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Abstract

Are visual representations in the human early visual cortex necessary for visual working memory
(VWM)? Previous studies suggest that VWM is underpinned by distributed representations across
several brain regions, including the early visual cortex. Notably. in these studies, participants had to
memorize images under consistent visual conditions. However. in our daily lives, we must retain the
essential visual properties of objects despite changes in illumination or viewpoint. The role of brain
regions—particularly the early visual cortices—in these situations remains unclear. The present
study investigated whether the early visual cortex was essential for achieving stable VWM. Focusing
on VWM for object surface properties. we conducted fMRI experiments while male and female
participants performed a delayed roughness discrimination task in which sample and probe spheres
were presented under varying illumination. By applying multi-voxel pattern analysis to brain activity
in regions of interest, we found that the ventral visual cortex and intraparietal sulcus were involved
in roughness VWM under changing illumination condifions. In contrast, VWM was not supported as
robustly by the early visual cortex. These findings show that visual representations in the early visual
cortex alone are insufficient for the robust roughness VWM representation required during changes
in illumination.
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Introduction

Visual working memory (VWM) plays an important role in cognition. Functional brain imaging
studies employing univariate analysis have revealed that brain activation in the intraparietal sulcus
(IPS) reflected maintenance of spatial information in visual short-term memory (VSTM: Harrison et
al. 2010; Todd & Marois 2004, 2005; Ungerleider et al. 1998; Xu & Chun 2006). Studies using
multi-voxel pattern analysis (MVPA) have shown that multiple brain regions contribute to VWM. In
particular, the early visual cortex may play a role in orientation (Harrison & Tong 2009), contrast
(Xing et al. 2013). and color pattern elements (Christophel et al. 2012) of VWM. In these studies.
participants were asked to memorize an image under set visual conditions; however, our daily lives
necessitate retention of the essential properties of objects against changes despite changes in visual
conditions, such as illumination and viewpoint. The role of specific brain regions, especially the
early visual cortices. under changing visual conditions remains unclear.

To address this issue, we focused on object surface properties. such as glossiness and roughness,
that humans can perceive despite changes in the illumination of visual images (Fleming et al. 2003
for a review, see Komatsu & Goda 2018:; Tsuda & Saiki 2018). The ventral visual pathway has a vital
role in material perception, whereas the early visual cortex has a limited role. The early visual cortices
can compute low-level image features. such as luminance skewness, to estimate object surface
qualities (Cant et al. 2009; Motoyoshi et al. 2007; Sun et al. 2015; Wada et al. 2014). Although
computation alone is insufficient to achieve material perception, this process may be a necessary
component (Hiramatsu et al. 2011). Regarding VWM for illumination-invariant material properties,
illumination-invariant ventral representation may need to be accompanied by representation in the
early visual cortex to retain stability (Christophel et al. 2017). Unlike material perception with online
visual input, VWM without visual input may require interaction between the ventral visual pathway
and early visual cortex to maintain a stable representation. Alternatively. only illumination-invariant
surface properties may be maintained in the ventral visual pathway. and representation in the early
visual cortex may be discarded to avoid confusion due to changes in visual images between
memorized and test stimuli.

Numerous studies without visual interference during maintenance of visual features have reported
memory representations in the early visual cortex. A recent study showed that visual distractors
during VWM maintenance disrupted representations in the early visual cortex (Bettencourt & Xu
2016). However, this finding alone is insufficient to conclude that the early visual cortex is not
involved in retaining stable VWM representations. For instance, there may be apparent reduction in
decoding performance due to increased neuronal response to task-irrelevant visual distractors. Thus,
it remains unclear whether the early visual cortex is involved in maintaining VWM that is robust
against changes in illumination and viewpoint. It is important to examine whether anticipation of

visual image changes in a test stimulus are sufficient to discard the representation within the early
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visual cortex to elucidate the nature of distributed VWM representations.

To address these questions, we focused on the surface property of roughness. We conducted an
experiment using a delayed roughness discrimination task in which sample and probe objects were
rendered in different illuminations. To cope with the different illumination. we hypothesized that the
visual system would establish an illumination-invariant roughness representation for VWM in lieu of
an image-based representation in the early visual cortex. We applied MVPA to brain activity specific
to VWM from the ventral visual pathway, early visual cortex, and IPS during a delay period. If
illumination-invariant representation of roughness alone can be selectively maintained. we expected
that the ventral visual cortex and IPS. but not early visual cortex, would be involved in roughness
VWM. Alternatively, if roughness VWM requires a distributed representation of image-based and
illumination-invariant information. we expected that the early visual cortex in addition to the ventral

visual cortex and IPS would be involved.

Materials and Methods
Participants

Twenty-four undergraduate and graduate students with no history of psychiatric or neurological
diseases participated in a visual working memory experiment, a functional localization scan, and a
retinotopy scan (8 women; mean age = 22.04 years). All participants had normal color vision.
confirmed by an Ishihara test, as well as normal or corrected-to-normal vision acuity with
non-magnetic glasses. Participants viewed stimuli monocularly with the left eyve while vision in the
right eve was obstructed by inserting a black mask in the right lens of the glasses. Monocular
viewing was employed to prevent double vision caused by a head coil shielding a major portion of
the binocular visual field. After receiving a detailed description of the study, all participants provided
written informed consent. The experiment was conducted in accordance with the guidelines of the
Ethical Committee of the Graduate School of Human and Environmental Studies at Kyoto

University. All participants received a book coupon (5000 Japanese ven) for their participation.

Visual working memory experiment
Stimuli

Computer-generated three-dimensional spheres, similar to those used in a previous behavioral study
(Tsuda & Saiki 2018), were used as sample and probe stimuli. The surface appearance of the sample
spheres was set at one of two different levels of roughness with jitters (Fig. 1). The sharpness
parameter (a) for each level of roughness was 0.016667 (£0.001667) and 0.080000 (£ 0.001667).
respectively while glossiness (specular reflectance parameter; p;) was maintained at 0.040617. The o
and ps; parameters were controlled using RADIANCE (Ward 1994). For probe spheres, three

different levels of roughness were rendered in a similar way; the levels of roughness were 0.003333
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(£0.001667), 0.040000 (£0.001667), and 0.098333 (£0.001667). respectively, with glossiness
maintained at 0.040617. All spheres were rendered in two different real-world illuminations derived

from Debevec (1998): “Kitchen’ and “Overcast Breezeway’.

Procedure

In the VWM experiment, participants performed a delayed roughness discrimination task. A sample
of the trial design is shown in Figure 2. Each trial began with two samples (10.3° = 10.3°) presented
sequentially for 500 ms each. A black cross (1.2° x 1.2°) was displayed for 500 ms between the two
samples. The sample stimuli consisted of one rough sphere and one smooth sphere. Following the
two samples, a numerical cue (1 or 2: 1.9° x 3.4°) was displayed. indicating which sample should be
memorized. After an 11-s delay, a probe sphere was presented and participants were asked to
indicate within 2 s whether the probe sphere had higher or lower roughness than the memorized
sphere. The illumination contexts of the sample spheres and probe sphere were always different to
prevent memorization of the visual image instead of the material properties. Between trials, a black
cross was presented for 0—10 s. Each run (144 s) consisted of four trials. plus an initial 14-s black
cross presentation that was excluded from analysis. Within each run, the order of rough and smooth
samples and the samples sphere to be memorized were counterbalanced. All participants performed

10 runs.

Functional magnetic resonance imaging (fMRI) data acquisition

This study was conducted using the MRI scanner and related facilities at the Kokoro Research

Center, Kyoto University. Data were collected on a 3 T Siemens scanner (3.0 T MAGNETOM Verio).

Functional data were obtained with T2*-weighted imaging (repetition time (TR) = 2000 ms; field of
view = 224 x 224 mm; voxel size = 3.5 x 3.5 x 3 mm: slice number = 34 slices). T1-weighted

anatomical images were also acquired for each participant.

fMRI data analysis
Brain surface reconstruction, preprocessing, and multi-voxel pattern analysis

All fMRI data were analyzed with the supercomputer at the Academic Center for Computing and
Media Studies, Kyoto University. We reconstructed the cortical surfaces for each participant from
the Tl-weighted image wvolumes. We wused the recon-all secript in FreeSurfer-6.0.0
(surfer.nmr.mgh.harvard.edu/) for gray and white matter segmentation, surface smoothing, and
inflation. Preprocessing of fMRI data was performed using Analysis of Functional NeuroImages
(AFNI; Cox 1996) and Surface Mapping with AFNI (SUMA; Saad et al. 2004).

Accuracy of MVPA for roughness was determined using the following six steps: (1) The fMRI data

were corrected for slice timing and head motion with realignment to the first volume. (2) The
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functional images were registered to the cortical surfaces for each participant. (3) Voxel-based
preprocessing, linear trend removal. and percent signal change conversion were applied to the fMRI
data. (4) A deconvolution technique (Dale 1999) was applied to the fMRI data. estimating the time
course for each rough or smooth memory condition. (5) The deconvoluted signals were sampled
within each region of interest (ROI) as described below. (6) MVPA was performed for the signals at
each TR using the libsvm-3.20 script (Chang & Lin 2011) in MATLAB 9.1.0 (MathWorks). The
leave-one-out cross-validation procedure was used to estimate decoding performance. Learning runs
were trained for each TR to create a decoder that could predict the memorized roughness condition
based on brain activity patterns. The decoder was then used to predict whether the brain activity
pattern in each test run belonged to memorization of the rough or smooth sphere. This procedure was
repeated until all runs had been tested, and the resultant roughness classification performance was

defined as the MVPA accuracy.

Regions of interest

Following the VWM experiment, we performed two types of scans on the left eye of each
participants to localize the visual area. The first scan (functional localization scan) localized the
higher-order visual areas using natural images in one of the following categories: faces, scenes,
objects, and color. In addition, scrambled faces, scrambled scenes, scrambled objects, and gray
images were used. These images were collected from open source material databases and websites,

including Japanese movie information (faces). Japanese real estate companies (scenes). and car

dealers and supermarkets (objects). A block design was used for functional localization scans (Fig. 3).

Each run consisted of eight blocks: a face block, a scrambled face block, a scene block, a scrambled
scene block, an object block. a scrambled object block, a color block. and a gray block. Within each
12-s block. including rest duration (4 s). 16 collages of natural images belonging to a single block
condition were presented sequentially for 0.5 s each. Participants pressed a button when each block
started. These blocks were conducted in a random order at various intervals between 0-10 s.
Intervals were determined pseudo-randomly using optseq2—a FreeSurfer tool for scheduling events
(surfer.nmr.mgh.harvard.edu/optseq/). A black cross (0.9° x 0.9°) was presented during the rest
intervals. Each run (374 s total) consisted of 24 blocks, plus an initial 14-s black cross presentation
that was excluded from analysis. All participants performed three runs.

Based on the functional localization scan, we defined freehand ROIs in the left and right ventral
visual cortices (Fig. 4a) and left and right IPSs (Fig. 4b) for each participant individually. We
selected the left and right ventral visual cortices because they are involved in face-, scene-, object-,
and color-processing. To identify these areas, we contrasted the brain activities in response to face vs
scrambled face blocks, scene vs scrambled scene blocks, object vs scrambled object blocks, and

color vs gray blocks using a standard general linear model (GLM) approach in AFNI (afni proc
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function). The fMRI time series of each block condition was modeled by convolving a 16-s boxcar
function with a canonical hemodynamic response function. We computed GLM £ coefficients of
standard AFNI parameters for each voxel. and estimated the contributions of each category (faces,
scenes, objects, and color) to the blood oxygen level dependent responses of the voxels in the ventral
visual cortex. For the mapping of the results of this comparison, the voxel-wise p-value threshold
was set to .001 for faces. scenes, and objects and .01 for color because color selectivity has been
shown to be weaker than the selectivity in other categories (Lafer-Sousa et al. 2016). We carefully
defined ROIs as the statistically significant (not adjusted) voxel clusters in the visual anatomical
brain regions for each participant individually. The average ROI sizes for all participants were as
follows: left/right face area = 264/236 voxels, left/right scene area = 142/128 voxels, left/right object
area = 205/139 voxels. and left/right color area = 110/113 voxels. These corresponded to a cluster
threshold level of o ~ .10 estimated using the 3dClustSim function in AFNI. We defined the left and
right face processing related IPSs as the IPS because of the interplay between the IPS and face
processing. The parietal cortex. including the IPS. is connected to the posterolateral aspect of the
fusiform gyrus (FG) (pFus-faces) via the ventral occipital fasciculus (for a review, see Grill-Spector
et al. 2018; Takemura et al. 2016). Moreover, the IPS has a vital role in spatial representations
(Colby & Goldberg 1999: Fitzgerald et al. 2012: Goodale & Milner 1992). and the spatial
relationships between the eves, nose, and mouth are important for face perception (e.g.. Tsao &
Livingstone 2008). Hoffman and Haxby (2000) revealed that both the FG and the IPS responded to
faces more than to control stimuli (scrambled pictures) in a face perception task. Thus, we
established the IPS ROIs by comparing the brain activity in response to faces vs scrambled faces in
the functional localization task using a similar procedure as that used for identifying the ventral
visual cortices (p < .05, o ~ .10). The average size of the left and right TIPS ROI across all
participants was 110 and 113 voxels, respectively. The results of MVPA for the ventral visual cortex
and IPS were calculated by averaging the accuracy of the left and right ventral visual cortices and
left and right IPSs because there were no significant hemispheric differences in MVPA accuracy.

The second type of scan was a retinotopy scan. Three 6-min retinotopy scans were performed to
identify low-level and mid-level visual areas (Fig. 5). We used a standard phase-encoding method in
which the retinotopic stimulus consisted of the natural images (same as those used in the functional
localization scan) displayed within a wedge- or ring-shaped aperture traversing the visual field. The
details of the procedure have been described in previous publications (e.g., Yamamoto et al. 2012;
Yamashiro et al. 2014). Unfortunately, in the present study. we could not collect reliable retinotopic
mapping data for most of the participants, which is likely attributed to the small number of the scans
and/or participant fatigue: due to the time limits for use of the MRI scanner, we could only perform
three retinotopy scans after the main experiment when the participants were tired. Since the data

were mostly insufficient in size and quality, clear retinotopy maps were only obtained for two
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participants from which we identified V1, V2. V3, and V3A/B. Based on AFNI’s Talairach Atlas. V1,

V2, and V3 were defined as the regions along the calcarine sulcus (Brodmann’s area (BA) 17). the
cuneus and lingual gyrus (BA 18) surrounding V1. and the cuneus and lingual gyrus surrounding V2,
respectively. We also defined V3A/B. considering V3A as the area near the fransverse occipital
sulcus and V3B as the area lateral relative to V3A (for a review, see Wandell et al. 2007). The
average ROI sizes across participants were as follows: left/right V1 = 193/289 voxels, left/right V2 =
129/160 voxels, left/right V3 = 127/152 voxels, left/right V3A/B = 174/136 voxels. The MVPA
accuracy for the early visual cortices was calculated by averaging the left and right hemispheres

because no significant hemispheric differences were found.

Results
Behavioral results

In the VWM experiment, participants performed the delayed roughness discrimination task in
which they indicated whether the probe sphere had higher or lower roughness than the memorized
sample sphere. Data from one participant who did not understand the task were removed from the
analysis. Overall, participants performed well in this experiment: the mean accuracy was 68.04%,

which exceeded chance (#(22) = 8.51. p < .001, r = .88).

fMRI MVPA results

We analyzed data from all participants except for the removed one for the fMRI analysis. First, we
investigated the topographic relationship between the categorical processing visual areas in the
ventral visual pathway and roughness VWM. Specifically, we localized face-. scene-, object-. and
color-related areas in the ventral visual pathway and IPS. In the ventral visual pathway, the
face-related area was localized near the FG. in keeping with literature reporting that this region is
involved in face perception (McCarthy et al. 1997). The scene-related area corresponded to the
parahippocampal place area where scene information is believed to be processed (e.g.. Epstein &
Kanwisher 1998). The object-related region appeared to correspond with the lateral occipital
complex (Malach et al. 1995), and the color-related region was identified between the face- and
scene-related areas (Lafer-Sousa et al. 2016). For each these areas, we averaged the MVPA accuracy
from 8-12 s following the start of each trial (Fig. 6). We found that the MVPA accuracies were
above chance in the face ROI of the ventral visual cortex and the IPS ROIL The face-related ventral
visual cortex had 54.86% MVPA accuracy, which significantly higher than chance (#22) = 2.18, p
< .05, ¥ = .42). In contrast, the MVPA accuracies of the scene-, object-, and color-related ventral
visual cortices were not significantly different from chance (51.38%, #22) = 0.45, p = .66, r = .10;
53.15%, #22) = 0.88, p = .39, r = .18; 50.51%, #22) = 0.18, p = .86, r = .04). The IPS showed

54.64% accuracy, which exceeded chance (#(22) = 2.28, p < .05, » = .44). No statistical differences in
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MVPA accuracies were found between the left and right hemispheres for all regions (face-related
ventral visual cortex: #(22)=1.77, p= .09, r = .35; scene-related ventral visual cortex: #(22) = 0.40, p
= .69, r = .09; object-related ventral visual cortex: #(22) =0.02, p = .98, r = .01; color-related ventral
visual cortex: #(22) =0.04, p=.97.r=.01: and IPS: #22) = 0.94, p= .36, r= .20).

Second, we examined whether the early visual cortex was involved in roughness VWM. We
anatomically defined V1, V2, V3, and V3A/B and calculated the MVPA accuracy for each area
during the delay period (Fig. 7). We found that the MVPA accuracies were not significantly different
from chance in all ROIs (V1: 51.74%., #(22) = 0.67. p = .51, r = .14; V2: 51.23%. #(22)=047. p
= .64, r=.10: V3: 52.24%, #22) = 0.78, p = 44. r = .16: V3A/B: 52.97%, #(22)=1.04.p = 31. 1
= 22). There were also no statistical differences in MVPA accuracies between the left and right
hemispheres in all regions (V1: #(22)=0.74. p= 47.r=.16: V2: #(22)=1.56. p= .13, r=.03;: V3:
1(22)=1.10,p= 28, r=.23: V3A/B: #(22) = 0.64, p= .53, r=.13).

Discussion

In this study, we examined whether visual image information represented in the early visual cortex

was involved in the maintenance of VWM representations of illumination-invariant visual properties.

If the maintenance of VWM representations of roughness is independent of visual properties that
substantially change appearance due to a change in illumination, visual image information in the
early visual cortex should not be required. Alternatively, if visual image information is involved in
maintaining stable illumination-invariant VWM representations of roughness (Ester et al. 2016:
Christophel et al. 2017). these representations should include image-based information in the early
visual cortex. To address this question. we focused on a single object surface property (i.e..
roughness) and performed a delayed roughness discrimination task in which sample and probe
stimuli differed in illumination. By applying MVPA to brain activity in the ventral visual cortex. IPS,
and early visual cortex, we found that the ventral visual cortex and IPS, but not the early visual
cortex, contributed to roughness VWM. This result suggests that a stable roughness VWM

representation can be established without visual images features from the early visual cortex.

Comparison with previous studies on VWM

Our findings are not consistent with those of some neuroimaging studies on VWM. Previous studies
have reported that VWM stability increases with distributed functions over multiple regions (e.g.,
Christophel et al. 2017). Although some studies have shown that the IPS has an important role in the
maintenance of VSTM (e.g., Todd & Marois 2004), more recent studies have identified the early
visual cortex as another potential region involved in VWM maintenance. For example, in the delayed
orientation discrimination task used in Harrison and Tong (2009), participants had to memorize the

orientation of a sample Gabor patch and judge whether the test Gabor was rotated clockwise or

|



[¥¥]
[¥¥]

%)
—
.

L)
—_
Ln

L)
—
=}

L)
[a—

[¥5]
oo =]

[¥5]
o

[¥5]
]

==

[¥5]
]

[

[¥5]
]

[

[¥5]
]

[}

[¥5]
]

=

[¥5]
]

Lh

[¥5]
]

[=2%

[¥5]
]

B |

counterclockwise compared with the memorized sample. Christophel et al. (2012) used more complex
stimuli (i.e., color patterns) and conducted a delayed similarity detection task. In that task, participants
had to indicate which of two probe color patterns was similar to the memorized sample color pattern.

Two factors may have contributed to the discrepancies in findings between our study and other
published studies. First, differences in visual features can influence whether the early visual cortex is
involved in VWM. While previous studies on VWM used a Gabor patch. we focused on an object
surface property. Although the early visual cortex is involved in maintenance of simple visual features,
complex features are retained in high-level areas. Second, differences in visual images between the
memory phase and the discrimination phase in a delayed discrimination task can influence VWM
maintenance in the early visual cortex. In past studies, participants had to retain a cued sample visual
image in their VWM. Then. in the discrimination phase, participants had to judge the probe images
based on the sample visual image maintained in VWM. However, in day-to-day life we often
encounter visual images in illuminations and viewpoints that are different than those in which the
image was first seen. In these conditions, visual input from the nowvel illumination or viewpoint of a
previously-encountered stimulus can interfere with low-level representation in VWM, and the
robustness of VWM may be reduced. Therefore, maintenance of low-level information in the early
visual cortex may disrupt robust VWM representations. In these two factors. illumination-invariant
visual features and changes in visual images between the sample and probe stimuli are not mutually
exclusive, and either factor alone may disrupt VWM representation in the early visual cortex. This is a
matter that needs to be examined in a future study.

The results of our study expand on previous studies investigating viewpoint in scene recognition (e.g.,
Xiao et al. 2010) that suggest that high-level areas such as the IPS show a viewpoint-invariant
response. This study by Xiao et al. (2010) was inconclusive regarding the role of the early visual areas
in scene recognition because they only used univariate analysis. In general. univariate analysis is not
sufficiently sensitive to evaluate representation in a brain region, as evidenced by failures of univariate
analysis in locating VWM representation in the early visual cortex (cf. Harrison & Tong 2009). In this
respect, our findings with MVPA provide more convincing evidence that involvement of the early
visual cortex is not essential for retaining a stable VWM representation.

Our results could have also been affected by top-down processes in the human brain. Bettencourt and
Xu (2016) conducted a delayed orientation discrimination task, similar to Harrison and Tong (2009),
except that visual distractors were presented during the delay period. When visual distractors were
presented in a random trial, the orientation of a memorized Gabor patch was retained in the early
visual cortex and IPS. In contrast, when the presence of visual distractors was predictable, only the
IPS was involved in retaining the VWM representation. We built upon this finding in that the early
visual cortex was not related to VWM when the participants could predict not only the presence of

distractors but also environmental differences between a memorized sample stimulus and a probe

10

|



[¥¥]
[S]

o

[F¥]
|7 ¥]
=]

L)
—_

[F¥]
[BS]

[¥¥]
[¥¥]

%)
=

L)
n

[¥5]
(=3

L)
1

L)
[#s]

[¥5]
o

[¥5]
=

L")
—

[¥¥]
-3

[¥¥]
[¥¥]

%)
=

L
Ln

[¥'5]
=}

L
|

L
[#24]

[F'S)
=
[¥s)

L
LN
=]

L)
LN
—

L)
LN
]

L)
LN
[¥¥]

L)
Ln
I

L)
LN
Lh

L
LN
=2

L
LN
|

L
LN
8]

L
LN
o

L
=]
=]

[¥5]
(=)
—

[¥5]
[B]

[¥5]
[¥5]

stimulus. Indeed. distribution of VWM representation in the human brain is altered depending on
task demand (Lee et al. 2013; for a review, see Lee & Baker 2016). A future study should examine the
top-down effect by manipulating the predictability of illumination change. If our results are based on
stimulus features alone, the early visual cortex should not be related to VWM irrespective of the
predictability of illumination changes. Alternatively, if a top-down factor influences the involvement
of the early visual cortex in VWM., the early visual cortex should contribute to VWM only when
illumination change is unpredictable.

More recently, Rademaker et al. (2019) employed a delayed-match-to-sample (DMTS) task and
showed that memorized orientation was not impeded by noise distractors. Conversely, behavioral
and memory reconstruction performance decreased in the presence of visual distractors, in contrast
to the findings of Bettencourt and Xu (2016). Rademaker et al. (2019) attributed this discrepancy to
difference in protocols. suggesting that the use of a single memory sample and continuous report
design rendered VWM maintenance more sensitive to visual distractors during behavioral
performance than that in the study by Bettencourt and Xu (2016). To account for distractor-resistant
VWM, Rademaker et al. (2019) proposed that the early visual cortex may represent the input during
VWM maintenance because different neuronal populations process sensory and memory
representations; however, this theory predicts that VWM representation in the early visual cortex
should have been observed in our study. This incongruity may be explained by differences in the levels
of visual features used in each study (i.e., low-level Gabor patches in Rademaker et al. (2019) and
high-level roughness renderings in the present study). Future research is needed to examine whether

roughness VWM information can be interpreted from brain activity in a DMTS task for roughness.

Comparison with previous studies on material perception

We showed that the ventral visual cortex, but not the early visual cortex., is involved in
illumination-invariant roughness representation in VWM. Although recent neuroimaging studies
have revealed that the ventral visual cortex plays an important role in material perception (Sun et al.
2015; Wada et al. 2014), the early visual cortex was also reported to be involved because material
information was perceived in a series of processes from low- to high-level areas. By examining the
role of the ventral visual cortex during maintenance in a VWM task, we were able to distinguish the
role of the ventral visual cortex from that of the early visual cortex in VWM for the object surface
feature of roughness in different illumination conditions.

Our results are consistent with past findings on material perception (Hiramatsu et al. 2011; Sun et al.
2015; Wada et al. 2014). Material properties are encoded in various brain regions, from the early
visual cortex to the ventral visual cortex. Although low-level visual features are needed for material
perception, they are not sufficient on their own to represent material properties (Hiramatsu et al.

2011). Once material perception is established, visual information in the early visual cortex may no
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longer be needed. Fleming et al. (2003) demonstrated that humans could match object glossiness and
roughness between two spheres, even when these stimuli were rendered under different real-world
illuminations. Moreover, Tsuda and Saiki (2018) revealed that the constancy of glossiness and
roughness against illumination was also observed in VWM. These findings indicate that we can
extract surface properties even when low-level features such as color, contrast, and highlights of the
reflected illumination image (e.g., Chadwick & Kentridge 2015; Marlow et al. 2011) are lost because
of illumination changes.

A recent neuroimaging study showed that the ventral visual cortex was involved in VSTM for
material category. Otsuka and Saiki (2019) conducted image-based and material category-based
change detection tasks and found differences in brain activation in the ventral visual cortex between
these tasks. However. no previous studies have investigated brain processes of VWM for specific
material properties (e.g., roughness) that are involved with the material categorization (Fleming et al.
2013). The main reason for the lack of the research regarding VWM for material properties lies in
the difficulty of manipulating the stimuli (Fleming 2014; for a review, see Komatsu & Goda 2018).
In this study, we manipulated a roughness parameter accurately using computer graphics and
revealed that the ventral visual cortex was involved in VWM for roughness. Our finding expands on
that of Otsuka and Saiki (2019) in that the ventral visual cortex is related to VWM/VSTM for both

material properties and material category.

Conclusion

It has been shown that distributed brain regions, including the early visual cortex. form and
maintain stable VWM representations. However, to achieve a stable VWM representation for
illumination-invariant object properties, illumination-invariant representation may be formed
without the need for information from the early visual cortex to distinguish changes between sample
and probe stimuli. We performed a delayed roughness discrimination task and found that the ventral
visual cortex and IPS, but not the early visual cortex. were involved in roughness VWM. This
finding suggests that a stable VWM representation is not always accompanied by visual features

from the early visual cortex during maintenance, even in the absence of distractors.
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Fig. 1 Computer-generated three-dimensional spheres used as sample stimuli. The surface appearance

of the sample spheres was set at one of two levels of roughness with jitters.

Response

Fig. 2 Sample trial of the delayed roughness discrimination task. The two samples spheres were of
different roughness. After an 11-s delay following the memorization cue, a probe sphere was
presented, and participants were asked to indicate whether the probe had higher or lower roughness

than the memorized sample sphere.
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Fig. 3 Sample block of the functional localization scan. Within each block. collages of natural

images belonging to a single block condition were presented for sequentially 0.5 s each.
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Fig. 4 Representative example of left and right extruded brain surfaces. We defined regions of interest

based on the functional localization scans. a Left and right ventral visual cortices were identified,
which are related to face-, scene-, object-, and color-processing. b Left and right intraparietal sulci

(IPSs) were localized based on the face condition in the functional localization scans.

)

Fig. 5 Sample retinotopy scans. a A counterclockwise polar angle wedge run (CCW run) during

which a 45° wedge rotated counterclockwise around the entire screen at 12 Hz for 60 s. The CCW
run was conducted twice. b An expanding ring run (EXP run) during which a ring expanded across

the entire screen for 60 s. The EXP run once was conducted once.
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Fig. 6 Averaged multi-voxel pattern analysis (MVPA) accuracy for the dissociation of roughness
(rough or smooth) during the period from 8-12 s following the start of each trial. The gray dotted line
signifies the chance level of accuracy (50%) and the error bars show standard error. (IPS: intraparietal

sulcus).
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Fig. 7 Averaged multi-voxel pattern analysis (MVPA) accuracy in the early visual cortex during the

Averaged MVPA accuracy (%)

delay period. The gray dotted line signifies the chance level of accuracy (50%) and the error bars show

standard error.
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