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On Infimal Convolution of M-Convex Functions

FOARZERFEG BHRERFEER = H — # (Kazuo Murota)

Graduate School of Information Science and Technology, University of Tokyo

Abstract

The infimal convolution of M-convex functions is M-convex. This is a funda-
mental fact in discrete convex analysis that is often useful in its application to -
mathematical economics and game theory. M-convexity and its variant called M®-
convexity are closely related to gross substitutability, and the infimal convolution
operation corresponds to an aggregation. This note provides a succinct description
of the present knowledge about the infimal convolution of M-convex functions.

1 Definitions

Let V be a nonempty finite set, and let Z and R be the sets of integers and reals, re-
spectively. We denote by ZV the set of integral vectors indexed by V, and by RY the set
of real vectors indexed by V. For a vector z = (z(v) | v € V) € ZV, where z(v) is the
vth component of z, we define the positive support supp™(z) and the negative support

supp~(z) by
supp’(z) = {v € V | z(v) > 0}, supp™(z)={v eV |z(v)<0}.

We use notation z(S) = Y, ¢ z(v) for a subset S of V. For each § C V, we denote by
xs the characteristic vector of S defined by: xs(v) =1 if v € S and xs(v) = 0 otherwise,
and write X, for Xy for v € V. For a vector p = (p(v) |v € V) € RY and a function
f:ZV — RU {+0o0}, we define functions (p,z) and f[p|(z) in € ZV by

(p,2) =D _p()z(v), flpl(z) = f(2) + (p,2).
veV
We also denote the set of minimizers of f and the effective domain of f by

argmin f = {z € Z¥ | f(z) < f(y) (Vy € Z")},
domf = {zx € Z" | f(z) < +o00}.

We say that a function f : Z¥ — R U {+oc0} with domf # 0 is M-conver if it satisfies
the exchange aziom:

(M-EXC) For z,y € domf and u € supp*(z—y), there exists v € supp~ (z—Yy)
such that
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f@)+ f@) 2 f(@— Xxu+ Xo) + FY+ Xu — Xo)- (1)

The inequality (1) implicitly imposes the condition that £ — xu + X» € domf and y+ xu —
Xv € domf for the finiteness of the right-hand side. A function f is said to be M-concave
if —f is M-convex.

As a consequence of (M-EXC), the effective domain of an M-convex function f lies on
a hyperplane {z € RV | (V) = r} for some integer r, and accordingly, we may consider
the projection of f along a coordinate axis. This means that, instead of the function f in
n = |V| variables, we may consider a function f’ in n — 1 variables defined by

f@) = flang) withzo=r—7/(V) 2)

where V/ = V' \ {v} for an arbitrarily fixed element vy € V, and a vector z € ZV is
represented as £ = (2o, 2') with zo.= z(vo) € Z and ' € Z¥'. Note that the effective
domain domjf’ of f’' is the projection of domf along the chosen coordinate axis vp. A
function f’ derived from an M-convex function by such projection is called an Mt-convex?
function.

More formally, an M!-convex function is defined as follows. Let “0” denote a new
element not in V and put V = {0} UV. A function f : Z¥ — R U {+oo} is called
Mi-convez if the function f : Z¥ — R U {400} defined by

~ | fl@) ifze=—z(V)
flane) = { 10 (@ € 2,2 € 2") ®

is an M-convex function. It is known (see [4, Theorem 6.2]) that an Mh convex function f
can be characterized by a similar exchange property:

(M*-EXC) For z,y € domf and u € supp*(z — y),

f@)+ f) 2 anu—xo+fW+xa,

min {f(w—xu-i—xv)-l—f(y—{—xu—)(v)}], (4)

vesupp~ (z—y)

where the minimum over an empty set is +0o by convention. A function f is said to be
Mt -concave if —f is MP-convex.

Whereas Mi-convex functions are conceptually equivalent to M-convex functions, the
class of Mi-convex functions is strictly larger than that of M-convex functions. This
follows from the implication: (M-EXC) = (M#-EXC). The simplest example of an M-
convex function that is not M-convex is a one-dimensional (univariate) discrete convex
function, depicted in Fig. 1.

Proposition 1 ([4, Theorem 6.3]). An M-convez function is M:-convez. Conversely,
an Mi-convez function is M-convez if and only if the effective domain is contained in a
hyperplane {z € ZV | z(V) =r} for somer € Z. '

1) «Mb_convex” should be read “M-natural-convex.”
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Figure 1: Univariate discrete convex function

Mt-convex functions enjoy a number of nice properties that are expected of “discrete
convex functions.” Furthermore, M%-concave functions provide with a natural model of
utility functions (see [4, §11.3] and [5]). In particular, it is known that MU-concavity is
equivalent to gross substitutes property, and that Mt-concavity implies submodularity,
which is the discrete version of decreasing marginal returns.

It follows from (M-EXC) that the effective domain of an M-convex function f satisfies
the exchange axiom:

(B-EXC) For z,y € B and u € supp™ (z — y), there exists v € supp™(z — y)
such that £ — xu + Xo € B and y + xu — Xv € B,

since Z — Xy + X» € domf and y + Xu — X» € domf for z,y € domf in (1). A nonempty
set B of integer points satisfying (B-EXC) is referred to as an M-convez set.

2 Convolution Theorem

For a pair of functions fi, fa : Z¥ — R U {+o0}, the integer infimal convolution is a
function f,0z f3 : Z¥V — R U {£oo} defined by

(10z f2)(2) = inf{fi(z1) + fa(@2) |z = 21 + 3, 21,22 € 2"} (z€ZY).  (5)
Provided that f1Og f; is away from the value of —oo, we have
dom(f10z f2) = domf; + domf3, (6)

where the right-hand side means the Minkowski sum of the effective domains.
The convolution theorem reads as follows.

Theorem 2 ([4, Theorem 6.13}). For M-convez functions fi and fa, the integer infimal
convolution f = f1Ogz fa is M-convex, provided f > —oo. .

A proof of this theorem is given in Section 3, whereas the MP-version below is an
immediate corollary.

Corollary 3 ([4, Theorem 6.15]). For Mi-convex functions fi and fa, the integer infi-
mal convolution f = f10z fa is M-convez, provided f > —oo.
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Proof. Let fl and fg be the M-convex functions associated with the M%-convex functions
f1 and f; asin (3). For zp € Z, z € ZV we have

(f10z f2)(z0, z) :

= inf{f1 (y0,y) + fa(20,2) | = y + 2, o = Yo + 20}

=inf{fi(y) + f2(2) |z =y + 2,20 = yo + 20, %o = —Y(V), 20 = —2(V)}
= inf{fi(y) + fo(2) | z =y + 2,30 = —z(V)}

_ { (f10z f2)(z) if zg = —z(V)

400 otherwise.

This shows fi0z fo = (fi0z foJ in the notation of (3), whereas fi0Oz fo is M-convex by

Theorem 2 applied to f; and fg. Therefore, f10z fo is Mi-convex. O

Remark 1. The convolution theorem (Theorem 2) originates in [1, Theorem 6.10], and
is described in [2, p. 80, Theorem 2.44 (5)], [3, p. 118, Theorem 4.8 (8)], and [4, p. 143,
Theorem 6.13 (8)]. The Mi-version (Corollary 3) is also stated in [2, p. 83], [3, p. 119,
Theorem 4.10], and [4, p. 144, Theorem 6.15 (1)]. An application of this fact to the
aggregation of utility functions can be found in [3, p. 275, Proposition 9.13] and [4, p. 337,
Theorem 11.12]. In particular, the convolution theorem implies that if the individual
utility functions enjoy gross substitutes property, so does the aggregated utility function.

]

3 Proof

The proof of Theorem 2 given here relies on two fundamental facts stated in the lemmas
below. The first shows that the class of M-convex sets is closed under Minkowski addition,
and the second gives a characterization of an M-convex function in terms of M-convex
sets. '

Lemma 4 ([4, Theorem 4.23]). The Minkowski sum of two M-convez sets is M-convez.

Lemma 5 ([4, Theorem 6.30]). Let f : ZV — RU{+o0} be a function with a bounded
nonempty effective domain. Then, f is M-convez if and only if argmin f{—p] is an M-
convez set for each p € RV. :

Let f; and f; be M-convex functions, and put f = fi0Oz f;. First we treat the case
where domf, and domf, are bounded. The expression (6) shows that domf is bounded.
For each p € RV we have

fl=p] = (f1[-p))Oz (f2[-p)),

from which follows

arg min f[—p] = arg min f,[—p] + arg min fo[—p] '
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by (5). In this expression, both argmin fi[—p] and argmin fa|—p] are M-convex sets by
Lemma 5 (only if part), and therefore, their Minkowski sum (the right-hand side) is M-
convex by Lemma 4. This means that argmin f[—p] is M-convex for each p € RY, which
implies the M-convexity of f by Lemma 5 (if part).

The general case without the boundedness assumption on effective domains can be
treated via limiting procedure as follows. Fori = 1,2 and k= 1,2,..., define fi(k) 1 ZV —
R U {+o0} by

v
+o00  otherwise (z €Z%),

ﬁ%@:{ﬁﬂ i |lolloo < &

which is an M-convex function with a bounded effective domain, provided that k is large
enough for dom i(k) # §. For each k, the infimal convolution f (k) = fl(k)[]z fz(k) is M-convex
by the above argument, and moreover, limg_, f*)(z) = f(z) for each z. It remains to
demonstrate the property (M-EXC) for f. Take z,y € domf and u € supp™(z—y). There
exists ko = ko(z,y), depending on z and y, such that z,y € dom f® for every k > k.
Since f® is M-convex, there exists vy € supp™(z — y) such that

FO )+ fB(y) 2 fP (@ = xu + xon) + FE G+ xu — Xoe)-

Since supp~(z — y) is a finite set, at least one element of supp™ (z — y) appears infinitely

‘ many times in the sequence vy, vy, . ... More precisely, there exists v € supp™ (z — y) and
an increasing subsequence k; < kz < --- such that v, = v for j = 1,2,.... By letting
k — oo along this subsequence in the above inequality we obtain

F@) + f(y) 2 f(@ = Xu + Xo) + FH+ Xu = Xo)-
Thus f satisfies (M-EXC). This completes the proof of Theorem 2.

- Remark 2. Here is an example to demonstrate the necessity of the limiting argument in
the above proof. For M-convex functions fi, fa : Z* — R defined by

fulz) = { exp(—z(1)) ifz(1)+2z(2) =0, fol) = { exp(z(1)) if z(1) +z(2) =0,

+00 otherwise, +00 otherwise,

we have
f(z) = (f10z f2)(z) = inf{exp(—t) + exp(z(1) — t) |t € Z} =0

for all z € Z? with z(1) + z(2) = 0. The infimum is not attained by any finite ¢, and
consequently, f®(z) is not equal to f(z) for any finite k. This is why we need the limiting
argument in the proof. [ ]

Remark 3. The infimal convolution operation of M-convex functions can be formulated
as a special case of the transformation of an M-convex function by a network, and the
convolution theorem (Theorem 2) can be understood as a special case of a theorem on
network transformation. ’
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The general framework of the network transformation is as follows. Let G = (V,A; S, T)
be a directed graph with vertex set V, arc set A, entrance set S and exit set 7', where S and
T are disjoint subsets of V. We consider an integer-valued flow &€ = (£(a) | a € A) € Z4.
For each ¢ € A, the cost of the flow £(a) through arc a is represented by a function
fa:Z — RU{4+00}. Given a function f: Z% — RU {400} associated with the entrance
set S, we define another function f:2T 5> RU {zo0} on the exit set T’ by

fly) = mf{f(x)+2fa )) | 8€ = (z,—y,0),

acA

€ € Z4,(z,~y,0) € Z° x ZT x 2"\OD}  (y e Z7),

where 9¢ € ZV denotes a vector defined by
9&(v) = Z{ﬁ (a) | arc a leaves vertex v} — Z{g (a) | arc a enters vertex v} (v € V).

We may think of f(y) as the minimum cost of an integer-valued flow to meet a demand
specification y at the exit, where the cost consists of two parts, the cost f(z) of supply
or production of z at the entrance and the cost 3,4 fa(£(a)) of transportation through
arcs; the sum of these is to be minimized over varying supply z and flow £ subject to the
flow conservation constraint 8¢ = (z, —y,0). We regard f as a transformation of f by the
network.

It is known ([4, Theorem 9.27]) that if f, is a univariate discrete convex function for
eacha € A and f is an M-convex function, then f is an M-convex function, provided that
f>——ooandf$+oo.

For the infimal convolution of functions f; and fa, let V; and V2 be copies of V and
consider a bipartite graph G = (SUT, 4; S,T) (see Fig. 2) with S =V1 U Vo, T =V and
A= {(v,v) | v € V}U{(v2,v) | v € V}, where v; € V; is the copy of v € V/ fori=1,2.
We regard f; as being defined on V; for i = 1, 2 and assume that the arc cost functions
fa (a € A) are identically zero. The function f induced on T coincides with the infimal
convolution f;Oz f. In this case it is always true that f # +o00. Thus the convolution
theorem (Theorem 2) follows from [4, Theorem 9.27], as is explained in [4, Note 9.30].

The connection to network transformation also suggests that the infimal convolution
f10g f2 can be evaluated by solving an M-convex submodular flow problem,; see [4, Section
9.2] for the definition of the problem and [4, Section 10.4] for algorithms. u
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Figure 2: Bipartite graph for infimal convolution
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