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abstract Deletion and insertion are interesting and common operations which often appear in string rewriting 
systems. Extractable and Insertable submonoids in free monoids generated by finete alphabets allow to perform 
Deletion and Insertion operations, respectively. A submonoid N c A• is called extractable (or insertable) if 
x, uxv E N implies uv E N(or x, uv E N implies uxv E N). The code C is called extractable (or insertable) 
if the submonoid C* is extractable (or insertable)[7]. Both extractable and insertable codes are identical to well-
known strong codes, which is deeply related to syntactic monoids of languages. This paper deals with insertability 
and mainly extractablity of codes. 
After the preliminaries in the first section, we summarize the fundamental properties of these codes. In the 

second section, we show that a finite insertable code is a full uniform code, on the other hand, there are many finite 
extractable codes which are not full uniform codes. The infinite part of these codes is still unknown for us. So in 
the remaining sections we mainly investigate extractability codes in limited classes of codes. 
In the last section, we deal with the smallest ex血 ctablesubmonoid D(L*) containing a ginven language L, 

where Dis the del-clusure[5]. Since the base of D(L *) is a bi fix code, denoted by L→ . So we give the definition 
of the language operation which convert a language L to L→ and investigate this operation. 

1 Preliminaries 

Let A be a finite nonempty set of letters, called an alphabet and let A* be the free monoid generated by A under 

the operation of catenation with the identity called the empty word, denoted by 1. We call an element of A* a word 
over A. The free semi group A* ¥ { 1} generated by A is denoted by A+. The catenation of two words x and y is 
denoted by xy. The length lwl of a word w = a1a2 ... an with ai EA is the number n of occurrences of letters in 

w. Clearly, Ill= 0. 
A word u EA* is aprefix(or suffix) of a word w E A* if there is a word x EA* such that w = ux(or w = xu). 

A wordu EA* is afactorofa wordw EA* if there exist words x,y EA* such thatw = xuy. Then a prefix (a 
suffix or a factor) u of w is called proper if w # u. 
A subset of A* is called a language over A. A nonempty language C which is the set of free generators of some 

submonoid M of A* is called a code over A. Then C is called the base of M and coincides with the minimal set 
(M ¥ 1) ¥ (M ¥ 1)2 of generators of M. A nonempty language C is called a prefix (or suffix) code ifu,uv EC  
(or u, vu E C) implies v = 1. C is called a bi.fix code if C is both a prefix code and a suffix code. A nonempty 
language C is called an infix (or out.fix) code if u, xuy E C (or xy, xuy E C) implies x = y = 1 (or u = 1). The 

language炉={ w EA* I lwl = n} with n 2". 1 is called afull uniform code over A. A nonempty subset of炉 is
called a uniform code over A. The symbols c and c;; are used for a subset and a proper subset respectively. 
A word x E A+ is primitive if x =戸 forsome r EA+ implies n = 1, where戸 isthen-th power of r, that 

’ IS,r = rr・・・r. 

PROPOSITION 1.1 ([l] p.7) Each nonempty word w is a power w = rn。ifa unique primitive word r. 

Then r and n is called the root and the exponent of w, respectively. We sometimes write r = .Jw. 
Two words u, v are called conjugate, denoted by u = v if there exist words x, y such that u = xy, v = yx. 

Then= is an equivalence relation and we call the =-class of w the conjugacy class of wand denote by cl(w). A 
language Lis called reflexive if L is a union of conjugacy classes, i.e., uv E L ⇔ vu EL. 

LEMMA 1.1 ([1] p.7) Two nonempty conjugate words have the same exponent and their roots are conjugate. 

LEMMA 1.2 ([4] p.7) Let u, v E A+. lfuv = vu holds, then u = r', v =戸 forsome primitive word r and 
some positive integers i, j. 
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LEMMAl.3 ([4]p.6) Letu,v,w EA+. Ifuw = wvholds, thenu = xy,w = (xy)kx,v = yxforsome 
x, y EA* and some nonnegative integer k. 

Let N be a submonoid of a monoid M. N is right unitary (in M) if u, uv E N implies v E N. Left unitary 
is defined in a symmetric way. The submonoid N of M is biunitary if it is both left and right unitary. Especially 
when M = A*, a submonoid N of A* is right unitary (resp. left unitary, biunitary) if and only if the minim~1 set 
N。=(N ¥ 1) ¥ (N ¥ 1)2 of generators of N, namely the base of N, is a prefix code (resp. a suffix code, a bifix 
code) ([1] p.46). 

Let L be a subset of a monoid M, the congruence PL = { (u, v) I for all x, y E M, xuy E L ⇔ xvy EL} on 
Mis called the principal congruence(or syntactic congruence) of L. We write u = v (PL) instead of (u, v) E PL. 
The monoid M/ PL is called the syntactic monoid of L, denoted by Syn(L). The morphismびLof M onto Syn(L) 
is called the syntactic morphism of L. In particular when M = A*, a language L C A* is regular if and only if 
Syn(L) is finite([l] p.46). 

2 Extractable Codes and Insertable Codes 

In this section we introduce insertable codes and extractable codes, which are extensions of well-known strong 

codes. 

DEFINITION 2.1 [3] A nonempty code C c A+ is called a strong code if 

(i) x, Y1Y2 EC⇒ Y1XY2 E c+ 
(ii) x, Y1軍 Ec+⇒ Y1Y2 EC* 

Here extractable codes and insertable codes are defined below, as well as strong codes. 

DEFINITION 2.2 Let C be a nonempty code. Then, C is called an insertable (or extractable) code if C satisfies 
the condition (i)(or (ii)). 

A strong code C are described as the base of the identity IL = { w E A* I w = 1 (PL)} of the syntactic monoids 
Syn(L) of some language L. Moreover if C is finite, it is known that its structure is quite simple, i.e., it is a full 

uniform code. 

• LetLcA*.ThenC=(lL¥1)¥(1ハ1)2is a strong code if it is not empty. Conversely, PROPOSITION 2 1 [3] 
ifC c A+ is a strong code, then there exists a language L c A* such that h = C*. 

PROPOSITION 2.2 [3] Let C be a finite strong code over A and B = alph(C), where alph(C) = { a E 
A I xay E C}. Then C B可= or some positive integer n. 

EXAMPLE 2.1 (1) A singleton {w} with w E {a}+ is a strong code. {w} with w EA+¥ UaEA {a}+ is not a 
strong code but it is an extractable code. Therefore there exist finite extractable codes which are not full uniform 
codes. 
(2) The conjugacy class cl (ab) of ab is an extractable code but not a strong code. 
(3) {砂bnI n is an integer} is an (context-free) extractable code but not a strong code. 
(4) a* b and ba• are (regular) insertable codes but not strong codes. 

Note that when C satisfies the condition (ii), we can easily check that the submonoid C* is extractable. If 

C* is extractable, then C* is biunitary(and thus free). Indeed, uv = luv, u E C* implies v = lv E C* and 
uv = uvl, v E C* implies u = lu E C*. Then the minimal set C = (C* ¥ 1) ¥ (C* ¥ 1)2 of generators of C* 
becomes a bifix code. Therefore both strong codes and extractable codes are necessarily bifix codes. Conversely 
If C is an extractable code, then M = C* forms an extractable submonoid of A*. 

Remark that an insertable submonoid M of A*, the minimal set of generators of M is not necessarily a code. 
For example, If C = { a叫砂}, then the submonoid C* is insertable but its minimal set C of generators are not 
necessarily a code. 

Insertable Codes 
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We show that if an insertable code C over A is finite, then C is necessarily a full uniform code over some 
nonempty alphabet B c A, as well as in case of a strong code. First of all, for a language L c A*, ins(L) is 
defined by 

ins(L) = {x E A*IVu E L,u = u西 ⇒U立四 EL}.

A language L such that LC ins(L) is called ins-closed. 

PROPOSITION 2.3 [5] Let L c A* be a finitely generated ins-closed language and K be its minimal set of 
generators. Then: 
(i) K contains a finite maximal prefix (suffix) code alph(L); 
(ii) K is a code over alph(L) then K = alph(Lr for some n 2'. l; 

COROLLARY 2.1 If C is a finite insertable code then C = alph(Ct for some n ;::: 1. 

Extractablity of Regular Infix Codes 

Our aim here is to determine whether for a given infix code C it is an extractable code or not in terms of its 
syntactic monoid. We introduce the syntactic graph of a language to check the extractability of the language. 

We begin with a useful and fundamental lemma concerned with the extractability of infix codes. 

LEMMA 2.1 Let C C A• be an infix code. C* is extractable if and only if z E C and xzy E C2 imply xy E C 

foranyx,y,z EA+. 

LEMMA 2.2 Let C be an extractable code. If C is an outfix code, then C is an infix code. 

Let M be a general monoid with identity e and zero O and IMI ;::: 2(hence eヂ0).The intersection of all 
nonzero ideals of M, if it differs from { 0}, is called the core of M, denoted by core(M). An element c E M is 
called an annihilator if ex = xc = 0 for all x E M ¥ { e }. Annihil(M) denotes the set of all annihilators of M. 

WL = {u E MIMuMnL = 0}iscalledtheresidueofasubsetL. IfWLヂ0then WL is an ideal of M, that 
is, MLM c W£. If Lis a singleton set, L = {c}, we often writecins四 dof { c}; thus c being disjunctive means 
{ c} is disjunctive, that is, Pc = P{ c} is the equality relation. 
Let M be a free monoid A* and C c  A+ be an infix code. The syntactic monoid Syn(C) of Chas the identity 

element e = { 1} since the set { 1} is a Pc-class. Syn(C) has a zero element O = W c / Pc since W cヂ0is a 
Pc-class. For any u E C, xuy E C implies x = y = l. Therefore C is also a Pc-class denoted by c, that is, 

c = C /Pc. Then the following theorem holds: 

THEOREM 2.1 [ 11] The following conditions on a mono id M with identity e are equivalent: 
(i) M is isomorphic to the syntactic mono id of an infix code C. 
(ii) (a) M ¥ { e} is subsemigruop of M; 

(/3) M has a zero; 
('Y) M has a disjunctive element c such that c i { e, O} and c = xcy implies x = y = e. 

(iii) (a); 
(8) M has a disjunctive zero; 
(E) core(M) = {c,O} withc E Annihil(M). 

(iv) (a), (8); 
(() there exists 0ヂcE core(M) nAnnihil(M). 

PROPOSITION 2.4 Let C be an infix code and M = Syn(L) be its syntactic monoid Let c be a Pc-class of 
C, that is 0ヂcE core(M) nAnnihil(M). Then, 

(1) C is an extractable code if and only if 

C= fofi = f山 =hh⇒ c = Joh for any Jo, Ji, h, h EM. 

(2) C is a reflective and extractable code if and only if 

c= Joh= hh⇒ Jo= h for any Jo, h, h EM. 
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Extractability of Uniform Codes 

First we consider some kinds of extractable codes which is a uniform code over a finite nonempty alphabet A. 

PROPOSITION 2.5 Let G be a group and Ha normal subgroup ofG. Let r.p : A*→ G be a surjective morphism. 
Then ifC = <p―1(H) n炉 (n> 0) is nonempty, then it is an extractable reflective uniform code. 

EXAMPLE 2.2 Let B be a nonempty subset of an alphabet A and n, k (k <::: n) be positive integers. Set U = 
{ w E An I lwls = k} where lw B is the number of occurrences of elements E Bin w. Then U is an extractable 
code. 

PROPOSITION 2.6 Let n be an integer with n 2'. 2. Let Ji, h, ... fk be distinct words with If, I = f』forany 
i,j E {1, 2, ... , k }. Then U* is extractable, where U = {J己 fげ，...fげ｝．

PROPOSITION 2.7 Let①, y EA* with IぉI=IYI > 0 andC = {x戸Y,Y①，炉}. C* is extractable. 

Extractability of Conjugacy Classes 

The extractablity of a conjugacy class is affected by the periodicity of the class. 

PROPOSITION 2.8 Let w E A+ be not a primitive word and cl(w) be its conjugacy class. Then cl(w)* is 

extractable. 

PROPOSITION 2.9 Let w E A+ be a primitive word of the form (uv)nu with n ::>: 2 and u,v E A+, and 
cl (w) be its conjugacy class. Then cl (w) * is not extractable. 

We slightly touch the periodicity and extractability. A period of w = a1 ... an with ai E A is an integer p such 
that ap+i = a; for i = 1, ... , n -p. The smallest one among periods of w is called the period of w, denoted 
by p(w). We call the value defined by max{p(u) I u E cl(w)} the conjugate period of w, denoted by p0(w). The 
rate wl/p0(w)(::>: 1) of the length lw of w for the conjugate period p0(w) is called the conjugate exponet of w, 
denoted by e0 (w) 
Thus, cl(w)* is extractable if w is a nonprimitive word w, that is, e0(w) is an integer::>: 2. cl(w)* is not 

extractable if ea (w) is a noninteger ::>: 2. If (1 <::)ea (w) < 2, cl(w)* is almost extractable. w = abbabbabab is of 
length 10 and ea(w) = I初 l/pa(w)= 10/7butcl(w)* is not extractable. 

3 Extractable Submonoid of a Language 

An extractable submonoid M c A* satisfies the condition that x,uxv E M implies uv E M. Since Mis 
biunitary, the base C of M must be a bifix code. Moreover M = C* is a free submonoid of A*. It is a natural 
way to consider the smallest extractable submonoid D(L*) containing a ginven language L. The base of D(L*) 
become a bifix code, denoted by L→ . We give the definition of the language operation which convert a language 
Lto L→. 

Deletion Closure 

DEFINITION 3.1 [5] Let L1, L2 be languages. The deletion ofら fromL1 is defined as L1→ ら＝
{u1u2lu1wu2 E L1,w E L2}-AlanguageLisdel-closedijfL--+ L c L. Theintersectionofallthe 
del-closed languages containing L is called the del-closure of L. 

DEFINITION 3.2 [5] For a language L, D(L) is defined by D(L) = LJk2:0 Dk(L), where Do(L) = Land 
Dい (L)= Dk(L)→ (Dk(L) U {1}) 

PROPOSITION 3.1 [5] D(L) is identical to the del-closure of a language L. 
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Ifasubmonoid MC  A* is extractable, then Mis del-closed, Dk(M) C Mforany k 2 0 and thus D(M) = M. 
Let M be an extractable submonoid containing a language L. Then L* c M, D(L*) c D(M) = M. The 
following proposition 3.2 implies that the del-closure of a submonoid is also a submonoid. This concludes that 
D(L*) is the smallest extractable submonoid containing Land its base is a bifix code. To prove PROPOSITION 
3.2, we use LEMMA 3.1. 

PROPOSITION 3.2 Let M be a submonoid of A*. Then, D(M) = LJ Dk(M) is also a submonoid of A*. 
k>O 

LEMMA 3.1 Let M be a submonoid of A* and k 2 1. Then, x, y E Dk(M) implies xy E D2k(M). 

ProofofLemma 3.1) Note that 1 EM  and 1 E Dk(M) for each k 2 0 since Mis a submonoid. 
In case of k = l, let x, y E D1(M) = M---+ M. There exist z, w E M  such that x = x立2,Y=Y1Y2心 1Z四 E
Mand Y1疇 EM. Since Mis a submonoid of A*, we have x戸疇1疇 EMand x1喧 1疇 ED1(M) = 
M---+ M. Since w E D1 (M), xy = xi疇 1Y2E (D1(M)---+ D1(M)) c D2(M). 
Next, assume that the statement holds fork 2 1. x, y E Dい (M)= Dk(M)---+ Dk(M). Letx = x1x2 with 

叩 X2,zE広 (M).and y = Y1Y2 with Y1WY2, w E Dk(M). By hypothesis, x1疇 1疇 ED2k (M). Since 
w E D2k(M)andw E D2k+1(M), x1喧 1wy2 E D2k (M) ---+ D2k (M) C D2k+1 (M) and xy = x江 2Y1Y2E 
D2k+l (M) ---+ D2k+1 (M) C D2k+2(M). This implies xy E D2k+2(M). I 

Note that each Dk(M)(k 2 1) is not necessarily a submonoid. 

the base of the del-clusure of an extractable submonoid 

EXAMPLE 3.1 (1) Let C = cl(ab) = {ab, ba}. Since C* is an extractable submonoid, we have D(C*) = C*. 
(2)LetC = cl(ababa) = {ababa,babaa,abaab,baaba,aabab}. ThenthebaseC1 ofD(C*) isC1 = CU  

{ aabba, abbaa, baaab} and D(C*) = D(C1 *). 

Let L be a language over A. We denote by L→ the minimal set of generators of the smallest extractable 
submonoid D(L *) containing L. That is, 

L→ 竺f(D(L*) ¥ 1) ¥ (D(L*) ¥ 1)2. 

If L is an extractable code, L * is an extractable submonoid, D(L *) = L *, and thus L→ = L. Extractability is 
closed under the language operator→ . We show that uniformality is also closed under→ . 

LEMMA 3.2 Let C be a nonempty uniform code of length n, that is, 0 i= CC  An. Then, Dk(C*) C (D(C*) n 
炉）* for each kミ0.

Proof) In case of k = 0, trivial. Assume that the statement is true for k 2': 0. Let尤 EDい (C*)= Dk(C*) -
Dk(C*). X = X1叩 withx戸四， zE Dk(C*). Since D(C*) is a extractable submonoid, by induction hypothesis, 
we have①戸四， zE D(C*) and x1四 ED(C*). Both lx1zx2I and z are multiples of n. Therefore x E 
(D(C*) n An)• 1 

PROPOSITION 3.3 Let 0-/= C c  An. Then,thefollowing statements hold. 
(1) C→ is a subset ofが (auniform code over A) containing C. 
(2) !JC is reflexive, then C→ is also reflexive. 

Proof) (1) Trivial by Lemma3.2. 
(2) We can easily check that Dk(C*) is reflexive for any k 2': 0. D(C*) and its base C→ = D(C*) n An are 

also reflexive. 1 

The following issues remain unsolved. 
(1) If C is an infix code, C→ is also an infix code ? 

(2) IfC C C , 1, 2 are uniform codes, the followmg equauons are true ? 

(C1 u C2い=C1→ UC2→● 
(C1 nら）→ = C1→ nC2→● 
(C→)c = (cct-+, where c means the set complement. 
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4 Conclusion 

We introduce extractable and insertable codes, which generate submonoids that allow deletion and insertion op-

erations, respectively. We summarize the definition and the properties of these codes in limited language families. 

In the last section, we deal with the smallest extractable submonoid D(L*) containing a ginven language L, 

where Dis the del-clusure[5]. So we give the definition of the language operation which convert a language L to 

the base of D(L*), denoted by L→, and investigate this operation. We just start to study these submonoids and 

many interesting problems remain unsolved. 
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