Infinite sequences of non－Weierstrass numerical semigroup with odd conductor ${ }^{1}$

神奈川工科大学•基礎•教養教育センター 米田 ニ良 Jiryo Komeda
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology

Abstract

We construct infinite sequences of non－Weierstrass almost symmetric numerical semi－ groups with a fixed odd conductor through dividing by three．

1 Introduction

Let \mathbb{N}_{0} be the additive monoid of non－negative integers．A submonoid H of \mathbb{N}_{0} is called a numerical semigroup if the complement $\mathbb{N}_{0} \backslash H$ is finite．The cardinality of $\mathbb{N}_{0} \backslash H$ is called the genus of H ，which is denoted by $g(H)$ ．In this article H always stands for a numerical semigroup．We set

$$
c(H)=\min \left\{c \in \mathbb{N}_{0} \mid c+\mathbb{N}_{0} \cong H\right\},
$$

which is called the conductor of H ．It is known that $c(H) \leqq 2 g(H)$ ．A numerical semigroup H is said to be symmetric if $c(H)=2 g(H)$ ．This semigroup has the following symmetric property：For $\gamma \in \mathbb{N}_{0}$ we have $\gamma \notin H$ if and only if $2 g(H)-1-\gamma \in H$ ．A numerical semigroup H is said to be quasi－symmetric if $c(H)=2 g(H)-1$ ．We set

$$
P F(H)=\left\{\gamma \in \mathbb{N}_{0} \backslash H \mid \gamma+h \in H, \text { all } h \in H>0\right\}
$$

whose elements are called pseudo－Frobenius numbers of H ．We have $c(H)-1 \in P F(H)$ ． We set $t(H)=\sharp P F(H)$ ，which is called the type of H ．

Remark 1．1 We have $c(H)+t(H) \leqq 2 g(H)+1$ ．（For example，see［6］．）
A numerical semigroup H is said to be almost symmetric if the equality $c(H)+t(H)=$ $2 g(H)+1$ holds．

Remark 1.2 i）H is symmetric if and only if $t(H)=1$ ．In this case H is almost symmetric． ii）If H is quasi－symmetric，then $t(H)=2$ ．The converse does not hold．In this case H is also almost symmetric．
iii）If $c(H)=2 g(H)-2$ ，then $t(H)=2$ or 3 ．

[^0]We set $P F^{*}(H)=P F(H) \backslash\{c(H)-1\}$.
Remark 1.3 ([6]) If H is almost symmetric, then it has the following symmetric property: The map sending γ to $c(H)-1-\gamma$ induces a bijection on $P F^{*}(H)$. The converse is true.

A curve means a projective non-singular irreducible algebraic curve over an algebraically closed field k of characteritic 0 . For a pointed curve (C, P) we denote by $H(P)$

$$
\left\{\alpha \in \mathbb{N}_{0} \mid \exists \text { a rational function } f \text { on } C \text { such that }(f)_{\infty}=\alpha P\right\}
$$

Then $H(P)$ is a numerical semigroup of genus $g(C)$ where $g(C)$ is the genus of C. A numerical semigroup H is said to be Weierstrass if there exists a pointed curve (C, P) with $H(P)=H$.

For any integer $t \geqq 2$ we set

$$
d_{t}(H)=\left\{h^{\prime} \in \mathbb{N}_{0} \mid t h^{\prime} \in H\right\},
$$

which is a numerical semigroup. In this article we are interested in the case $t=3$. Our main result is the following:

Theorem 1.4 For any $u \geqq 1$ there exist infinite sequences

$$
H_{0} \stackrel{d_{3}}{\leftarrow} H_{1} \stackrel{d_{3}}{\leftarrow} H_{2} \stackrel{d_{3}}{\leftarrow} \cdots \stackrel{d_{3}}{\leftarrow} H_{i-1} \stackrel{d_{3}}{\leftarrow} H_{i} \stackrel{d_{3}}{\leftarrow} \cdots
$$

of non-Weierstrass numerical semigroups H_{i} with $c\left(H_{i}\right)=2 g\left(H_{i}\right)-(2 u-1)$ and $t\left(H_{i}\right)=2 u$, hence, H_{i} is almost symmetric for any i.

2 Non-Weierstrass almost symmetric numerical semigroups

In this section we find numerical semigroups in the starting points of the infinite sequences in Theorem 1.4. For a numerical semigroup H the least positive integer in H is denoted by $m(H)$, which is called the multiplicity of H. First we state the key lemmas for constructing the numerical semigroups.

Lemma 2.1 Let u be an integer with $u \geqq 1$ and H be a numerical semigroup. Let g be an integer with $g>4 u-3, g \not \equiv u \bmod 3$ and

$$
g>\max \left\{m(H)-2 u, u+\frac{3}{2}(c(H)-1)+\frac{m(H)}{2}, 2 u+2 c(H)-3\right\} .
$$

We set

$$
\tilde{H}=3 H \cup\left\{g+2 u+3 \mathbb{N}_{0}\right\} \cup\{2 g-2 u-3 r \mid r \in \mathbb{Z} \backslash H\} .
$$

Then we have
i) \tilde{H} is a numerical semigroup and $g(\tilde{H})=g$.
ii) $d_{3}(\tilde{H})=H$ and $c(\tilde{H})=2 g(\tilde{H})-(2 u-1)$.

See [2] for the proof. We give an example which we get by applying the above lemma.
Example 2.1 In Lemma 2.1 let $u=3, H=\langle 2,3\rangle$ and $g=10$. Then \tilde{H} is equal to

$$
\begin{gathered}
3\langle 2,3\rangle \cup\left\{10+6+3 \mathbb{N}_{0}\right\} \cup\{20-6-3 r \mid r \in \mathbb{Z} \backslash\langle 2,3\rangle\} \\
=\langle 6,9\rangle \cup\{16,19,22, \ldots\} \cup\{11,17,20,23, \ldots\}=\langle 6,9,11,16,19\rangle .
\end{gathered}
$$

In this case, $c(\tilde{H})=15=2 g(\tilde{H})-5$.
Lemma 2.2 Let u, H, g and \tilde{H} be as in Lemma 2.1. We set $m=m(H)$. Then we have

$$
P F(\tilde{H}) \subseteq\{g+2 u+3 l-3 m \mid 0 \leqq l \leqq m-1\} \cup\{2 g-2 u+3 m-3 m\} .
$$

Hence, $t(\tilde{H}) \leqq m+1$. Moreover, $s_{\max }(\tilde{H})=2 g-2 u+3 m$.
See [2] for the proof.
Theorem 2.3 Let u, H, g and \tilde{H} be as in Lemma 2.2. Moreover, assume that $2 u-1 \geqq$ $m(H)$ and $g \geqq 2 u+2 c(H)-1$. Then we have the following:
i) $t(\tilde{H})=m(H)+1$.
ii) If $2 u-1=m(H)$, then $c(\tilde{H})+t(\tilde{H})=2 g(\tilde{H})+1$, hence \tilde{H} is almost symmetric

Using Lemmas 2.1 and 2.2 we can prove the above statement. See [2] for the details of the proof.

To construct the desired non-Weierstrass numerical semigroups we need the known facts.

Remark 2.4 (Oliveira-Stöhr [7]) A numerical semigroup \tilde{H} satisfies that $H=d_{3}(\tilde{H})$ is non-Weierstrass. If $g(\tilde{H}) \geqq 15 g(H)+11$ and $g(\tilde{H}) \not \equiv 1 \bmod 3$, then \tilde{H} is non-Weierstrass.

Remark 2.5 (Buchweitz [1] and Komeda [4]) Let m be an integer with $m \geqq 13$. Then there exists a non-Weierstrass numerical semigroup H with $m(H)=m$.

Remark 2.6 (Komeda [3]) Let $m=8$ or 12. Then there exists a non-Weierstrass numerical semigroup H with $m(H)=m$.

Corollary 2.7 Let u be an integer with $u \geqq 7$. Then there exists a non-Weierstrass almost symmetric numerical semigroup \tilde{H} with $c(\tilde{H})=2 g(\tilde{H})-(2 u-1)$.
Proof. Let m be an odd integer with $m \geqq 13$. We set $u=\frac{m+1}{2}$. Then $u \geqq 7$. Using Remark 2.5, Lemma 2.1, Remark 2.4 and Theorem 2.3 in this order we get the desired non-Weierstrass numerical semigroups.

Corollary 2.8 Let u be an integer with $1 \leqq u \leqq 6$. Then there exists a non-Weierstrass almost symmetric numerical semigroup \tilde{H} with $c(\tilde{H})=2 g(\tilde{H})-(2 u-1)$.

Proof. If $u=2,3,4$ (resp. 5, resp. 6), then we take a non-Weierstrass 8 -semigroup (resp. 12-semigroup, resp. 14 -semigroup H). We construct a non-Weierstrass numerical semigroup \tilde{H} with $t(\tilde{H})=2 u$ (see Komeda [2] for the details of the proof). In the case $u=1$, the result is due to Oliveira-Stöhr [7].

We give an example in the case $u=3$, namely, a non-Weierstrass almost symmetric numerical semigroup \tilde{H} with $c(\tilde{H})=2 g(\tilde{H})-5$.

Example 2.2 In Corollary 2.8 let $u=3$. Let $H=\langle 8,12,18,22,45,49\rangle$, which is a nonWeierstrass numerical semigroup of genus 31 from [3]. Let $g=15 g(H)+11=15 \times 31+11=$ 476. We set $\tilde{H}=3 H \cup\left\{476+2 \times 3+3 \mathbb{N}_{0}\right\} \cup\{2 \times 476-2 \times 3-3 r \mid r \in \mathbb{Z} \backslash H\}$. Then $P F(\tilde{H})=\{482+3 l-24 \mid l=3, \ldots, 7\} \cup\{952-6+24-24\}$, i.e., $t(\tilde{H})=6$. Hence \tilde{H} is a nonWeierstrass almost symmetric numerical semigroup of genus 476 with $c(\tilde{H})=2 g(\tilde{H})-5$.

3 Proof of Theorem 1.4

To prove Theorem 1.4 we need the following Lemma:
Lemma 3.1 (Komeda [2]) For any $t \geqq 1$ we can construct an infinite sequence of numerical semigroups H_{i} with $c\left(H_{i}\right)=2 g\left(H_{i}\right)-t$ as follows:

$$
H_{0} \stackrel{d_{3}}{\leftarrow} H_{1} \stackrel{d_{3}}{\leftrightarrows} H_{2} \stackrel{d_{3}}{\leftarrow} \cdots \stackrel{d_{3}}{\leftarrow} H_{i-1} \stackrel{d_{3}}{\leftarrow} H_{i} \stackrel{d_{3}}{\leftarrow} \cdots
$$

Here, H_{0} is any almost symmetric numerical semigroup with $c\left(H_{0}\right)=2 g\left(H_{0}\right)-t$ and H_{i} is also almost symmetric for any $i \geqq 1$.
We take H_{0} in Lemma 3.1 as the non-Weierstrass almost numerical semigroup \tilde{H} in Corollaries 2.7 and 2.8. Using Remark 2.4 and the method of construction of Lemma 3.1 (see Komeda [2]) we get Theorem 1.4.

References

[1] R.-O. Buchweitz, On Zariski's criterion for equisingularity and non-smoothable monomial curves, Preprint 115, University of Hannover, 1980.
[2] J. Komeda, Infinite sequences of non-Weierstrass numerical semigroups with a fixed conductor, In preparation.
[3] J. Komeda, Double coverings of curves and non-Weierstrass semigroups, Communications in Algebra 41 (2013) 312-324.
[4] J. Komeda, Non-Weierstrass numerical semigroups, Semigroup Forum 57 (1988) 157-185.
[5] J. Komeda and A. Ohbuchi, On double coverings of a pointed non-singular curve with any Weierstrass semigroup, Tsukuba J. Math. Soc. 31 (2007) 205-215.
[6] H. Nari, Symmetries on almost symmetric numerical semigroups, Semigroup Forum 86 (2013) 140-154.
[7] G. Oliveira and K.-O. Stöhr, Gorenstein curves with quasi-symmetric Weierstrass semigroups, Geometriae Dedicata 67 (1997) 45-63.
[8] F. Torres, Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994) 39-58.

[^0]: ${ }^{1}$ This paper is an extended abstract and the details will appear elsewhere． This work was supported by JSPS KAKENHI Grant Number18K03228．

