# Conjecture Related to König-Egerváry Theorem 

Daisuke Hosaka and Akihiro Yamamura<br>Akita University<br>1-1, Tegata Gakuen-machi, Akita 010-8502 Japan


#### Abstract

In this paper, we consider an extension of König-Egerváry theorem into three-dimensional arrays and make a conjecture related to an extension of the König-Egerváry theorem. Performing computer experiment, we give counterexamples of the conjecture


## 1 Introduction

A graph is called bipartite if its vertex set can be partitioned into two subsets $X$ and $Y$ so that every edge has one end in $X$ and one end in $Y$. A matching in a graph is a set of pairwise non-adjacent edges. A covering of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set.

Theorem (König-Egerváry Theorem). In any bipartite graph, the cardinality of a maximum matching is equal to the cardinality of a minimum covering.

It can be restated in terms of matrices as follows. Let $A$ be a $(0,1)$ matrix. A set $M$ of 1 's of $A$ is a matching of $A$ if no two 1 's in $M$ lie in the same line. A set $C$ of lines is a covering of $A$ if lines in $C$ together cover all the 1 's of $A$. Here the term "line" means either a row or a column of $A$. We denote the cardinality of a maximum matching of $A$ by $m_{2}(A)$, and the cardinality of a minimum covering of $A$ by $c_{2}(A)$. König-Egerváry theorem can be translated as $m_{2}(A)=c_{2}(A)$ for any $(0,1)$-matrix $A$. We consider a certain extension of König-Egerváry theorem to three-dimensional array.

## 2 Extension of König-Egerváry Theorem

We define a line in a three-dimensional array $A$ similarly to that in a matrix and define a matching in $A$, a covering of $A$ similar to the 2-dimensional
case. We denote the cardinality of a maximum matching in $A$ by $m_{3}(A)$, and the cardinality of a minimum covering of $A$ by $c_{3}(A)$.

### 2.1 Properties of three-dimensional array

Theorem. Let $A$ be a $(0,1)$-three-dimensional array. For any matching $M$ of $A$ and any covering $C$ of $A$,

$$
|M| \leq|C|
$$

Proof. We denote the elements in $M$ by $1_{1}, \ldots, 1_{n}$, where $n=|M|$. By the definition of a covering, for any $1_{i}$, there exists $l_{i} \in C$ such that $1_{i} \in l_{i}$. By the definition of a matching, $i \neq j \Rightarrow l_{i} \neq l_{j}$. Therefore, $C$ has at least $|M|$ elements.

Corollary. For any (0,1)-three-dimensional array $A$,

$$
m_{3}(A) \leq c_{3}(A)
$$

Now we conjecture that

$$
m_{3}(A)=c_{3}(A)
$$

for any $(0,1)$-three-dimensional array $A$.

### 2.2 Experiment

We verified $m_{3}(A)=c_{3}(A)$ for any $2 \times 2 \times 2(0,1)$-array $A$ by computer experiment. Next, we tried to check whether $m_{3}(A)=c_{3}(A)$ for any $3 \times 3 \times 3$ $(0,1)$-three-array $A$ and then we found a counterexample in which $m_{3}(A)=$ $3<4=c_{3}(A)$ as follows.


We performed a computer experiment on Windows 7 whose memories are 4.00 GB . Its CPU is $\operatorname{Inter}(\mathrm{R})$ Core(TM) i5-3470 CPU @ 3.20 GHz . The program is made by Python and spent about half a month calculating $m_{3}(A)$ and $c_{3}(A)$ of $141,7503 \times 3 \times 3(0,1)$-array $A$. We found 3,434 counterexamples. We also checked the values of $m_{3}(A)$ and $c_{3}(A)$ for each counterexample $A$ and found that $c_{3}(A)-m_{3}(A)=1$ for all counterexamples.

## References

[1] Egerváry, E., On combinatorial properties of matrices. Mat. Lapok. 1931, Vol. 38, p. 16-28.
[2] Aharoni, R., Ryser's Conjecture for Tripartite 3-Graphs. Combinatorica. 2001, Vol. 21, Issue 1, p. 1-4.

