures below). Since we can choose a positive
number o with 1 — a < ¢, we see that d(f,g) < e. Hence we see that
Co(X,|K|) = {f € C(X,|K]) | £*(v) is a Bing compactum } is a G;-dense
subset of C(X, |K|). Then

CICU (X, "Cl) = nvelCOCv(Xf "C,)

is a Gs-dense subset of C(X, |K|). Hence the claim is true.
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Let dim|K| = n. For each j = 0,1,...,n, let 4; = |L| U |KW|. By
the claim, we may assume that FIF1(Ao) : f~Y(Ag) — Ay is a Bing map.
Put §o = f. Note that for each simplex ¢ € K, the boundary 0o is a Z-
set of 0. By Lemma 23, we have a Bing map g::Go"'(4;) — A; such that
911G (Ao) = doldo~'(Ag). By the homotopy extension theorem, we may
assume that there is a map gy : X — |K| such that ¢, is an extension of g,
and §; 7" (A1) = go~'(A1). If we continue this process, we have a Bing map
g = gn : X — |K| such that g|A = f and d(f,g) < €. This completes the
proof.

The next result is the theorem of J. Song and E. D. Tymchatyn.

Corollary 25 (J. Song and E. D. Tymchatyn [9]) Let X be a compactum
and let P be an n-dimensional connected polyhedron (n > 1). Then the set
of all Bing maps in C(X,P) is a Gs-dense subset in C(X,P).

Proof. If we put A = |£| = ¢ in Theorem 24, we obtain this theorem.

Corollary 26 (J. Song and E. D. Tymchatyn [9]) Let M be a Menger man-
ifold with dim M > 1. Then the set of all Bing maps in C(X,M) is a
Gs-dense subset in C(X, M) (see [1] for properties of Menger manifolds).

Proof. We only prove that M is free. Let ¢ > 0. There exists a non-
degenerate connected polyhedron P € M and map p : M — P such that



d(z,p(z)) < € for each £ € M (see [1]). Let ¢ : P — M be a natural em-
bedding. Then g is 0-dimensional and d(q o p,idm) < €. By Lemma 16 and
Corollary 25, M is free. This completes the proof.
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