
34

Generation of Propositions in Isabelle/HOL

Hidetsune Kobayashi (Institute of Computational Logic)

Yoko Ono (Yokohama City University)

1 Intod uction

In Isabelle/HOL, a proof of a mathematical proposition, using backward infer-

ences, proceedes as:

1. take out some theorems, from a database, having conclusions similar to
the conclusion of the proposition to prove.

2. apply those chosen theorems one by one to the original proposition and
try to rewrite the original proposition. Then choose one of the theorems,

rewrite the original proposition and repeat the step 1.

3. if no theorem is found in the DB, we try to generate a lemma which can

be applied to the original proposition.

The item 3 is what we are going to discuss in this report. Some theorems are
required only for logical calculations. And in a text book, those logical theorems

are omitted as trivial, except in some fields related mathematical logic. In
Isabelle/HOL automatic provers are equipped and some logical propositions are
proved automatically, but if a proposition is complicated, we have to generate

a lemma to make the proposition simple.
Moreover, in the set theory there are some simple principle to generate

propositions which can be useful later.
We also show a hint, which is given by a mathematician's inspiration, as a

proposition used to prove a theorem.
To develop above trials, we take, as an example, the Bernstein's theorem in

set theory as a base. We need Set theory, Function theory and some theorems

required by logical calculation of Isabelle/HOL.
We make a network of (proved) theorems and axioms, to see the relationships

between them. And we note a possibility to give a concise proof by pickking up
some propositions in the network.

2 Selection of Theorems from DB

Our prover consists of

35

1. Isabelle/HOL as a logical rewriting system of a proposition.

2. ProofGeneral, based on emacs, as an interface

3. postgreSQL as a database managing system. Theorems and hints are

stored in tables

Between 1 and 3, a proposition is sent by means of data transfer part of the
prover written in emacs lisp as:

Isabelle ←→ Emacs Lisp←→ SQL
proposition ←→ tree ←→ tree in SQL table

A proposition with binary oprator (e.g. =, /¥, V etc.) is converted to a
binary tree, and the other is converted to a linear tree. Here are two examples:

A I¥ B -----+ (andS (A) (B))
P x -----+ (P x)

We store trees of propositions already proved in a relational table "proposi-

tions" in SQL. And when we have a proposition to prove, we put it in the other
table "prop_to_prove". Then we begin to select proper propositions to apply

from "propositions".

2.1 Positions of Operators and Variables of a Tree

To compare the conclusion part of the proposition to prove and that of propo-

sitions to apply, we compare skeletons of propositions as:

1. make position lists of trees.

2. compare position lists ignoring the difference of variables and the difference
of bounded variables.

3. give a similarity point in integer.

where position list is a list of point and its position in the tree expression of the
proposition. The skeleton is a list consisting of position and variables which are

not operands of the operator variables in the position list. We give an example

of position list of the tree expression of a lemma

Pc⇒ ヨ_c.P_c

The tree expression of this proposition is

(LrarS (P c) (exSぷ dSP _x))

and position list of the conclusion is

(exS (~c. ぷ） (~c ~c. dS) (~c ~c ~c. P) (~c ~c ~c ~cぷ））

36

where (~c) means the child of the tree, (~c ~c) means the child of child of
the tree and so on. As position signs, we have ~l, ~r, ~n and P _n, where ~l
the left-child, ~r right-child, ~n within parentheses and P _n means in the n-th

premise. Hence to reach a variable p with the position (~c ~c ~c. P), we have
only to execute a command in emacs-lisp

(child (child (child tree)))

or a command in SQL

select child(child(child(tree)));

Instead of the command child(child(child(tree))) , we have the com-

mand cutout_subtree(cl, tree) in SQL, where cl is the list (~c ~c ~c .

P). In genera, cl can be any list consists of some elements of a list given as
poss_oLtree (tree).

To compare positions of trees, we ignore differences of variables and descen-
dant's position of an operator which appears as cdr of a dot cons.

We present an example to omit a position.

tree position list
(exS _x dS ?Pぷ） (exS (~c. _x) ... (~c ~c ~c. ?P) ...)

(exSぷdSandS (Pぷ） (Qぷ）） (exS (~c. ぷ） ... (~c ~c ~c . andS) ...)

Here the second line is the tree of the conclusion of a proposition in DB, and
the third line is the tree of the conclusion of a proposition to prove. P in the

second line is an operator with operandぷ， andthe subtree (andS (Pぷ） (Q
ぷ）） is at the same position of P in the proposition to prove. That is the return

value of

select cutout_subtree ('(~c ~c ~c . ?P)', tree1)

, where treel is the tree appearing in the third line above.
As noted above, the position of the last bounded variableぷ ofthe tree (exS

ぷdS?Pぷ） should be discarded it is a position of a child of ?P. The reason
is that a tree corresponding to ?P can be a complicated tree, and the bounded

variable position may be different to that of the child of ?P.
In this example, the counter part of ?P is (lmbS _xl dS andS (P _xl) (Q

ぷ 1))which is converted as

入ェi. P _xi /¥ Q _xi

The tree coresponding to (?P _x) is ((lmbS _xi dS andS (P _xi) (Q _xi))

_x). It is easy to see that the position ofぷ ofthe former tree and that of the

latter is different.

We eleminate those positions not to be compared by using a function.

3 Make A Network of Theorems

In this section, we make a network of axioms and proved theorems. The network

makes clear the relationships between theorems.

37

3.1 Elements, Sets and Networks of simple Propositions

notat10ns:

x::'a, xl::'a, x2::'a, …
y::'b, yl::'b, y2::'b, ...

z:: c, ...
A::'a set, Al::'a set, A2::'a set, …
B::'b set, Bl::'b set, B2::'b set, …('a set is'a⇒ bool)
P::'a⇒ bool, Q, R,
{ x. P x} -a set of elements x with P x true.

Examples:
Elements: 1 2 3 , . . . a, b, c, . . . al, a2, a3, ...

Sets: {}, {1}, {1, 2}, {1, 2, 3}, {a}, {a, b}, {a, b, c}, ...

We present some simple propositions expressed in networks.

Membership, subset

~~~~ 
Propositions in a network 
subsetD 

~ 
Put above parts together 

subset_trans mem_Collect_eq 

□→己 ~ ー①〉



38

3.2 Functions 

□□ 
The rectangle implies the definition is not included in the network. However, 

in Python, we can express the right hand node as N01 = {name:function, 
tree: (inS (f) (rarS (A) (B))), def: (falS inS (x dS inS (x) (B)) (A))}. 

Trial to generate propositions with a simple principle: 

1. contraction and extension of the domain 

っ・

つ・

2. contraction and extension of the range. (abbreviated) 

Given two functions f E A1→ Band g E A2→ B, if Vx E Al n A2.f(x) = 
g (x) then we define 

fVg(x) = { ! 冒if x E A1, else 

if XE  A2 

The network expression off V g is 

I definition I 

Note that if A1 and A2 are disjoint, f V g is defined without condition. 



39

Image of a function: 

We note that we can try to generate propositions concerning surjection by con-

traction and extension of a domain and a range. 
Suppose the join of functions f V g is given and suppose each of the functions 

are injections, then dividing the domain into three disjoint sets A1 -(A1 n A叫，
A2 -(A1 n A2) and A1 n A2, we obtain the following proposition: 

[I Vx E A1 n A2.fx = gx; injふ，Bf; injA2,Bg; I¥ xi, xdlxi E A1 -(A1 n 

A2); x2 E A2 -(A1 nA2)ll ===;, 丘1ヂg四 l===} injふ UA2,BfV g 

Injection: 

I def ... I @i)----Gv 
_, 

fx¥:-fx1 

Proposition. Inj_bij_to_image: 

｀ Composition: 

The composition g o f above has the following property: 

imA,C9 ofこimB,C9



40

Proposition comp_inj: 

Proposition comp...surj and comp_bij: 

We define a relation ~b as 

A ~b B if and only if there is a bijection from A to B 

Using Isabelle, we can show this relation is an equivalence relation. 

3.3 Bernstein's Hint 

Let A1 be a subset of A, and let f be injective from A into A1. Make the 
following subset A2 of A1 and make the following join of functions. 

A2 = {x E A1. ヨn~l 八ヨy EA -A1 I¥ r(y) = x} 

fVid(x) = { f(x) ifxE(A-A1)UA2,else 
id(x) ifxEA1-A2 

Hence if we have an injection from A into Al, we see A simb Al. 

3.4 Bernstein's Theorem 

Theorem. If we have an injection f from A to B, and an injection g from B to A. 
Then A ~b B. According to a principle "if it is possible to make a composition, 
make a composition", we make go f, then we can find comp_inj to see that g 



41

o f is an injection from A to g(B). and we see B ~b g(B). The Bernstein's hint 
shows A ~b g(B). From B ~b g(B), we have g(B) ~b B. Hence we have A ~b 

B. Since in the network of theorems, the conclusion of Bernstein's theorem is 
reachable from the elementary objects, we see the theorem is true. Moreover, 
we see repeated logical calculation can be hidden from the network of theorems, 
we can give a concise proof to a proposition to prove. 

References 

[1] Andries P. Engelbrecht (2007) Calculational Inteligence John Wiley & Sons 
Ltd. 

[2] Koki Saitoh. (2016) Deep Learning starting from zero , O'Reilly Japan Inc. 

[3] Bill Lubanovic. (2015) Introducing Python, O'Reilly 

[4] Tobias Nipkow et al. (2013) A Proof Assistant for Higher Order Logic, 
Springer-Verlag. 

[5] Syunji Kametani (2004) Sets and Topology, Asakura Shoten 




