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Abstract
Passive dynamic walking is a model that walks down a shallow slope without any control or input.
This model has been widely used to investigate how humans walk with low energy consumption
and provides design principles for energy-efficient biped robots. However, the basin of attraction is
very small and thin and has a fractal-like complicated shape, which makes producing stable
walking difficult. In our previous study, we used the simplest walking model and investigated the
fractal-like basin of attraction based on dynamical systems theory by focusing on the hybrid
dynamics of the model composed of the continuous dynamics with saddle hyperbolicity and the
discontinuous dynamics caused by the impact upon foot contact. We clarified that the fractal-like
basin of attraction is generated through iterative stretching and bending deformations of the
domain of the Poincaré map by sequential inverse images. However, whether the fractal-like basin
of attraction is actually fractal, i.e., whether infinitely many self-similar patterns are embedded in
the basin of attraction, is dependent on the slope angle, and the mechanism remains unclear. In the
present study, we improved our previous analysis in order to clarify this mechanism. In particular,
we newly focused on the range of the Poincaré map and specified the regions that are stretched and
bent by the sequential inverse images of the Poincaré map. Through the analysis of the specified
regions, we clarified the conditions and mechanism required for the basin of attraction to be fractal.

1. Introduction

Passive dynamic walking is a model that walks down
a shallow slope without any control or input [27],
which is useful for investigating the mechanism of
generating stable walking from a dynamic view-
point. This has been widely used to examine how
humans walk with low energy consumption [6, 7,
11, 24–26] and to provide design principles for
energy-efficient biped robots [5, 9, 10, 21–23, 36,
37]. However, the basin of attraction is very small
and thin and has a fractal-like complicated shape
[2, 29, 33], which makes it difficult to produce sta-
ble walking. Furthermore, chaos appears in the walk-
ing behavior through a period-doubling cascade by
increasing the slope angle [15], which makes produc-
ing stable walking even more difficult. Meanwhile,
the basin of attraction shows a fractal-like shape,
even without period doubling. In other words, the

fractal-like basin of attraction appears even for a sin-
gle attractor. Although this indicates that a different
mechanism from the period doubling of the attractor
induces a fractal-like basin of attraction, the mecha-
nism is unclear.

In our previous study [29], we used the sim-
plest walking model [13] for the analysis of passive
dynamic walking and clarified the formation mech-
anism for the basin of attraction based on dynamical
systems theory by focusing on the hybrid dynamics
of the model composed of the continuous dynam-
ics generated by the equations of motion during the
swing phase with saddle hyperbolicity and the dis-
continuous dynamics generated by the impact upon
foot contact. Specifically, we found that the fractal-
like basin of attraction is generated through iterative
stretching and bending deformations by sequential
inverse images of the Poincaré map for the collection
of initial conditions from which the model can walk
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Figure 1. Passive dynamic walking. (A) Compass-type model. (B) Phase diagram [θ θ̇]. Equilibrium point [θ θ̇] = [γ 0] is a
saddle point. Stable walking (indicated by the two arrows below the equilibrium point) is obtained by the continuous dynamics
during the swing phase and the discontinuous dynamics upon foot contact.

at least one step, which corresponds to the domain of
the Poincaré map. However, whether the fractal-like
basin of attraction is actually fractal, i.e., whether
infinitely many self-similar patterns are embedded in
the basin of attraction, is dependent on the model
parameters, such as the slope angle [2, 33]. The mech-
anism that determines whether the basin of attraction
is fractal remains unclear.

In the present study, we improved our previ-
ous analysis in order to clarify the mechanism. In
particular, we newly focused on the range of the
Poincaré map, which corresponds to the collection
of states after the model walked one step starting
from the domain, and specified the regions that are
stretched and bent by the sequential inverse image of
the Poincaré map. Through analysis of the specified
regions, we clarified the condition and mechanism
required for the basin of attraction to be fractal.

2. Method

2.1. Model
In the present study, we used a compass-type model
(figure 1(A)) for the analysis of passive dynamic walk-
ing. This model has two legs (rigid links), the lengths
of which are both l, connected by a frictionless hip
joint. Here, θ is the angle of the stance leg with
respect to the slope normal, and ϕ is the relative angle
between the stance and swing legs. The mass is located
only at the hip and the leg. The hip mass is M, and the
leg mass is m. The leg mass is located at a distance b
from the hip joint. In addition, g is the acceleration
due to gravity. This model walks on a slope of angle γ
without any control or input.

2.2. Structure of phase space by hybrid dynamics
In the present study, we focused on the simplest
walking model, where m/M → 0 and b/l → 1 [13],
because the dynamical characteristics remain almost
unchanged [29]. This model is governed by hybrid
dynamics composed of the continuous dynamics gen-
erated by the equations of motion during the swing

phase and the discontinuous dynamics generated by
the impact upon foot contact.

The equations of motion are given by

θ̈ − sin(θ − γ) = 0 (1)

(cos ϕ− 1)θ̈ + ϕ̈− θ̇2 sinϕ+ sin(ϕ− θ + γ) = 0 (2)

These equations are nondimensionalized by the time
scale

√
l/g and have an equilibrium point [θ θ̇ ϕ ϕ̇] =

[γ 0 0 0], which describes the situation where both
legs are upright. The eigenvalues of the linearized
equations of motion at the equilibrium point are ±1
and ±i, and the equilibrium point is a saddle center
with one stable direction, one unstable direction, and
two neutral directions. Specifically, θ is determined
only by (1) and is not affected by ϕ. This equation
for θ has a saddle equilibrium point at [θ θ̇] = [γ 0],
as shown in figure 1(B). In the phase diagram of [θ θ̇]
the trajectories going into and out of the equilibrium
point are the stable manifold Ws and the unstable
manifold Wu, respectively. In the phase space of four
variables [θ θ̇ ϕ ϕ̇], W s × R2 and Wu × R2 are the
center-stable manifold and the center-unstable man-
ifold, respectively, and we denote them by Wcs and
Wcu.

Foot contact occurs when the following condi-
tions are satisfied:

2θ − ϕ = 0 (3)

− π/2 < θ < 0 (4)

2θ̇ − ϕ̇ < 0 (5)

The impact upon foot contact yields the following
relationship:

⎡
⎢⎢⎣
θ+

θ̇+

ϕ+

ϕ̇+

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−θ−

θ̇− cos 2θ−

−2θ−

cos 2θ−(1 − cos 2θ−)θ̇−

⎤
⎥⎥⎦ (6)

where ∗− and ∗+ are the state ∗ just before and
after the foot contact, respectively. The important
property of this relationship is that the state just
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Figure 2. Schematic diagram of the structure of the phase space. (A) Hybrid dynamics composed of the section H, jump T, and
map U. (B) Relationship among Dn , S(Dn), and R on T(H).

after foot contact [θ+ θ̇+ ϕ+ ϕ̇+] depends only on
[θ− θ̇−] and is independent of [ϕ− ϕ̇−]. This means
that the state just after foot contact forms a two-
dimensional surface in the four-dimensional phase
space [θ− θ̇− ϕ− ϕ̇−] and satisfies the following two
conditions:

2θ+ = ϕ+ (7)

ϕ̇+ = θ̇+(1 − cos2θ+) (8)

In addition, from (4), the state just after foot contact
also satisfies

0 < θ+ < π/2 (9)

However, note that since the state just after foot con-
tact is independent of ϕ̇−, (5) generates no condition.

This hybrid dynamic system determines the struc-
ture of the phase space, as shown in figure 2(A). Here,
H is the section defined by the foot contact conditions
(3)–(5) and forms a three-dimensional space in the
four-dimensional phase space, and T is the jump in
the phase space from the state just before foot contact
to the state just after foot contact, as defined by (6).
Therefore, the image of T, T(H), is the region rep-
resenting all states just after foot contact, and a new
step starts from T(H). Moreover, U is the map from
the start of a step to the next instance of foot con-
tact. In other words, U is the map from T(H) to H,
as defined by the equations of motion (1) and (2).
The Poincaré map S is defined on the Poincaré section
T(H) by

S = T ◦ U : T(H) → T(H) (10)

This Poincaré map S represents one step, and an
attractor of S represents stable walking. The basin
of attraction of S is the main topic of the present
paper. Here, S is parameterized by one parameter γ.
In particular, S has an attracting fixed point at 0 <

γ < 0.015, and there is a period-doubling cascade
to chaos for 0.015 < γ < 0.019 [13].

2.3. Domain of Poincaré map and basin of
attraction
We define Dn(n = 1, 2, . . .) as the collection of initial
conditions on T(H) from which the model walks at
least n steps. This satisfies Dn+1 ⊆ Dn (figure 2(B)),
which means that when the initial condition is in Dn

but out of Dn+1, the model will fall down at the n +

1th step. Since the Poincaré map S represents walk-
ing one step, S(Dn) indicates the state on T(H) after
the model walked one step starting from Dn. Since
the model can walk at least n − 1 steps from S(Dn),
the following condition is satisfied:

S(Dn) ⊆ Dn−1 (11)

Since the domain D of S on T(H) represents the
collection of initial conditions on T(H) from which
the model walks at least one step, D is identical to
D1.

Using the inverse image of S, we can write Dn =

S−1(Dn−1). However, S−1 acts only on a part of
Dn−1, as shown in figure 2(B), as clarified in the fol-
lowing section. First, the range R of S on T(H) is
given by R = S(D1) because D1 is the domain of S,
which corresponds to the collection of states after the
model successfully walked one step starting from all
states on T(H). This means that the state after each
step must be in R unless the model falls down. The
following equation is satisfied:

S(Dn) = Dn−1 ∩ R (12)

We prove this below. First, since Dn ⊆ D1, S(Dn) ⊆
R. Based on this consideration and (11), S(Dn) ⊆
Dn−1 ∩ R. Second, we assume that d � S(Dn) for
∃d ⊆ Dn−1 ∩ R. Since d is in R, S−1 is applicable to d,
and, since d is in Dn−1, S−1(d) ⊆ Dn. This contradicts
d � S(Dn). Therefore, this assumption is not satisfied.
Since any state in Dn−1 ∩ R is in S(Dn), we obtain (12).
Therefore, instead of Dn = S−1(Dn−1), we use

Dn = S−1(Dn−1 ∩ R) (13)

3
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Figure 3. Evolution of the basin of attraction through D1, D2, and D3. (A)–(D) D1, D2, D3, and the basin of attraction for
γ = 0.001 (A) and (B) and 0.013 (C) and (D) in the θ-θ̇ plane and (θ+ θ̇)-(θ − θ̇) plane, respectively. Parts of the basin of
attraction are enlarged. (E) The number of gaps on θ − θ̇ = 0.5 depending on γ.

In the same manner, instead of Dn = S−n+1(D1), we
use

Dn = S−1
(
S−1

(
. . .

(
S−1 (D1 ∩ R) ∩ R

)
. . . ∩ R

)
∩ R

)
(14)

Since the model walks at least n steps from Dn, Dn

approximates the basin of attraction as n increases. We
confirmed the convergence by comparing D100 and
D200 using 104 × 104 initial states.

3. Results

3.1. Dn and basin of attraction
Figures 3(A) and (C) show D1, D2, D3, and the basin
of attraction for γ = 0.001 and 0.013, respectively.
In order to clarify these geometric characteristics, we
used θ + θ̇ and θ − θ̇ for the axes for γ = 0.001 and
0.013 in figures 3(B) and (D), respectively, as in our
previous study [29]. Here, D2 and D3 are V-shaped,
and D3 has a thin slit (note that a V-shaped region
indicates that the basin has one large slit). The basins
of attraction have multiple slits and are complicated.
In particular, while the basin of attraction has only

a few slits for γ = 0.001, the basin has a number of
slits, and self-similar patterns are embedded for γ =

0.013. In order to quantitatively clarify these proper-
ties, we examined how many gaps D1, D2, D3, and
the basin of attraction have on the line θ − θ̇ = 0.5.
As a result, there are zero, one, two, and four gaps
in D1, D2, D3, and the basin of attraction, respec-
tively, for γ = 0.001. In contrast, there are zero, one,
two, and infinitely many gaps in D1, D2, D3, and the
basin of attraction, respectively, for γ = 0.013. We
further investigated the number of slits in D1, D2, D3,
and the basin of attraction for γ based on the gaps
on θ − θ̇ = 0.5 in figure 3(E). The number of slits
in Dn increases as n increases, and that in the basin
of attraction increases exponentially as γ increases.
Fractal structures appear in the basin of attraction
over γ ≈ 0.0075.

3.2. D1 ∩ R
Since Dn = S−1(S−1(. . . (S−1(D1 ∩ R) ∩ R) . . . ∩ R)
∩ R) approximates the basin of attraction as n →∞,
we begin with D1 ∩ R to investigate the formation
mechanism of the basin of attraction. As shown in

4
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Figure 4. Relationship among D1, U(D1), and R. (A) Schematic diagram in phase space. (B) and (C) U(D1) in the θ-θ̇ plane and
(θ+ θ̇)-(θ − θ̇) plane, respectively. (D) and (E) D1 ∩ R in the θ-θ̇ plane and the (θ+ θ̇)-(θ − θ̇) plane, respectively.

figure 3(E), the numbers of slits in D1, D2, and D3

remain unchanged for γ. Therefore, we assume that
the mechanism is common for γ when n is small. We
used γ = 0.013 to show the results below.

Since R = S(D1) = T(U(D1)), we first examine
U(D1). In particular, the boundaries of U(D1) are
θ = 0, θ = −π/2, and 2θ̇ = ϕ̇ from the foot contact
conditions (4) and (5), as shown in figure 4(A). In
addition, since D1 does not intersect with Wcu, D1 and
U(D1) are on the same side with respect to W cu, and
U(D1) also has a boundary near W cu (strictly speak-
ing, D1 intersects with Wcu in a small range of 0 <

θ < γ, but has no influence in the formation of D1 ∩
R and so is ignored). Figure 4(B) shows the result
for U(D1) projected onto the θ-θ̇ plane (figure 4(C)
uses θ + θ̇ and θ − θ̇ for the axes in order to clarify
the geometric characteristics).

Since T is a one-to-one mapping for [θ θ̇], the
boundaries of U(D1) on the θ-θ̇ plane become the
boundaries of R by T, as shown in figure 4(A).
Figure 4(D) shows the result of R obtained from (6)
(figure 4(E) uses θ + θ̇ and θ − θ̇ for the axes to clarify
the geometric characteristics). The boundaries a1b1

and c1d1 of D1 ∩ R are obtained by applying T to
the boundaries near W cu and 2θ̇ = ϕ̇, respectively, of
U(D1).

3.3. Characteristics of S−1

Next, we investigate D2 = S−1(D1 ∩ R). Since
S−1(D1 ∩ R) = U−1(T−1(D1 ∩ R)), we first examine
T−1(D1 ∩ R). From (6), T−1(D1 ∩ R) is described by

{
[−θ+ − 2θ+ θ̇+ sec 2θ+ ϕ̇−]

∣∣∣∣ [θ+ ϕ+ θ̇+ ϕ̇+]

∈ D1 ∩ R, ϕ̇− ∈ R

}
(15)

[θ ϕ θ̇] in T−1(D1 ∩ R) is uniquely determined using
D1 ∩ R in figure 4(D). Figure 5(A) shows the result
of T−1(D1 ∩ R) in the θ-θ̇ plane. (Figure 5(B) uses
θ + θ̇ and θ − θ̇ for the axes to clarify the geometric
characteristics.) The boundary â1b̂1ĉ1d̂1 of T−1(D1 ∩
R) is obtained by applying T−1 to the boundary
a1b1c1d1 of D1 ∩ R in figure 4(D). Note that ∗1 and ∗̂1

(except for D1), such as a1 and â1, are used for D1 ∩
R and T−1(D1 ∩ R), respectively. Since T−1(D1 ∩ R)

5
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Figure 5. Characteristics of S−1(D1 ∩ R) = U−1(T−1(D1 ∩ R)). (A) and (B) T−1(D1 ∩ R) on H in the θ-θ̇ plane and the
(θ+ θ̇)-(θ − θ̇) plane, respectively. (C) Schematic diagram of applying U−1 to plane Z. (D) Curve ê1̂f1ĝ1 in Z to which U−1 is
applicable. (E) and (F) Curve e2f 2g2 and D2 in the θ-θ̇ plane and the (θ + θ̇)-(θ − θ̇) plane, respectively.

is thin, as shown in figure 5(A), we extract a line
segment P̂1Q̂1 from T−1(D1 ∩ R). However, since
ϕ̇ in T−1(D1 ∩ R) is not uniquely determined, we
consider T−1(D1 ∩ R) as a quadrangular prism, the
height of which is in the ϕ̇ direction, as shown in
figure 5(C). Then, line segment P̂1Q̂1 is considered to
be a plane, which we call plane Z. We apply U−1 to the
plane Z. Since U−1 is the map from H to T(H) and
T(H) is a two-dimensional surface that has two con-
straint conditions (7) and (8) in the four-dimensional
phase space, U−1 is applicable only to points in the
plane Z that simultaneously satisfy the two condi-
tions when the points are moved in the phase space
in the time reverse direction using the equations of
motion (1) and (2), as shown in figure 5(C). These
points determine ϕ̇ in T−1(D1 ∩ R). Figure 5(D)
shows the result for the collection of the points in the
plane Z indicated by the curve ê1̂f1ĝ1 to which U−1

is applicable. We obtained the curve e2f2g2 by apply-
ing U−1 to this curve ê1̂f1ĝ1, as shown in figure 5(E).
(Figure 5(F) uses θ + θ̇ and θ − θ̇ for the axes to

clarify the geometric characteristics.) Note that ∗2

(except for D2), such as e2, is used for D2. In order
to obtain the curves e2f2g2 and ê1̂f1ĝ1 in figures 5(D)
through (F), we linearized the equations of motion
(1) and (2) for θ and ϕ because the walking behav-
ior appears around the saddle [γ 0 0 0]. Therefore,
there are differences from the exact solution, as the
approximately obtained curve e2f2g2 is not inside D2

(figures 5(E) and (F), see the appendix A for details).
The curve e2f2g2, specifically the curve e2f2 is bent to
be V-shaped, as shown in figure 5(E). (Figure 5(F)
uses θ + θ̇ and θ − θ̇ for the axes to clarify the
geometric characteristics.)

In order to examine where in D1 ∩ R the curve
e2f2g2 is moved from by S−1(= U−1 ◦ T−1), we inves-
tigate where in D1 ∩ R the curve ê1̂f1ĝ1 is moved from
by T−1. Since the curve ê1̂f1ĝ1 is in T−1(D1 ∩ R), the
curve moves in D1 ∩ R by T. Figures 4(D) and (E)
show the result indicated by the curve P1Q1. This
shows that when S−1 is applied to the curve P1Q1

in D1 ∩ R, two curves f2e2 and f2g2 are obtained in
T(H). Since D1 ∩ R is thin, as shown in figure 4(D),

6
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Figure 6. Schematic diagram of the process used to deform D1 to D2 and D3 and generate slits. D1 ∩ R is extracted from (A) in
(B). Two regions are generated by S−1 in (C) and are connected to form D2 in (D). In the same manner, D2 ∩ R is extracted in (E).
Two regions are generated by S−1 in (F) and are connected to form D3 in (G).

Figure 7. Unchanged number of slits. When (A) the
generated slit in Dn does not reach R, (B) the number of
slits remains unchanged in Dn+1.

the curve P1Q1 approximates D1 ∩ R. Therefore, the
process to obtain the V-shaped curve e2f2g2 from the
curve P1Q1 explains the process by which D1 ∩ R is
transferred to D2.

Figures 6(A) through (D) show a schematic dia-
gram of the summary by which to obtain D2 from D1.
Specifically, D1 ∩ R is extracted from D1 (figure 6(B)),
and two regions are generated by S−1, one of which
is stretched and bent (figure 6(C) left), and the other
of which is only stretched (figure 6(C) right). These
regions are connected at the boundaries a1

′ b1
′ to form

D2 (figure 6(D)).
Next, we move to D3 = S−1(D2 ∩ R). Since D2 ⊆

D1, the deformation from D2 to D3 (figures 6(D)
through (G)) is the same as that from D1 to D2

(figures 6(A) through (D)). Since D2 is V-shaped
(figure 6(D)), the extracted D2 ∩ R is also V-shaped
and has a large slit at the boundary c2d2 (figure 6(E)).
The large slit becomes slits at the boundary c′2 d′

2 in D3

by the deformation (figures 6(F) and (G)). Although
figure 6(F) (right) has a slit, it is far from R and so is
ignored (figure 6(G)).

When the slit generated in Dn reaches, but does
not penetrate, R, one slit is added in Dn+1, as observed
in the process from D2 to D3. In contrast, when the
generated slit in Dn does not reach R, the number of
slits in Dn+1 remains unchanged, as shown in figure 7.
Moreover, since Dn+1 ⊆ Dn, it is possible that the slit
becomes deeper as n increases to reach R and cre-
ate a new slit. Therefore, when the generated slit in
Dn does not penetrate R, the number of slits of Dn+1

increases by one or remains unchanged.

3.4. Appearance of a fractal
We consider the cases in which the generated slit in
Dn penetrates R for the first time at n = N, as shown
in figure 8(A). (There may be multiple slits that do
not penetrate DN ∩ R to the left and right of the gen-
erated slit, but because they do not affect the expla-
nation below, they are not shown in figure 8.) By
applying S−1 to DN in the same manner as in figure 6,
a penetrating slit appears close to the outer edge of
the V-shaped DN+1, as shown in figure 8(D). In addi-
tion, since Dn+1 ⊆ Dn once a slit penetrates R, the slit
penetrates R for n > N. Furthermore, the penetrat-
ing slit close to the outer edge of DN+1 generates a
slit that penetrates R near the right edge of DN+1 ∩ R,
as shown in figure 8(E). As a result, a penetrating
slit also appears close to the inner edge of the V-
shaped DN+2, as shown in figure 8(G). Furthermore,

7
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Figure 8. Schematic diagram of the process by which to deform Dn and generate penetrating slits after the generated slit
penetrates R for the first time at n = N in (A). A penetrating slit is generated close to the outer edge in DN+1 in (D). A penetrating
slit is generated close to the inner edge in DN+2 in (G). A penetrating slit is generated close to the generated slit in DN+3 in (J).

the penetrating slit produces another penetrating slit
in DN+3 near the slit generated by the large slit of
DN+2 due to the V-shape, as shown in figure 8(J).
This slit also penetrates R. These penetrating slits pro-
duce new penetrating slits near the edge, and the
number of slits increases at an accelerated rate as
n increases. As a result, a fractal basin of attraction
appears.

Figures 9(A) through (E) show D4 to D8 for γ =

0.013. At N = 5, the generated slit penetrated R for
the first time (figure 9(B)). After that, the penetrat-
ing slits were generated close to the outer edge at
n = 6 (figure 9(C)), near the inner edge at n = 7
(figure 9(D)), and close to the generated slit at n = 8
(figure 9(E)) in that order. Therefore, infinitely many
slits are generated and the fractal basin of attraction
appears, as shown in figures 3(C) and (D).

3.5. No fractal appears
Next, we consider the cases in which no slits in Dn

penetrate R, even when S−1 is applied several times.
In particular, suppose that n is so large that Dn con-
verges and also suppose that Dn has a slit that does
not reach R. In this case, since the number of slits
does not change even when S−1 is applied, the basin

of attraction does not have a fractal structure and has
a finite number of slits.

Figures 10(A) and (B) show D50 and D51, respec-
tively, for γ = 0.001. Here, D50 has four slits, and
the leftmost slit does not reach R. As a result, D51

has four slits as in D50. In addition, D50 and D51

have no difference and are identical to the basin of
attraction (figure 3(B)), which we confirmed by com-
paring the regions using 104 × 104 initial states, and
so converge. Therefore, the basin of attraction does
not have a fractal structure.

4. Discussion

4.1. Stability and basin of attraction
Bipedal walking has intrinsic instability due to sad-
dle dynamics, and clarifying the mechanism by
which walking can be stabilized is important. Pas-
sive dynamic walking is a useful model to exam-
ine the mechanism from a dynamic viewpoint. In
order to clarify the stabilization mechanism, inves-
tigating both the stability and basin of attraction is
crucial. However, while previous studies have focused
on the stability by the eigenvalue analysis of the lin-
earized Poincaré map around the fixed point on the
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Figure 9. D4 to D8 for γ = 0.013. (A) No slit penetrates R. (B) The generated slit penetrates R for the first time. (C) A
penetrating slit is generated close to the outer edge of D6. (D) A penetrating slit is generated close to the inner edge of D7. (E) A
penetrating slit is generated close to the generated slit of D8.

Poincaré section [8, 13, 15, 16, 21, 35–37], the basin
of attraction has not been well studied. This is
partly because while eigenvalue analysis allows us
to easily investigate the stability, no general analyti-
cal method has been provided for investigating the
basin of attraction. We used an analytical approach
based on dynamical systems theory to clarify a spe-
cific property embedded in the basin of attraction,
which is useful to further investigate the character-
istics of the basin of attraction in walking. While
passive dynamic walking has no control or input,
the use of control and input changes the dynamic
characteristics of walking and also varies the stabil-
ity and the basin of attraction [3, 4, 30, 31, 34]. We
would like to improve and clarify our analysis in the
future.

4.2. Initial-value sensitivity and convergence to
attractor
The Poincaré map S represents walking one step, and
slits are generated by applying the inverse image S−1

many times to the region from which the model walks
at least one step. These slits come from the large slit
of the V-shaped D2 (figure 6). When there are only

a finite number of slits in the basin of attraction,
the generated slit in Dn does not reach R and is not
used in Dn+1 (figure 7). Therefore, these slits are not
stretched much. In contrast, once the generated slit
in Dn penetrates R, the generated slits for n � N
are stretched greatly and create stripe patterns by
producing penetrating slits, especially close to the
basin boundary (figure 8). These penetrating slits
become thinner as n increases. Since slits indicate a
region in which the model will fall down, whether the
model continues to walk or not becomes very sensitive
around the basin boundary. Furthermore, since pen-
etrating slits become thinner, two states located at dif-
ferent sides of the large slit of D2 become closer as S−1

is applied to the two states many times. This means
that two states located at different sides of a thin slit
in the basin of attraction move away from each other
as S is applied many times and the two states come to
reach different sides of the large slit of D2.

When the basin of attraction is fractal, there are
infinitely many penetrating slits close to the basin
boundary. Therefore, when the model walks from
an initial state near the boundary on the basin of

9
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Figure 10. No appearance of fractal. (A) and (B) D50 and D51, respectively, for γ = 0.001. The generated slit in D50 does not
reach R. D50 and D51 have the same shape and converge. The number of slits never increases.

attraction, there are numerous penetrating slits
between the initial state and the attractor, and the
model must traverse the slits for the state to approach
the attractor. The model must walk at least the steps
that are required to generate the penetrating slits by
applying S−1. Therefore, the model takes a long time
to approach the attractor, depending on the initial
state.

4.3. Limitations of our analysis
In the present study, we clarified that the fractal
basin of attraction appears when the generated slit
in Dn penetrates R and that fractal basin of attrac-
tion does not appear when the generated slit in Dn

does not reach R for an n so large that Dn converges.
However, it is possible that the generated slit in Dn

reaches, but does not penetrate, R for so large n that
Dn converges. In this case, although it is not at an
accelerated rate, the number of slits increases as n
increases. While infinitely many slits appear in the
basin of attraction, no penetrating slits are generated.
Although our analysis does not exclude this possibil-
ity, our simulation results did not show such a case for
any γ.

We used the simplest walking model for the anal-
ysis of passive dynamic walking, i.e., we assumed
the extreme case m/M → 0 and b/l → 1 for the
compass-type model [13]. Therefore, we did not
explain the mechanism of the basin of attraction for
general models of passive dynamic walking. However,
the period-doubling cascade to chaos appears and
the fractal basin of attraction is observed without the
period doubling even when the extreme case is not
assumed [2]. This suggests that similar mechanisms
to those observed herein are embedded in general
models of passive dynamic walking.

4.4. Biological relevance
The fractal appears in human walking, especially
in the gait rhythm [17–20]. However, unlike pas-
sive dynamic walking, human walking is generated
through the control. The basin of attraction of

compass-type models used in passive dynamic walk-
ing is enlarged by the control and the number of slit
changes [30, 31, 34]. However, the stance leg dur-
ing human walking is almost straight and rotates
around the foot contact point like an inverted pendu-
lum [28]. In addition, the stance and swing legs are
switched by the foot contact and lift off. There-
fore, saddle instability and hybrid properties are
inevitable in the gait dynamics, as in passive dynamic
walking, and the stretching and bending deformation
remains crucial for the formation mechanism of basin
of attraction. In fact, our previous study [30, 31]
showed that even when a controller inspired by spinal
central pattern generators [32] is incorporated in a
compass-type model, the basin of attraction has slits
due to the deformation.

Human walking is generated through the cen-
tral nervous system and the body mechanical system.
Fractal properties are reduced by aging and patholog-
ical disorders such as Parkinson’s and Huntington’s
diseases [17, 20]. A simple neuromechanical model
demonstrated that fractal properties are reduced by
changing the motor control model to emulate the
pathological disorder [12]. These properties suggest
that the neural system contributes to the fractal in
human walking. In contrast, the body mechanical sys-
tem also has potential to contribute to the fractal
in human walking. Passive dynamic walking exhibits
a chaos attractor depending on the model param-
eter [13, 15] and shows a fractal basin of attrac-
tion even for the single attractor as shown in the
present study. The steady state of a dynamical sys-
tem with a single attractor never shows a fractal, but
instead shows regular behavior, unless the system is
disturbed. However, when the dynamical system is
specific and has a fractal basin of attraction, fractal
behavior can be induced by a disturbance or noise
without fractal properties. In fact, the fractal appears
in walking of compass-type models with a controller
and noise without fractal properties [1, 14]. Even for
passive dynamic walking, the mechanisms for fractal
and non-fractal basins of attraction clarified in the
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present study will provide useful insights for under-
standing human walking. The analysis of measured
human data has limitations for elucidating the under-
lying mechanism in human walking, and physical
models are useful to overcome the limitations.
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Appendix A

A 1. Deformation of T−1(D1 ∩ R) by U−1

Here, we approximately solve the deformation of
T−1(D1 ∩ R) by U−1 based on the analysis in our
previous study [29]. We first denote the solution
of equations of motion (1) and (2) by Θ(t) =
[θ(t) θ̇(t)ϕ(t) ϕ̇(t)]. From the definition of U, for a
point Θ(0) ∈ T−1(D1 ∩ R) ⊂ H, there exists Δ > 0
such that

Θ(−Δ) = U−1(Θ(0)) ∈ T(H) (16)

where −Δ is used as the negative time to analyze U−1

(figure 2(A)). Θ(0), Θ(−Δ), and −Δ correspond to
the state just before foot contact, the state just after
foot contact, and the duration of a step, respectively.
Θ(−Δ) gives the deformation of T−1(D1 ∩ R) by
U−1.

Since Θ(−Δ) is in T(H), the following equations
are satisfied from (7)–(9):

2θ(−Δ) = ϕ(−Δ) (17)

ϕ̇(−Δ) = θ̇(−Δ)(1 − cos2θ(−Δ)) (18)

θ(−Δ) > 0 (19)

In addition, since Θ(−Δ) is in H, the following
equation is satisfied from (3):

2θ(0) = ϕ(0) (20)

In order to approximately solve (16), we linearize
the equations of motion (1) and (2) around [γ 0 0 0]
by

θ̈ = θ − γ (21)

ϕ̈ = −(ϕ− θ + γ) (22)

The solution is obtained by

θ = γ + C1 exp(t) + C2 exp(−t) (23)

ϕ− θ − γ

2
= K cos(t + φ) (24)

where C1, C2, K, and φ are the integration constants
(0 � φ < 2π). Here, ψ̇ on plane Z is obtained by

ϕ̇(0) =
C1 − C2

2
− K sinφ (25)

C1 and C2 are determined by the initial conditions of
θ and θ̇, as follows:

C1 =
θ(0) − γ + θ̇(0)

2

C2 =
θ(0) − γ − θ̇(0)

2
(26)

In contrast, K and φ are determined by the initial
conditions of θ, ϕ, θ̇, and ϕ̇.

From (17), (18), (20), (23), and (24), we have the
following equations:

θ(−Δ) = C1 exp(−Δ) + C2 expΔ+ γ (27)

θ̇(−Δ) = C1 exp(−Δ) − C2 expΔ (28)

K cos(−Δ+ φ) =
3θ(−Δ)

2
+

γ

2
(29)

K sin(−Δ+ φ) = −θ̇(−Δ)

{
1

2
− cos2θ(−Δ)

}

(30)

K cosφ =
3

2

(
C1 + C2 +

4γ

3

)
(31)

where Δ, φ, K, θ(−Δ), and θ̇(−Δ) are unknown
variables (C1 and C2 are determined in (26) from
[θ(0) θ̇(0)]). We obtain Θ(−Δ) from [θ(0) θ̇(0)] by
solving (27)–(31).

In order to show how U−1 deforms
T−1(D1 ∩ R), we used the approximated solution
given above. In particular, we used the line
segment P̂1Q̂1 within T−1(D1 ∩ R), as shown
figure 5(A) (P̂1: [θ θ̇] = [−0.2311 −0.2536], Q̂1:
[θ θ̇] = [−0.3085 −0.3915]). This segment was
moved to two curves f2e2 and f2g2 by U−1, which
approximate U−1(T−1(D1 ∩ R)), as shown in
figure 5(E).
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