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1 Introduction 

One method to investigate properties of logical systems is to prove the com-
pleteness theorems using its Lindenbaum-Tarski algebras if they exist, and use 
algebraic methods through Lindenbaum-Tarski algebras to get various proper-
ties of the logical systems. This is also applied to the fuzzy logic proposed by 
Zadeh. Several interesting logics, such as Multiple-valued logic (MV), Basic 
logic (BL), Monoidal t-norm based logic (MTL) and so on, are proposed as spe-
cific fuzzy logics. As Lindenbaum-Tarski algebras of these logics, MY-algebras, 
BL-algebras and MTL-algebras and so on, are obtained, and algebraic studies 
of logics are actively performed. Those algebras are all axiomatic extensions of 
residuated lattices proposed by Ward and Dilworth [12] in 1939. Also, a logic 
determined by commutative residuated lattices is proposed in [6]. Hence, it is 
absolutely necessary to research residuated lattices in order to obtain general 
and essential properties of fuzzy logics. 

In the study of ring theory, especially when considering the quotient rings by 
radicals (which are ideals), we can get beautiful and prospective results about 
properties of rings. Let R be a ring and I(R) be the set of all ideals of R. We 
define operations八， V,0,→ as follows for all J, J E工(R):

I I¥ J = In J, 

JV J = { X + y I X E I, y E J}, 

I0J= {L弘 (finitesum) I ai EI, bi E J }, 

I→ J = {a ER  I alこJ}.

The structure (エ(R),八，V,0, -+, R, {O}) forms a residuated lattice. Therefore 
properties of rings are reflected in the residuated lattices through ideals. Thus, 
introducing the notion of radicals in ring theory to residuated lattices leads 
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to new and interesting results. Since ideals in rings correspond to filters in 

residuated lattices, the concept of radicals in rings will be applied to filters of 
residuated lattices. 

One of the research directions above has been addressed in [9]. Their authors 

defined the radicals of filters in BL-algebras and proved some basic results. Since 

then, properties regarding radicals of filters in BL-algebras are generalized to 

those of MTL-algebras [10] and of residuated lattices [8]. Unfortunately, there 
are serious errors in [8] that consequently make their main results not correct. 

In this paper, we consider properties of the radicals of filters in residuated 

lattices in detail. We correctly modify the wrongly proved results of [8]. More-

over, we give a nice description of radicals of filters in residuated lattices in 
general. A corollary of this description is that for an MTL-algebra X and a 

filter F of X, 

rad(F) = {a EX  I a'→ an E F for all n E N}. 

This answers an open problem of [10], where one inclusion has been proved and 
the other left open. 

2 Residuated lattice and filter 

In this section we recall some definitions and basic properties on residuated 
lattices [1, 2, 3, 4, 5, 12]. 

An algebraic structure X := (X, A, V, 0, →，0, 1) is called a bounded integral 
commutative residuated lattice [1] (simply called residuated lattice here) if 

1. (X, A, V, 0, 1) is a bounded lattice; 

• 1s a commutative monoid with unit element 1; 2. (X, 0, 1). 

3. For all x, y, z EX, x 0 y :s; z if and only if x :s; y→ z. 

If a residuated lattice satisfies the condition x八y= (x→ y) 0 x (called divisi-
bility), then it is called an RC-monoid. An MTL-algebra is a residuated lattice 

satisfying the condition (x→ y) V (y→ x) = 1 (called pre-linearity). Moreover, 
by a BL-algebra we mean an MTL-algebra satisfying the divisibility condition. 

Now we can state some properties of residuated lattices. These can be found 

in [2, 3, 12], except Proposition 1 (8). 

p ropos1t10n 1. Let X be a residuated lattice, x, y, z E X and m, n E N. The 

following properties hold: 

1. x0y:s;xAy, 

2. X さy ⇔ X→ y = 1, 

3. X 0 (x→ y) :s; Y, 
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4. X "Y⇒ { :'"/x~Yz8• ;•Y, 

y→ Z さX→z, 

5. 1→ x=x, 

6. x Vy= 1 ====} x 0 y = x A Y, 

7. (x Vy) 0 z = (x 0 z) V (y 0 z), 

8. (x Vy)=+n S x= Vy匹

For x E X we set x'= x→ 0, which is a negation in a sense. 

Proposition 2. Let X be a residuated lattice, x, y E X. The following properties 
hold: 

1. O'= 1, 1'= 0 and x 0 x'= 0, 

2. XS y⇒ x'~y', 

3. Xさx"and x"'= x', 

4-(xVy)'=x'Ay', 

5. X→ yさy'→x'and x'→ y'= y"→ x"' 

6. (x")=三(x門II'

7. (x0y)'=x→ y', 

8. x V x'= 1 ====} x" = x and丑 =x.

Following [3, 4, 5], we define filters of residuated lattices as follows: Let X 

be a residuated lattice. A non-empty subset F c;; X is called a filter of X if for 
allx,yEX 

(Fl) x,y E F implies x 0 y E F; 

(F2) x E F and x S y imply y E F. 

A filter P of X is called prime if x V y E P implies x E P or y E P for all 
x, y E X. A filter is called maximal if there is no proper filter containing it. 

For a non-empty subset SこX,we denote by [S) the filter generated by S. 
In particular, we write [x) for the filter generated by a singleton {x}. There is 
a concrete description of such filters. See for example in [1, 3, 4] and [5]. 

Proposition 3. Let X be a residuated lattice and 0 =JSこX.Then 

[S) = {x IヨnEN,ヨ釘 E8, 1 Si Sn, 81 0・ ・ ・0 Sn S X }. 

Corollary 1. If F is a filter of residuated lattice X and a E X, then 

[Fu {a})= {x IヨuEF,ヨnE N,u0anさx}.

We denote by F(X) the class of all filters of X. 
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3 Radicals of filters 

We define a radical of a filter according to [8, 9] and [10]. Let X be a residuated 
lattice and F be a filter of X. We denote by Spec(X) (resp. M ax(X)) the class 
of all prime (resp. maximal) filters of X. It is easy to show that every maximal 
filter is a prime filter, i.e. M ax(X)こSpec(X).By Specpぽ） (resp. Maxp(X)) 
we denote the set of prime (resp. maximal) filters containing F. 

SpecF(X) ={PE Spec(X) IFこP};

Ma巧 (X)={ME Max(X) IF<:;;; M}. 

Now we can define the radical of a filter F as follows: 

rad(F) := n{M E Max(X) IFこM}=nMaび (X).

Following our notation, the usual radical Rad(X) which is defined as the inter-
section of all maximal filters, is rad({1}), since 

Rad(X) := n{M IM E Max(X)} = rad({l}). 

Now we are ready to prove our first main result, which is a characterization 
theorem of radicals rad(F) of filters. 

Theorem 1. Let X be a residuated lattice and F E汽X).Then 

rad(F) = {x EX  I Vn ENヨmEN s.t (((砂）')m)IE F}. 

Proof. We set r = { x E X I Vn E NヨmEN s.t (((砂）＇四） 'EF}. First we show 
that rこrad(F).Otherwise, there exists x E r such that x rt rad(F). There 
exists a maximal filter M such that FこMandx rt M. By Proposition?? (3) 
we have (砂）'EM for some n E N. Since x E r there exists m E N such 
that (((砂）')m)'EF <;;; M. Since M is a filter and (研）'EM, we also get 
（（呼）')mE M. Thus, (((砂）')m)'and((砂）')mare in the maximal filter M. 
But this is a contradiction. Hence, rこrad(F).

Conversely, suppose that x rt r. Then there is n EN such that (((呼）'r)'rtF 
for all m EN. For this n, the filter generated by FU {(呼）'}is not equal to X. 
In fact, if [FU {(呼）'})= X then by Corollary 1 there should exist u E F and 

k E N such that O = u 0 ((呼）')k.Thus uさ（（砂）情→ 0, and (((呼）')k)'EF. 
This is a contradiction. Therefore, [F U { (研）'})-/c X. Then, there exists a 
maximal filter M such that [F U { (研）＇｝）こ M.If x E M  then xn E M  and 
（砂）'EM. This is a contradiction. Thus, x rt M. Hence, M is a maximal filter 
with x rt M and FこM.This means that x足rad(F)and rad(F)こr. ロ

p ropos1t10n 4. Let F be a filter of a residuated lattice X and x E X. If 
x'→ （砂）11 E F for all n EN, then x E rad(F). 

Corollary 2. Let F be a filter of a residuated lattice X and x E X. If x'→ 
呼 EF for all n EN, then x E rad(F). 
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Conversely, 

p ropos1t10n 5. Let F be a filter of a residuated lattice X and x E X. If 

x E rad(F) then for all n EN there exists m E N such that (ぷ四→ 砂 EF.

Remark 1. In {10/ (Theorem 3.5), the authors proved that 

For F a filter F of an MTL-algebra X and x E X, x E rad(F) 
implies that x'→ 炉 EF for all n E N. 

After proving that they stated the following question as open problem: 

Under what suitable conditions is the converse of the above theorem 
true? 

Our result in Corollary 2 answers this question, even in a more general sense. 

The converse holds without any additional condition, not only for MT  L-algebras, 

but for residuated lattices in general. Therefore, rad(F) in an MTL-algebras X 

can also be described by 

rad(F) = {x EX  Ix'→ 砂 EF for all n E N}. 

The next results aim to describe the radicals when the underlying set is 

linearly ordered. An element x E X is called nilpotent if there exists n E N such 
that xn = 0. In this case we say that x has a finite order. It is obvious that if x 

is nilpotent then x (/_ rad(F) for all proper filter F by the definition of rad(F). 

Conversely, 

p ropos1t10n 6. Let F be a filter of a residuated lattice X and x E X. If X is 

linear, then x (/_ rad(F) implies that x is nilpotent. 

Proof. Let X be a linearly ordered residuated lattice. Since x (/_ rad(F), there 

exists n E N such that x'→ 砂(/_F and hence x'f:_砂. Since X is linear, we 
have xn:::; が andthus xn+l = 0, that is, x is nilpotent. ロ

Corollary 3. If X is a linearly ordered residuated lattice, then, for every filter 

F of X, we have 
rad(F) = {x EX  I ord(x) = oo}. 

After describing radicals of filters, we will now have a close look at rad as 
an operator on filters. 

Proposition 7. Let X be a residuated lattice and F and G be proper filters of 
X. Then the following hold: 

1. Fこrad(F).

2. FこGimplies rad(F)こrad(G).

3. rad(rad(F)) = rad(F). 

4. rad(F) A rad(G) = rad(F八G).
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5. rad(/¥入rad(F.入))=/¥入rad(F.刈

6. rad(F) V rad(G)こrad(FVG). 

7. rad(Vげ刈=rad(V入rad(F.り）．

8. rad(F→ G)こrad(F)→rad(G) 

Proof. We only prove (3) and (5). 
(3) It is enough to show that rad(rad(F))こrad(F).If x tf. rad(F) then there 
exists a maximal filter M such that FこM but x tf_ M. Since FこMandM
is a maximal filter, we get rad(F)こM.Thus, there is a maximal filter M such 

that rad(F)こM but x tf. M. This means that x tf. rad(rad(F)). Therefore, 
rad(rad(F))こrad(F).

(5) It is obvious that rad(/¥入rad(F.り） <:;;; /¥入 rad(F.刈. Conversely, if x E 
rad(/¥入rad(F.入））， thenfor all n E N there exists m E N such that (((研）＇四） IE 
八入rad(F.り Since/¥入rad(F.り<:;;;rad(Fμ) for allμ, we have (((砂）＇四） I E 
rad(Fμ) and thus x E rad(rad(Fμ)) = rad(Fμ) for allμ. This means that 
X E j¥入rad(F砂 Itfollows that rad(/¥入rad(Fり）こ I¥入rad(F.刈.Therefore, 

rad(/¥入rad(F.り） =/¥入rad(F.砂
ロ

Remark 2. The properties (1), (2) and (3) in Proposition'l mean that rad is 

a closure operator on汽X). Therefore (4), (5), (6) and (7) can be obtained 
from the general theory of closure operators /7/. Note that X E汽X)and 
rad(X) = X. 

The following results, first proved for BL-algebras in [9], and then for MTL-
algebras in [10], also hold for residuated lattices. 

Proposition 8. Let F be a proper filter of a residuated lattice X. Then 

1. If x, y E rad(F), then there exists m EN such that (x'四→ y E F; 

2. If x, y E rad(F), then there exists m EN such that ((x')m 0 y')'E F; 

3. If X is linearly ordered and x E rad(F), then there exists k E N such that 
(x')k'.S X. 

The next results examine the intersection of radicals with Boolean elements. 
By B(X), we mean the set of complemented elements of X, that is, 

B(X) = {x EX  IヨyEX; x I¥ y = 0, x Vy= 1 }. 

It is easy to show that B(X) = {x EX  Ix V x'= 1}. 

Proposition 9. Let F be a filter of residuated lattice X. Then rad(F) nB(X) = 
F n B(:X). 

Corollary 4. rad({1}) n B(:X) = {1 }. 
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The last results examine the preservation of radicals under homomorphisms. 

Let X: and Y be residuated lattices. A map f: X→ Y is called a homomorphism 

if f(O) = 0 and f(x * y) = f(x) * J(y) for all x,y EX, where* E {八，V,0,→｝． 
We denote by ker f the kernel off, defined by ker f = {x EX  I f(x) = 1}. 

p ropos1t10n 10. Let X: and Y be residuated lattices and f : X → Y be a 
homomorphism. Then ker f is a filter and rad(ker f) = f―1(rad({l}). 

We show a more general result about homomorphic images of radicals of 

filters. Note that ker f = f―1({1}). 

Theorem 2. Let X: and Y be residuated lattices, f : X→ Y be a homomorphism 
and G E F(Y). Then we have 

f―1(rad(G)) = rad(! ―i(G)). 

Theorem 3. Let X and Y be residuated lattices, f : X → Y be a surjective 
homomorphism and F E四X).If ker fこFthen we have 

f(rad(F)) = rad(J(F)). 

Proof. We first show that J(F) is a filter of Y. 
It is obvious that 1 E J(F). Suppose that a, a→ b E J(F). There exist 

x E F and y E F such that f(x) = a and J(y) = a→ b. Since f is surjective, 
there exists u E X such that f (u) = b. Then we have f (y) = a→ b = f(x)→ 
f(u) = f(x→ u) and y→ (x→ u) E ker fこF.It follows from x, y E F that 
u E F and thus b = f(u) E J(F). Therefore, J(F) is a filter of Y. 

Now we can prove that f(rad(F)) = rad(J(F)). Let a be in rad(J(F)). 
Since f is surjective, there is x EX  such that a= f(x). By Theorem 1, for all 
n EN there ism EN with (((J(xr)')=)'E f(F). But 

J((((xn)'),n)') = ((((J(x))n)'),n)'E J(F) 

implies ((((研）＇四）') E F because ker(J)こF. Again by Theorem 1 we get 
x E rad(F), and a = f(x) E f(rad(F)). Therefore, rad(J(F))こf(rad(F)).
The converse can also be proved similarly. ロ
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