On weakly separable polynomials and weakly quasi-separable polynomials in *q*-skew polynomial rings

SATOSHI YAMANAKA

Department of Integrated Science and Technology National Institute of Technology, Tsuyama College yamanaka@tsuyama.kosen-ac.jp

Abstract

The notion of weakly separable extensions and weakly quasi-separable extensions were were introduced by N.Hamaguchi and A.Nakajima as generalizations of separable extensions. and quasi-separable extensions, respectively. In this paper, we shall study weakly separable polynomials and weakly quasiseparable polynomials in q-skew polynomial ring.

1 Introduction

My talk at the conference was based on the paper [12]. The contents of this paper therefore overlaps with the publication.

Let A/B be a ring extension with common identity 1, M an A-A-bimodule, $M^A = \{m \in M \mid zm = mz \; (\forall z \in A)\}, \text{ and } z, w \text{ arbitrary elements in } A.$ An additive map $\delta: A \to M$ is called a *B*-derivation of A to M if $\delta(zw) = \delta(z)w + z\delta(w)$ and $\delta(B) = \{0\}$. A B-derivation δ of A to M is called *central* if $\delta(z)w = w\delta(z)$, and δ is called *inner* if $\delta(z) = mz - zm$ for some fixed element $m \in M$. We say that A/B is separable if the A-A-homomorphism of $A \otimes_B A$ onto A defined by $a \otimes b \mapsto ab$ splits (cf. [3, Definition 2]), or equivalently, every B-derivation of A to N is inner for any A-A-bimodule N (cf. [1, Satz 4.2]). A/B is said to be quasi-separable if every central B-derivation of A to N is zero for any A-A-bimodule N. The notion of a quasi-separable extension of commutative rings was introduced by Y.Nakai (cf. [8]), and in the noncommutative case, it was characterized by H.Komatsu (cf. [6]). A/B is called *weakly separable* if every B-derivation of A to A is inner, and A/Bis called *weakly quasi-separable* if every central *B*-derivation of A to A is zero. The notion of weakly separable extension introduced by N.Hamaguchi and A.Nakajim as generalizations of separable extensions and quasi-separable extensions (cf. [2]). Obviously, a separable extension is weakly separable and a quasi-separable extension is weakly quasi-separable. Moreover, K.Komatsu showed that a separable extension is quasi-separable (cf. [6, Theorem 2.4]).

Throughout this article, $C(\Lambda)$ will mean the center of the ring Λ . From now on, let B be a ring, ρ an automorphism of B, D a ρ -derivation (that is, D is an additive endomorphism of B such that $D(\alpha\beta) = D(\alpha)\rho(\beta) + \alpha D(\beta)$ for any α , $\beta \in B$). We set $B^{\rho} = \{\alpha \in B \mid \rho(\alpha) = \alpha\}, B^{D} = \{\alpha \in B \mid D(\alpha) = 0\}$, and $B^{\rho,D} = B^{\rho} \cap B^{D}$. By $B[X; \rho, D]$ we denote the skew polynomial ring in which the multiplication is given by $\alpha X = X\rho(\alpha) + D(\alpha)$ for any $\alpha \in B$. We call $B[X; \rho, D]$ a q-skew polynomial ring if there exists a $q \in B^{\rho,D} \cap C(B)$ such that $D\rho(\alpha) = q\rho D(\alpha)$ for any $\alpha \in B$, and we denote it by $B[X; \rho, D]^q$. We write $B[X; \rho] = B[X; \rho, 0]$ and B[X; D] = B[X; 1, D]. Moreover, by $B[X; \rho, D]_{(0)}$ we denote the set of all monic polynomials f in $B[X; \rho, D]$ such that $fB[X; \rho, D] = B[X; \rho, D]f$. For any polynomial $f \in B[X; \rho, D]_{(0)}$, the quotient ring $B[X; \rho, D]/fB[X; \rho, D]$ is a free ring extension of B. A polynomial f in $B[X; \rho, D]_{(0)}$ is called *separable* (resp. *weakly quasi-separable*) in $B[X; \rho, D]$ if $B[X; \rho, D]/fB[X; \rho, D]$ is separable (resp. weakly separable (resp. weakly quasi-separable)) over B.

In the previous paper [11], the author studied weakly separable polynomials in $B[X; \rho]$ and B[X; D]. In particular, we showed necessary and sufficient conditions concerning weakly separable polynomials (cf. [11, Theorem 3.2 and Theorem 3.8]). In this paper, we shall give some improvements and generalizations of our results for the q-skew polynomial ring $B[X; \rho, D]^q$ with $q \in B^{\rho, D} \cap C(B)$.

2 Main results

In this section, let $R = B[X; \rho, D]^q$ with $q \in B^{\rho,D} \cap C(B)$, $R_{(0)} = B[X; \rho, D]_{(0)}^q$, and $f = \sum_{i=0}^m X^i a_i \in R_{(0)} \cap B^{\rho}[X]$ $(a_m = 1, m \ge 1)$. Note that f is in $C(B^{\rho,D})[X]$. We shall use the following conventions:

- A = R/fR (the quotient ring)
- $x = X + fR \in A$ (that is, $\{1, x, x^2, \dots, x^{m-1}\}$ is a free *B*-basis of *A*)
- I_x = an inner derivation of A by x (that is, $I_x(z) = zx xz \; (\forall z \in A))$
- $A_k = \{z \in A \mid \alpha z = z \rho^k(\alpha) \ (\forall \alpha \in B)\} \ (k \in \mathbb{Z})$

Note that A_0 is the centralizer of B in A. Moreover, we define polynomials $Y_j \in R$ $(0 \le j \le m - 1)$ as follows:

$$Y_{0} = X^{m-1} + X^{m-2}a_{m-1} + \dots + Xa_{2} + a_{1},$$

$$Y_{1} = X^{m-2} + X^{m-3}a_{m-1} + \dots + Xa_{3} + a_{2},$$

$$\dots$$

$$Y_{j} = X^{m-j-1} + X^{m-j-2}a_{m-1} + \dots + Xa_{j+2} + a_{j+1},$$

$$\dots$$

$$Y_{m-2} = X + a_{m-1},$$

$$Y_{m-1} = 1.$$

Note that $XY_j = Y_{j-1} - a_j$ $(1 \le j \le m-1)$ and $XY_0 = f - a_0$. These polynomials Y_j $(0 \le j \le m-1)$ were introduced by Y.Miyashita to characterize separable

polynomials in $B[X; \rho, D]$ (cf. [7]). Now let $y_j = Y_j + fR \in A$ $(0 \le j \le m - 1)$ and we define a map $\tau : A \to A$ as follows:

$$\tau(z) = \sum_{j=0}^{m-1} y_j z x^j \ (z \in A).$$

Obviously, τ is an endomorphism of A as a C(A)-C(A)-bimodule.

We can see that if δ is a *B*-derivation of *A* then $\delta(x) \in A_1 \cap \text{Ker}(\tau)$, and if $u \in A_1 \cap \text{Ker}(\tau)$ then there exists a *B*-derivation δ of *A* such that $\delta(x) = u$. Then we shall state the following theorem which is generalizations of [11, Theorem 3.2] and [11, Theorem 3.8].

Theorem 2.1. f is weakly separable in R if and only if

$$A_1 \cap \operatorname{Ker}(\tau) \subset I_x(A_0).$$

In virtue of Theorem 2.1, we have the following which is an improvement of [11, Theorem 3.10].

Theorem 2.2. Assume that R = B[X; D] and let $f = \sum_{i=0}^{m} X^{i}a_{i}$ $(a_{m} = 1, m \ge 1)$ be in $R_{(0)}$.

(1) f is weakly separable in R if and only if the following sequence of C(A)-C(A)-homomorphisms is exact:

$$0 \longrightarrow C(A) \xrightarrow{\text{injection}} A_0 \xrightarrow{I_x} A_0 \xrightarrow{\tau} C(A).$$

(2) f is separable in R if and only if the following sequence of C(A)-C(A)-homomorphisms is exact:

$$0 \longrightarrow C(A) \xrightarrow{\text{injection}} A_0 \xrightarrow{I_x} A_0 \xrightarrow{\tau} C(A) \longrightarrow 0.$$

At the end of this section, we shall mention briefly on weakly quasi-separable polynomials in $B[X; \rho, D]_{(0)}^q$. We can define an automorphism ρ^* of R and a ρ^* -derivation D^* of A as follows:

$$\rho^*\left(\sum_j X^j c_j\right) = \sum_j X^j \rho(c_j), \ D^*\left(\sum_j X^j c_j\right) = \sum_j X^j D(c_j) \ (c_j \in B).$$

Since $f \in B^{\rho,D}[X]$, it is easy to see that $\rho^*(fR) \subset fR$ and $D^*(fR) \subset fR$. Hence there is an automorphism $\tilde{\rho}$ of A and a $\tilde{\rho}$ -derivation \tilde{D} of A which is naturally induced by ρ^* and D^* , respectively. More precisely, $\tilde{\rho}$ and \tilde{D} are defined by

$$\tilde{\rho}\left(\sum_{j=0}^{m-1} x^j c_j\right) = \sum_{j=0}^{m-1} x^j \rho(c_j), \ \tilde{D}\left(\sum_{j=0}^{m-1} x^j c_j\right) = \sum_{j=0}^{m-1} x^j D(c_j) \ (c_j \in B).$$

We put here $A^{\tilde{\rho}} = \{z \in A \mid \tilde{\rho}(z) = z\}$, $A^{\tilde{D}} = \{z \in A \mid \tilde{D}(z) = 0\}$, and $A^{\tilde{\rho},\tilde{D}} = A^{\tilde{\rho}} \cap A^{\tilde{D}}$. Clearly, $A^{\tilde{\rho},\tilde{D}} \subset \operatorname{Ker}(I_x)$. We can see that $A^{\tilde{\rho},\tilde{D}} = \operatorname{Ker}(I_x)$ if $\operatorname{Ker}(I_x) \subset A^{\tilde{\rho}}$. Then we have the following.

Proposition 2.3. Assume that $\text{Ker}(I_x) \subset A^{\tilde{\rho}}$. If f is weakly separable in $C(B^{\rho,D})[X]$, then f is weakly quasi-separable in R.

In virtue of Proposition 3.1 and [11, Theorem 2.2], we have the following.

Corollary 2.4. f is weakly quasi-separable in B[X;D] if f is weakly separable in $C(B^D)[X]$.

References

- S.Elliger, Über automorphismen und derivationen von ringen, J. Reine Angew. Math., 277 (1975), 155–177.
- [2] N.Hamaguchi and A.Nakajima, On generalizations of separable polynomials over rings, Hokkaido Math. J., 42 (2013), no.1, 53–68.
- [3] K.Hirata and K.Sugano, On semisimple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan, 18 (1966), 360–373.
- [4] S.Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ., 22 (1980), 115–129.
- [5] S.Ikehata, Azumaya algebras and skew polynomial rings, Math. J. Okayama Univ., 23 (1981), 19–32.
- [6] H. Komatsu, Quasi-separable extensions of noncommutative rings, Comm. Algebra, 29 (2001), 1011–1019.
- [7] Y.Miyashita, On a skew polynomial ring, J. Math. Soc. Japan, **31** (1979), no.2, 317–330.
- [8] Y. Nakai, On the theory of differentials in commutative rings, J. Math. Soc. Japan, 13 (1961), 63–84.
- [9] K.Sugano, Separable extensions and Frobenius extensions, Osaka J. Math., 7 (1970), 29–40.
- [10] S.Yamanaka and S.Ikehata, An alternative proof of Miyasita's theorem in a skew polynomial ring, Int. J. Algebra, 21 (2012), 1011–1023
- [11] S.Yamanaka, On weakly separable polynomials and weakly quasi-separable polynomials over rings, Math. J. Okayama Univ., 58 (2016), 175–188.
- [12] S.Yamanaka, On weakly separable polynomials in q-skew polynomial rings, to be submitted.