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Abstract

We construct infinite sequences of non-Weierstrass almost symmetric numerical semi-
groups with a fixed odd conductor through dividing by three.

1 Introduction

Let N, be the additive monoid of non-negative integers. A submonoid H of N is called a
numerical semigroup if the complement Ny\H is finite. The cardinality of Ny\H is called
the genus of H, which is denoted by g(H). In this article H always stands for a numerical
semigroup. We set

c(H) =min{c e Ny | c + Ny € H},

which is called the conductor of H. It is known that ¢(H) < 2g(H). A numerical semigroup
H is said to be symmetric if c(H) = 2g(H). This semigroup has the following symmetric
property: For y € Ny we have y ¢ H if and only if 2g(H) — 1 —y € H. A numerical
semigroup H is said to be quasi-symmetric if c(H) = 2g(H) — 1. We set

PF(H)={yeN\H|y+heH,alheH>0},

whose elements are called pseudo-Frobenius numbers of H. We have ¢(H) - 1 € PF(H).
We set 1(H) = §PF(H), which is called the type of H.

Remark 1.1 We have ¢(H) + t(H) < 2g(H) + 1. (For example, see [6].)

A numerical semigroup H is said to be almost symmetric if the equality c¢(H) + (H) =
2g(H) + 1 holds.

Remark 1.2 i) H is symmetric if and only if t(H) = 1. In this case H is almost symmetric.
ii) If H is quasi-symmetric, then t(H) = 2. The converse does not hold. In this case H is
also almost symmetric.

i) If c(H) = 2g(H) — 2, then t(H) = 2 or 3.
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We set PF*(H) = PF(H)\{c(H) — 1}.
Remark 1.3 ([6]) If H is almost symmetric, then it has the following symmetric property:
The map sending y to c(H) — 1 — y induces a bijection on PF*(H). The converse is true.
A curve means a projective non-singular irreducible algebraic curve over an alge-
braically closed field k of characteritic 0. For a pointed curve (C, P) we denote by H(P)

{a € Ny | 3 a rational function f on C such that (/). = aP}.

Then H(P) is a numerical semigroup of genus g(C) where g(C) is the genus of C. A
numerical semigroup H is said to be Weierstrass if there exists a pointed curve (C, P)
with H(P) = H.

For any integer r > 2 we set

d(H) =l e N, | th’ € H},

which is a numerical semigroup. In this article we are interested in the case r = 3. Our
main result is the following:

Theorem 1.4 For any u = 1 there exist infinite sequences

HoEmEmsE . En  Eyd. .
of non-Weierstrass numerical semigroups H; with c(H;) = 2g(H;)—(2u—1) and t(H;) = 2u,
hence, H; is almost symmetric for any i.

2 Non-Weierstrass almost symmetric humerical semi-
groups

In this section we find numerical semigroups in the starting points of the infinite sequences
in Theorem 1.4. For a numerical semigroup H the least positive integer in H is denoted by
m(H), which is called the multiplicity of H. First we state the key lemmas for constructing
the numerical semigroups.

Lemma 2.1 Letu be an integer with u = 1 and H be a numerical semigroup. Let g be an
integer with g > 4u — 3, g # u mod 3 and

g > max{m(H) — 2u,u + %(C(H) -1+ @, 2u+2c(H) — 3}.

We set
H=3HU{g+2u+3Ny}U{2g—2u—-3r|reZ\H).
Then we have

i) H is a numerical semigroup and g(H) = g.
ii) dy(F) = H and c(A) = 2g(A) — u — 1),
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See [2] for the proof. We give an example which we get by applying the above lemma.

Example 2.1 In Lemma 2.1 letu = 3, H = (2,3) and g = 10. Then H is equal to
3(2,3) U{10+ 6 + 3Ny} U {20 — 6 — 3r | r € Z\(2,3)}

=(6,9)U{16,19,22,...} U{11,17,20,23,...} =(6,9,11,16,19).
In this case, c(H) = 15 = 2g(H) - 5.

Lemma 2.2 Letu, H, g and H be as in Lemma 2.1. We set m = m(H). Then we have
PF(H)C{g+2u+31-3m|0<I<m—1}U{2g —2u+3m —3m).

Hence, t(H) < m + 1. Moreover, s,,,.(H) = 2g — 2u + 3m.

See [2] for the proof.

Theorem 2.3 Letu, H, g and H be as in Lemma 2.2. Moreover, assume that 2u — 1
m(H) and g = 2u + 2c¢(H) — 1. Then we have the following:

i) t(H) = m(H) + 1.

i) If 2u — 1 = m(H), then c(H) + t(H) = 2g(H) + 1, hence H is almost symmetric

Using Lemmas 2.1 and 2.2 we can prove the above statement. See [2] for the details of
the proof.

To construct the desired non-Weierstrass numerical semigroups we need the known
facts.

Remark 2.4 (Oliveira-Stchr [7]) A numerical semigroup H satisfies that H = d;(H) is
non-Weierstrass. If g(H) > 15g(H) + 11 and g(H) # 1 mod 3, then H is non-Weierstrass.

Remark 2.5 (Buchweitz [1] and Komeda [4]) Let m be an integer with m > 13. Then there
exists a non-Weierstrass numerical semigroup H with m(H) = m.

Remark 2.6 (Komeda [3]) Let m = 8 or 12. Then there exists a non-Weierstrass numeri-
cal semigroup H with m(H) = m.

Corollary 2.7 Letu be an integer withu = 7. Then there exists a non-Weierstrass almost
symmetric numerical semigroup H with c(H) = 2g(H) — 2u — 1).

1
Proof. Let m be an odd integer with m = 13. We set u = u. Then u = 7. Using

Remark 2.5, Lemma 2.1, Remark 2.4 and Theorem 2.3 in this order we get the desired
non-Weierstrass numerical semigroups. O

Corollary 2.8 Let u be an integer with 1 < u < 6. Then there exists a non-Weierstrass
almost symmetric numerical semigroup H with c(H) = 2g(H) — (2u — 1).



Proof. If u = 2,3,4 (resp. 5, resp. 6), then we take a non-Weierstrass 8-semigroup
(resp. 12-semigroup, resp. 14-semigroup H). We construct a non-Weierstrass numerical
semigroup H with #(H) = 2u (see Komeda [2] for the details of the proof). In the case
u = 1, the result is due to Oliveira-Stohr [7]. O

We give an example in the case u = 3, namely, a non-Weierstrass almost symmetric
numerical semigroup H with ¢(H) = 2g(H) - 5.

Example 2.2 In Corollary 2.8 let u = 3. Let H = (8,12, 18,22,45,49), which is a non-
Weierstrass numerical semigroup of genus 31 from [3]. Letg = 15g(H)+11 = 15x31+11 =
476. We set H = 3H U {476 + 2 x3 + 3N} U {2 x 476 —2x3 —3r | r € Z\H}. Then
PF(H) = (482+31-24|1=3,...,7}U{952—-6+24-24}, i.e., t(H) = 6. Hence H is a non-
Weierstrass almost symmetric numerical semigroup of genus 476 with ¢(H) = 2g(H) - 5.

3 Proof of Theorem 1.4

To prove Theorem 1.4 we need the following Lemma:
Lemma 3.1 (Komeda [2]) For any t 2 1 we can construct an infinite sequence of numeri-
cal semigroups H; with c(H;) = 2g(H;) —t as follows:

d3 d3 d3 d3 d3 d3
Hy«— H «— Hy - «—H_ | «— H -

Here, H, is any almost symmetric numerical semigroup with c(Hy) = 2g(H,) — t and H; is
also almost symmetric for any i = 1.

We take H, in Lemma 3.1 as the non-Weierstrass almost numerical semigroup H in
Corollaries 2.7 and 2.8. Using Remark 2.4 and the method of construction of Lemma
3.1 (see Komeda [2]) we get Theorem 1.4.
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