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Modal Logic and Spatial Reasoning 
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Takeuti Izumi 

AIST 

Abstract. In accessibility semantics, a formula is interpreted into a 

set in a graph and a modality is interpreted into an operation over 

sets. When it is applied to a graph which represents the structure of a 

figure, a formula describes a structure of a figure. By using this, modal 

logic describes spatial reasoning. 

1 Introduction 

1.1 Preliminary of Logic 

The meaning of a sentence is a proposition. For example, the meaning of a sentence 

'20 Feb. 2019 is Wednesday.'is a proposition. On the other hand, the meaning of 

a sentence with a hole is a property. For example, the meaning of a sentence with 

a hole'() is Wednesday.'is a property, so to say, Wednesdayness. 

The denotation of a proposition is its truth value, and the denotation of a 

property is a set which is its extension. For example, as for the sentence'20 Feb. 

2019 is Wednesday.', its denotation is true. On the other hand, as for the sentence 

with a hole'() is Wednesday.', its denotation is the set { xix is Wednesday.}, which 

is its extension. 

In the standard semantics of formal logic, a closed formula is interpreted into 

a proposition, and its denotation is a truth value. On the other hand, a formula 

with holes is interpreted into a property, and its denotation is a set which is its 

extension. In formal logic, a formula with holes is sometimes called a predicate. 

Otherwise, a predicate only refers to an atomic formula with holes. 

In contrast, there are non-standard semantics. the most well-known non-

standard semantics is accessibility semantics, which interprets a formula into a 

set of nodes in a graph. Accessibility semantics is only for propositional logic, thus 

it does not have interpretations of formulae with holes. 

Accessibility semantics is a semantics for first order propositional modal logic, 

which is a first order propositional logic with modality. Modality is a non-classical 

unary operator over formulae. Modalities in standard semantics refer to hearsay, 

logical consequence, and so forth, which are out of the domain of mathematics. 

On the other hand, in accessibility semantics, modalities refer to operations over 

sets. 
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Formal Syntax Standard Semantics Accessibility Semantics 

Formula Proposition/Truth value Property /Set 

Formula with holes Property /Set 

Modality Believe, Logical consequence, Operation over sets 

etc. Non-mathematics 

When the accessibility semantics is applied to a graph which represents the 

structures of figures in the plane, modalities are regarded as operations over figures, 

and modal logic describes spatial structures. 

1.2 Aim of This Study 

The aim of this study is to use modal logic for describing spatial reasoning, ac-

cording to accessibility semantics which interprets modalities into operations over 

figures. 

This study is inspired by a study by Prof. Sano Katsuhiko et-al. [l]. Both their 
study and this study of ours discuss properties of figures with modal logic. They 

discussed properties of figures drawn by pixels in a grid. We discuss properties of 

figures represented by graphs. 

1.3 Outline 

The construction of this article is as below. Section 2 explains modal logic with ac-

cessibility semantics. Section 3 explains 3-level model of spatial structure. Section 

4 explains how modal logic describes spatial reasoning. 

2 Modal Logic with Accessibility Semantics 

2.1 Syntax 

This subsection defines the syntax of our modal logic. 

Definition 2.1.1 (Formula) The set of formulae of our modal logic is defined 

by the following syntax. 

Formula F ::= VarlTl,FIF I¥ FにJFI■PIAF, 
where Var is the set of propositional variables. 

We use the following abbreviations: 
..l三--,丁，
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F→G戸 (FI¥,G), 
◇F三-,口,F

♦F 三,■,F,

EF三 ,A,F.

The order of priority is ,, • ,•, •, A, E, /¥ and→, where -, is high and→ is low. 

2.2 Accessibility Semantics 

Accessibility semantics interprets a formula by a binary relation F under a graph 
G and an evaluation V. 

Definition 2.2.1 (Semantic Graph) A graph G = (N, E) is a directed graph 
which is a pair of the set of nodes N and the set of edges E where E C N x N. 

This G is called a semantic graph. For n, n'E N, n→ n'stands for (n, n') E E A 
subset V C N x Var is an evaluation of propositional variables. 

Definition 2.2.2 {Interpretation) The binary relation F between a node n E 

N and a formula Fis defined by induction of F: 
n p== A iff (n, A) EV  for A E Var; 
n p== T always holds; 
n p== -,p iff n柘F;
np==F八Giff n p== F & n p== G; 
np==ロFiff, for any n'E N, if n→ n'then n'p== F; 
n巨■F iff, for any n'E N, if n'→ n then n'p== F; 
n巨AFiff, for any n'EN, n'p== F. 

2.3 Modality as a Spatial Operator 

The modalities are interpreted into operators over sets, because modalities are 
operators over formulae, and formulae are interpreted into sets. When the sets are 
regarded as figures, the modalities are regarded as spatial operators. 
We use the notation [F] for a formula F to refer to the denotation of F with is 

[F] = { nln FF}. According to the definition of p, the operations of modalities 
are described as the followings by using [ ] . 

［口F]= {n E Nlfor any n', if n→ n'then n'E [F]}, 
［■ F] = {n E Nlfor any n', if n'→ n then n'E [F]}, 
［◇ F] = {n E Nin→ n'E [F]}, 
［● F] = {n E Nin'→ n, n'E [F]}, 
[AF] = N if [F] = N, and [AF] = 0 otherwise, 
[EF] = 0 if [F] = 0, and [EF] = N otherwise. 

Figures 1-3 describes the operations of modalities over an example. 
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F 

Figure 1. [口F]= {n E Nlfor any n', if n→ n'then n'E [F]} 

~-

F 

Figure 2. [■ F] = {n E Nlfor any n', if n'→ n then n'E [F]} 

F 

Figure 3. [◇ F] = {n E Nin→ n'E [F]}, [● F] = {n E Nin'→ n, n'E [F]} 
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2.4 Axiomatisation 

The logic of accessibility semantics is axiomatised as below. 

Definition 2.4.1 (Axiomatic System) The axiomatic system is defined by the 
follwoing rules: 

From F→ G and F, infer G; From F, infer□ F, ■ F and AF; 
All tautologies; 

□ (F→ G)→□F→□ G; 
A(F→ G)→ AF→ AG; 
F→□● F; F→■◇ F; 

■ (F→ G)→■F→■ G; 
AF→ F; AF→ AAF; EAF→ AF; 
AF→ □ F; AF→ ■ F. 

Theorem 2.4.2 This axiomatic system is sound and complete for accessibility 
semantics. 

3 3-level Model of Spatial Structure 

3.1 3-level Model 

A 3-level model is a model of spatial structure, which is originated from PLCA 
expression by Prof. Takahashi Kazuko et-al. [2]. 
A 3-level model is a triple (M2, M1, Mかwhere
-M2 is a finite set of arias, 
-M1 is a finite set of lines, and 

-Mi。isa finite set of points, 
with some constraints. The detailed definition is given below. 

Definition 3.1.1 (Point) A point is 
an element of R2. Point 

Definition 3.1.2 (Line) A subset l C 
R 2 is a line if there are functions 

Ji, h E C1[0, 1] such that: 
-l = {(J1(t), h(t)) E R21t E [O, 1]}, 
-J{(が＋且(t戸>0, and 
-t→ (J (t) f (t)) ... 1 , 2 1s mJective. 
The end points of l is defined as: 

End(l) = 
{(11(0), h(O)), (11(1), h(l))}. 

Figure 4 shows a point and a line. 

Line 

． 

Figure 4. 
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Definition 3.1.3 (Cycle) A list of Cycle 

lines (li, l2, .. , l砂isa cycle if 
-li n li+i = End(し） n End(li+1) -/= 0, 
-ln n li = End (l砂nEnd(li) -/= 0, and 
-uiしishomeomorphic to a circle. 
I (li, l2, ・ ・, [』I=Uiし， whichis called 
the image of a cycle (li, l2, .. , ln)-

Definition 3.1.4 (Area) A subset 

a c R2 is a area if a is homeomorphic 

to the disc { (x, y) I炉+y2:S 1 }, and the 
boundary 8a is the image of a circle. 

Figures 4 and 5 show a cycle and a 

area. 

Area 

Figure 5. 

Definition 3.1.5 (3-level Model) A triple M = (M2, M1, Mi。)is a 3-level model 
if 

-M2 is a finite set of areas; 

-M1 is a finite set of lines; 

-Mi。isa finite set of points; 
-For each a, a'E M2, if a =J a'then an a'C 8a; 
-UaEM2 oa = U1EM1 l; 
-For each l, l'E M1, if lヂl'thenl n l'c End(l); and 

-Mi。=U1EM1 End(l). 
The left part of Figure 6 shows a 3-level model. 

li 
Pl 

a1 I a2 

ーー

l2 [3 

P2 

M = ({a1匹},{li, 1凸},{P1, 四｝）

Figure 6. 
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•P1 

•P2 

ー3 



32

Definition 3.1.6 (Concact Graph) For a 3-level model M = (M2, M1, Mi。)， the
contact graph G(M) = (N(M), E(M)) is defined as: 
N(M) = M2 U M1 U Mi。,
E(M) = {(a,l) E M2 x M1ll Ca} U {(l,p) E M1 x Mi。IPEl}. 

The right part of Figure 6 is the contact graph of the 3-level model in the left part 
of Figure 6. 

4 Modal Logic and Spatial Reasoning 

For 3-level model M, its contact graph G(M) is regarded as a semantic graph for 
modal logic. Then, modal logic describes some properties of M. 
We write M, V p== F when n p== F for any n E N(M) under G(M) and V. 

The axioms are sound but not complete for the contact graphs. For example, 
◊◇◇丁 is not refutable by the axioms. Then it is satisfiable by a semantics graph, 

namely the graph in Figure 7, but not by any contact graphs. 

• → • → • → • 

Figure 7. 

The followings are the formulae 
which mean the structures of 3-level 
models. 
-M,V巨EX:
This means that [X] is not empty. 

-M,V巨X→■..l: 
This means that[X] consists of only ar-
eas. 

-M,V巨Y→（◇丁八●丁）：
This means that[Y] consists of only 
lines. 

-M,Vp==Z→□ ..l: 
This means that [Z] consists of only 
points. 
Figure 8 shows these situations. 

M,V: 

X 

y z 

Figure 8. 
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This formula means that [X] and [Y] consist of areas: 
M, 斤 A(□,X A□ ,Y), 

and this formula means that [X] contacts [Y] at a point: 
M, V p=A,(• XA • Y) A E(••X A••Y), 

as is shown in Figure 9. 
The follwoging situations are shown in Figure 10. This formula means that 
[X] and [Y] consist of areas: 
M,V p=A(口式A□,Y). 

This formula means that [X] contacts [Y] on a line: 
M, VF E(• XA ♦Y 八◇丁）．

This formula means that [X] and [Y] share a point: 
M,V 巨 E(♦♦X A••Y). 

The axiomatic system derives 

f-E(♦X 八 ♦YA◇丁））→ E(•• X A••Y). 
This means that, if two areas conatct on a line, then the two share a point. 
Thus, modal logic describes spatial reasoning. 

M,V: M,V: 

X Y X 

Y 

Figure 9. Figure 10. 
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