Superprime Rings

Hisaya Tsutsui
Department of Mathematics
Embry-Riddle Aeronautical University
Prescott, AZ USA
E-mail address: Hisaya.Tsutsui@erau.edu

The talk presented was a preliminary report and an introduction to the subject.

A ring in which every (two sided) ideal is an idempotent is called a fully idempotent ring. An example of such a ring includes the class of Von Numan regular rings. In fact, it is a wellkown and easy to show that every one sided ideal of Von Numan regular rings is an idempotent. If a ring R is fully idempotent, then for any ideals J, K of $R, J \cap K=J K$. Hence an ideal P in a fully idempotent ring R is prime if and only if $J \cap K \subseteq P$ implies $J \subseteq P$, or $K \subseteq P$. On the other hand, in the ring $\mathbb{Z}_{8},<2>\cap<4>=<4>$ but $<4>$ is not a prime ideal of \mathbb{Z}_{8}. We define a prime ideal P in an arbitry ring R to be superprime if $\bigcap_{i \in I} J_{i} \subseteq P \Rightarrow J_{i} \subseteq P$ for some i, where J_{i} is an ideal of R. A ring in witch 0 is superprime will be called a superprime ring.

The speaker has long been investgated the structure of rings in which every ideal is prime. An example of such rings includes the ring R of all liner transformations $f: V \rightarrow V$ of a vector space V over a field F. We are mainly interested in the structure of fully prime rings with a superprime ideal.

Theorem 1 [1, Theorem 1.2]: A ring R is fully prime if and only if R is fully idempotent and ideals in R is linearly ordered.

Proposition 2: A superprime ring is primitive if and only if it is semiprimitive.
Proof: By definition, the intersection of all nonzero ideals of a superprime ring is nonzero, and
hence it is the minimal nonzero two sided ideal. If 0 is not a primitive ideal, the ring cannot be semiprimitive since the Jacobson radical must then contains the minimal nonzero two sided ideal.

A commutative fully prime ring is a field. Since a superprime ring is in particular prime, the minimal nonzero ideal is an idempotent. Hence, a commutative suprprime ring is also a field. The center of a fully prime ring is either a field or zero ([1, Theorem 1.3]). We ask: what can we say about the center of a superprime ring?

It is wellknown that a prime ring with a minimal right ideal is primitive.
Theorem 1: A right Noetherian fully prime superprime ring R is primitive. Further, if R is not simple, then R contains no minimal right ideals.

Sketch of a proof: By Nakayama's lemma and Theorem $1, R$ is semiprimitive. Hence by Proposition $2, R$ is primitive. It can be shown that $\operatorname{Soc}(R)$ is either 0 or R. Suppose that $\operatorname{Soc}(R)$ $\neq 0$. Then since R is prime, $\operatorname{Soc}(R)$ is the intersection of nonzero ideals of R. Since R is not simple (but fully prime right Noetherian), we have a contradiction.

A prime semiprimitive but not a primitive ring is not superprime. The ring of integers is an obious example. A Von Numan regular ring is semiprimitive but there is a wellknown example of prime Von Numan regular ring that is not primitive. We ask: is a semiprimitive fully prime ring superprimitive?

We conclude this preriminaly report with the following conjucture: Let R be a fully prime ring. The following statements are equivalent:
(a) R is primitive.
(b) R is semiprimitive
(c) R is superprime.

Reference

[1] W.D. Blair and H. Tsutsui, Fully Prime Rings, Comm. Albebra 22 (1994), no. 13, 5389-5400.

