Nonexistence of some Griesmer codes of dimension 5 *

Wataru Kuranaka, Tatsuya Maruta ${ }^{\dagger}$
Department of Mathematical Sciences Osaka Prefecture University

1 Introduction

A linear code over \mathbb{F}_{q}, the field of q elements, of length n, dimension k is a k dimensional subspace \mathcal{C} of the vector space \mathbb{F}_{q}^{n} of n-tuples over $\mathbb{F}_{q} . \mathcal{C}$ is called an $[n, k, d]_{q}$ code if it has minimum Hamming weight d. A $k \times n$ matrix G whose rows form a basis of \mathcal{C} is a generator matrix of \mathcal{C}. A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists for given $q, k, d[6,7]$. A natural lower bound on $n_{q}(k, d)$ is the Griesmer bound:

$$
n_{q}(k, d) \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ denotes the smallest integer greater than or equal to x, see [1]. A linear code attaining the Griesmer bound is called a Griesmer code. The values of $n_{q}(k, d)$ are determined for all d only for some small values of q and $k[5,16]$. Note that $n_{q}(k, d)=g_{q}(k, d)$ for all d when $k=1$ or $2[6]$. The problem to determine $n_{q}(k, d)$ for all d has been solved for $k \leq 8$ when $q=2$, for $k \leq 5$ when $q=3$, for $k \leq 4$ when $q=4$ and only for $k=3$ when $5 \leq q \leq 9$, see [16]. For the case $k=5$, the following results are known.

Theorem 1.1 ([2, 9, 10, 15]). For any prime power $q, n_{q}(5, d)=g_{q}(5, d)$ for
(1) $q^{4}-q^{3}-q+1 \leq d \leq q^{4}-q^{3}+q^{2}-q$,
(2) $q^{4}-2 q^{2}+1 \leq d \leq q^{4}+q$,
(3) $2 q^{4}-3 q^{3}+1 \leq d \leq 2 q^{4}-3 q^{3}+q^{2}$,
(4) $2 q^{4}-2 q^{3}-q^{2}+1 \leq d \leq 2 q^{4}+q^{2}-q$,

[^0](5) $3 q^{4}-5 q^{3}+q^{2}+1 \leq d \leq 3 q^{4}-5 q^{3}+2 q^{2}$,
(6) $d \geq 3 q^{4}-4 q^{3}+1$.

Theorem $1.2([3,4,11,15,16]) \cdot n_{q}(5, d)=g_{q}(5, d)+1$ for
(1) $q^{4}-q^{3}-q^{2}+1<d \leq q^{4}-q^{3}-q$ for $q \geq 3$,
(2) $q^{4}-2 q^{2}-2 q+1 \leq d \leq q^{4}-2 q^{2}-q$ for $q \geq 4$,
(3) $q^{4}-2 q^{2}-q+1 \leq d \leq q^{4}-2 q^{2}$ for $q \geq 3$,
(4) $2 q^{4}-2 q^{3}-q^{2}-2 q+1 \leq d \leq 2 q^{4}-2 q^{3}-q^{2}$ for $q \geq 3$,
(5) $3 q^{4}-4 q^{3}-2 q+1 \leq d \leq 3 q^{4}-4 q^{3}-q$ for $q \geq 11$,
(6) $3 q^{4}-4 q^{3}-q+1 \leq d \leq 3 q^{4}-4 q^{3}$ for $q \geq 5$.

Our main result is the following.
Theorem 1.3. $n_{q}(5, d)=g_{q}(5, d)+1$ for $3 q^{4}-4 q^{3}-4 q+1 \leq d \leq 3 q^{4}-4 q^{3}-q$ for $q \geq 5$.

2 Preliminaries

In this section, we give the geometric method through $\mathrm{PG}(r, q)$, the projective geometry of dimension r over \mathbb{F}_{q}, and preliminary results to prove the main result. The 0 -flats, 1-flats, 2-flats, 3-flats, $(r-2)$-flats and $(r-1)$-flats in $\mathrm{PG}(r, q)$ are called points, lines, planes, solids, secundums and hyperplanes, respectively.

Let \mathcal{C} be an $[n, k, d]_{q}$ code having no coordinate which is identically zero. The columns of a generator matrix G of \mathcal{C} can be considered as a multiset of n points in $\Sigma=\operatorname{PG}(k-1, q)$, denoted by $\mathcal{M}_{\mathcal{C}}$. A point P of Σ is an i-point if it has multiplicity $m_{\mathcal{C}}(P)=i$ in $\mathcal{M}_{\mathcal{C}}$. In other words, $m_{\mathcal{C}}(P)$ is the number of times which P appears as columns of G. Denote by γ_{0} the maximum multiplicity of a point from Σ in $\mathcal{M}_{\mathcal{C}}$. For any subset S of Σ, the multiplicity of S with respect to $\mathcal{M}_{\mathcal{C}}$, denoted by $m_{\mathcal{C}}(S)$, is defined as $m_{\mathcal{C}}(S)=\sum_{P \in S} m_{\mathcal{C}}(P)$. Then $m_{\mathcal{C}}$ satisfies $n=m_{\mathcal{C}}(\Sigma)$ and

$$
\begin{equation*}
n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\} \tag{2.1}
\end{equation*}
$$

where \mathcal{F}_{j} denotes the set of j-flats of Σ. Conversely, such a mapping $m_{\mathcal{C}}: \Sigma \rightarrow \mathbb{N}_{0}=$ $\{0,1,2, \ldots\}$ as above gives an $[n, k, d]_{q}$ code in the natural manner, see [1]. For an m-flat Π in Σ, we define

$$
\gamma_{j}(\Pi)=\max \left\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{j}\right\} \text { for } 0 \leq j \leq m
$$

We denote simply by γ_{j} instead of $\gamma_{j}(\Sigma)$. Then $\gamma_{k-2}=n-d, \gamma_{k-1}=n$. For a Griesmer $[n, k, d]_{q}$ code, it is known (see [15]) that

$$
\begin{equation*}
\gamma_{j}=\sum_{u=0}^{j}\left[\frac{d}{q^{k-1-u}}\right] \text { for } 0 \leq j \leq k-1 \tag{2.2}
\end{equation*}
$$

A line l with $t=m_{\mathcal{C}}(l)$ is called a t-line. A t-plane and so on are defined similarly. Denote by a_{i} the number of i-hyperplanes in Σ. The list of a_{i} 's is called the spectrum of \mathcal{C}. We usually use τ_{j} 's for the spectrum of a hyperplane Π of Σ to distinguish from the spectrum of \mathcal{C} (τ_{j} is the number of j-secundums contained in Π). Let θ_{j} be the number of points in a j-flat, i.e., $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$. Simple counting arguments yield the following.

Lemma 2.1 ([17]). Let Π be a w-hyperplane through at-secundum δ. Then
(a) $t \leq \gamma_{k-2}-(n-w) / q=\left(w+q \gamma_{k-2}-n\right) / q$.
(b) $a_{w}=0$ if an $\left[w, k-1, d_{0}\right]_{q}$ code with $d_{0} \geq w-\left\lfloor\frac{w+q \gamma_{k-2}-n}{q}\right\rfloor$ does not exist, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.
(c) $\gamma_{k-3}(\Pi)=\left\lfloor\frac{w+q \gamma_{k-2}-n}{q}\right\rfloor$ if an $\left[w, k-1, d_{1}\right]_{q}$ code with $d_{1} \geq w-\left\lfloor\frac{w+q \gamma_{k-2}-n}{q}\right\rfloor+1$ does not exist.
(d) Let c_{j} be the number of j-hyperplanes through δ other than Π. Then $\sum_{j} c_{j}=q$ and

$$
\begin{equation*}
\sum_{j}\left(\gamma_{k-2}-j\right) c_{j}=w+q \gamma_{k-2}-n-q t . \tag{2.3}
\end{equation*}
$$

(e) For a γ_{k-2}-hyperplane Π_{0} with spectrum $\left(\tau_{0}, \ldots, \tau_{\gamma_{k-3}}\right), \tau_{t}>0$ holds if $w+$ $q \gamma_{k-2}-n-q t<q$.
Lemma 2.2 ([12]). Let Π be an i-hyperplane and let \mathcal{C}_{Π} be an $\left[i, k-1, d_{0}\right]$ code generated by $\mathcal{M}_{\mathcal{C}}(\Pi)$. If any γ_{k-2}-hyperplane has no t-secundum with $t=\left\lfloor\frac{i+q \gamma_{k-2}-n}{q}\right\rfloor$, then $d_{0} \geq i-t+1$.

Lemma 2.3. The spectrum of an $[n, k, d]_{q}$ code satisfies $\sum_{i \leq u} a_{i} \leq 1$, where

$$
u=\left\lfloor\frac{n-(n-d)(q-1)-1}{2}\right\rfloor .
$$

Proof. Assume $a_{i}>0$ for an $i \leq u$. Then, the right hand side of (2.3) is at most $u+(n-d) q-n$. Since $u<(n-(n-d)(q-1)) / 2$, we have $n-d-u>u+(n-d) q-n$, which implies that $c_{j}=0$ for any $j \leq u$. Hence, $a_{i}=1$ and $a_{j}=0$ for other $j \leq u$.

An f-multiset \mathcal{F} on $\operatorname{PG}(r, q)$ satisfying

$$
m=\min \left\{m_{\mathcal{F}}(\pi) \mid \pi \in \mathcal{F}_{r-1}\right\}
$$

is called an (f, m)-minihyper. When an $[n, k, d]_{q}$ code is projective (i.e. $\gamma_{0}=1$), the set of 0-points forms a $\left(\theta_{k-1}-n, \theta_{k-2}-(n-d)\right)$-minihyper in $\operatorname{PG}(k-1, q)$, and vice versa.

Lemma $2.4([8])$. Every $(x(q+1), x)$-minihyper in $P G(2, q)$ with $q=p^{m}$, p prime, $m \geq 1,1 \leq x \leq q-q / p$, is a sum of x lines.

3 A sketch of the proof of Theorem 1.3

Lemma 3.1. Let $q \geq 3$ be a prime power.
(a) $A\left[2 q^{2}, 3,2 q^{2}-2 q\right]_{q}$ code has spectrum $\left(a_{0}, a_{2 q}\right)=\left(1, q^{2}+q\right)$.
(b) $A\left[2 q^{2}+q+1,3,2 q^{2}-q\right]_{q}$ code has spectrum $\left(a_{q+1}, a_{2 q+1}\right)=\left(1, q^{2}+q\right)$.
(c) $A\left[2 q^{2}+2 q+1,3,2 q^{2}-1\right]_{q}$ code has spectrum $\left(a_{2 q+1}, a_{2 q+2}\right)=\left(q+1, q^{2}\right)$.
(d) $A\left[2 q^{2}+2 q+2,3,2 q^{2}-2 q\right]_{q}$ code has spectrum $a_{2 q+2}=q^{2}+q+1$.

Lemma 3.2. Let \mathcal{C}_{1} be a Griesmer $\left[3 q^{2}-q-1,3,3 q^{2}-4 q\right]_{q}$ code with $q \geq 5$. Then, the spectrum of \mathcal{C}_{1} is $\left(a_{2 q-1}, a_{3 q-1}\right)=\left(4, \theta_{2}-4\right)$ and $\mathcal{M}_{\mathcal{C}_{1}}=3 \Sigma-\left(l_{1}+l_{2}+l_{3}+l_{4}\right)$, where $\Sigma=\operatorname{PG}(2, q)$ and l_{1}, \ldots, l_{4} are four non-concurrent lines.

Proof. Since $\gamma_{0}=3$ from (2.2), the multiset $\mathcal{F}=3 \Sigma-\mathcal{M}_{\mathcal{C}_{1}}$ forms a $\left(4 \theta_{1}, 4\right)$ minihyper. Hence \mathcal{F} is a sum of four lines, say l_{1}, \ldots, l_{4}, by Lemma 2.4, which are non-concurrent because of $\gamma_{0}=3$.

Using Lemmas 3.1 and 3.2, one can prove the following.
Lemma 3.3. Let \mathcal{C}_{2} be a Griesmer $\left[3 q^{3}-q^{2}-q-a, 4,3 q^{3}-4 q^{2}-a+1\right]_{q}$ code with $q \geq 5$ and $2 \leq a \leq 4$. Then, the spectrum of \mathcal{C}_{2} satisfies that $a_{i}>0$ implies $2 q^{2}-q-a \leq i \leq 2 q^{2}-q-1$ or $3 q^{2}-q-a \leq i \leq 3 q^{2}-q-1$ and that

$$
\begin{equation*}
\sum_{i \leq 2 q^{2}-q-1} a_{i}=4 \tag{3.1}
\end{equation*}
$$

Lemma 3.4 ([14]). $n_{q}(4, d)=g_{q}(4, d)+1$ for $2 q^{3}-3 q^{2}-q+1 \leq d \leq 2 q^{3}-3 q^{2}$ for $q \geq 4$.

It is known that $\left[g_{q}(5, d)+1,5, d\right]_{q}$ codes exist for $3 q^{4}-4 q^{3}-4 q+1 \leq d \leq$ $3 q^{4}-4 q^{3}-q$ for $q \geq 5$, see [11]. Hence, it suffices to show the following to prove Theorem 1.3.

Lemma 3.5. There exists no $\left[g_{q}(5, d), 5, d\right]_{q}$ code for $d=3 q^{4}-4 q^{3}-a q+1$ with $2 \leq a \leq 4$ for $q \geq 5$.

Proof. We prove the lemma only for $a=3$. One can prove the lemma similarly for $a=2,4$. Let \mathcal{C} be a putative $\left[g_{q}(5, d), 5, d=3 q^{4}-4 q^{3}-3 q+1\right]_{q}$ code with $q \geq 5$. Then, a γ_{3}-solid Δ_{0} gives a Griesmer $\left[3 q^{3}-q^{2}-q-3,4,3 q^{3}-4 q^{2}-2\right]_{q}$ code. Since an i-solid through a t-plane satisfies

$$
\begin{equation*}
t \leq \frac{i+q+2}{q} \tag{3.2}
\end{equation*}
$$

by Lemma 2.1, we have

$$
i \geq\left(2 q^{2}-q-3\right) q-(q+2)=2 q^{3}-q^{2}-4 q-2
$$

Hence, $a_{i}=0$ for all $i<2 q^{3}-q^{2}-4 q-2$. Applying Lemma 2.1(d), we have $\sum_{j} c_{j}=q$ and

$$
\begin{equation*}
\sum_{j}\left(3 q^{3}-q^{2}-q-3-j\right) c_{j}=i-q t+q+2 . \tag{3.3}
\end{equation*}
$$

Suppose an i-solid Δ exists for $i=2 q^{3}-q^{2}-q-2+y$ with $0 \leq y \leq q-1$. Then, we have $t \leq 2 q^{2}-q-1$ by (3.2) and Lemma 3.3. Hence, Δ gives an $\left[i, 4,2 q^{3}-3 q^{2}-1+y\right]_{q}$ code, which does not exist for $y>1$ by the Griesmer bound. For $y=0,1, \Delta$ gives a Griesmer code, which does not exist by Lemma 3.4. Hence $a_{i}=0$ for $2 q^{3}-q^{2}-q-2 \leq i \leq 2 q^{3}-q^{2}-3$.
Next, suppose an i-solid Δ exists for $i=2 q^{3}-q^{2}+x q-2+y$ with $0 \leq x \leq q^{2}-5$, $0 \leq y \leq q-1$. Then, we have $t \leq 2 q^{2}-q+1+x$ by (3.2). Since (3.3) satisfies $c_{n-d}=0$ for $t=2 q^{2}-q+1+x$ and $c_{n-d}=c_{n-d-1}=0$ for $t=2 q^{2}-q+x$ by Lemma 3.3 , we have $t \leq 2 q^{2}-q-1+x$. Hence, Δ gives an $\left[i, 4,2 q^{3}-3 q^{2}+(x+1) q-1-x+y\right]_{q}$ code, which does not exist by the Griesmer bound. Hence, $a_{i}=0$ for $2 q^{3}-q^{2}-2 \leq$ $i \leq 3 q^{3}-q^{2}-4 q-3$. Now, the spectrum of \mathcal{C} satisfies that $a_{i}>0$ implies

$$
s q^{3}-q^{2}-4 q-2 \leq i \leq s q^{3}-q^{2}-q-3 \text { with } s=2 \text { or } 3 .
$$

Setting $(i, t)=\left(3 q^{3}-q^{2}-q-3,2 q^{2}-q-3+e\right)$ with $0 \leq e \leq 2$, the RHS of (3.3) is equal to $q^{3}+(3-e) q-1$. Hence

$$
\begin{equation*}
\sum_{i \leq 2 q^{3}-q^{2}-q-3} a_{i}=4 \tag{3.4}
\end{equation*}
$$

by (3.1). Setting $i=2 q^{3}-q^{2}-q-3$ in (3.3), (RHS of (3.3)) $=2 q^{3}-q^{2}-1-q t$. When $\sum_{j \leq 2 q^{3}-q^{2}-q-3} c_{j}>0$, we have $t \leq q^{2}-q-1$ from (3.3). It follows from Lemma 2.3 with length $n=i$ and $n-d=2 q^{2}-q-1$ that $u=\left\lfloor q^{2}-\frac{q+5}{2}\right\rfloor>q^{2}-q-1$. Hence, $\sum_{i \leq 2 q^{3}-q^{2}-q-3} a_{i} \leq 2$, which contradicts (3.4). Similarly, we get $\sum_{i \leq 2 q^{3}-q^{2}-q-3} a_{i} \leq 2$ for $2 q^{3}-q^{2}-4 q-2 \leq i \leq 2 q^{3}-q^{2}-q-4$, which contradicts (3.4) again. Thus, there exists no $\left[g_{q}(5, d), 5, d\right]_{q}$ code for $d=3 q^{4}-4 q^{3}-3 q+1$.

References

[1] J. Bierbrauer, Introduction to Coding Theory, Chapman \& Hall/CRC, 2005.
[2] E.J. Cheon, Y. Kageyama, S.J. Kim, N. Lee, T. Maruta, Construction of twoweight codes over finite fields and its applications, Bull. Korean Math. Soc. 54 (2017) 731-736.
[3] E.J. Cheon, T. Kato, S.J. Kim, On the minimum length of some linear codes of dimension 5, Design Codes Cryptogr. 37 (2005) 421-434.
[4] E.J. Cheon, T. Kato, S.J. Kim, Nonexistence of a $\left[g_{q}(5, d), 5, d\right]_{q}$ code for $3 q^{4}-$ $4 q^{3}-2 q+1 \leq d \leq 3 q^{4}-4 q^{3}-q$, Discrete Math. 308 (2008) 3082-3089.
[5] M. Grassl, Tables of linear codes and quantum codes (electronic table, online). http://www.codetables.de/.
[6] R. Hill, Optimal linear codes, in: Mitchell C. (ed.) Cryptography and Coding II, pp. 75-104. Oxford Univ. Press, Oxford, 1992.
[7] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, in: Holroyd F.C. et al (ed.) Combinatorial Designs and their Applications, pp.127-152. Chapman and Hall/CRC Press Research Notes in Mathematics CRC Press. Boca Raton, 1999.
[8] R. Hill, H. Ward, A geometric approach to classifying Griesmer codes, Des. Codes Cryptogr. 44 (2007) 169-196.
[9] Y. Inoue, T. Maruta, Construction of new Griesmer codes of dimension 5, Finite Fields Appl. 55 (2019), 231-237.
[10] Y. Kageyama, T. Maruta, On the construction of Griesmer codes of dimension 5, Des. Codes Cryptogr. 75 (2015) 277-280.
[11] Y. Kageyama, T. Maruta, On the geometric constructions of optimal linear codes, Des. Codes Cryptogr. 81 (2016) 469-480.
[12] K. Kumegawa, T. Okazaki, T. Maruta, On the minimum length of linear codes over the field of 9 elements, Electronic J. Combin. 24(1) (2017), \#P1.50.
[13] I.N. Landjev, T. Maruta, On the minimum length of quaternary linear codes of dimension five, Discrete Math. 202 (1999) 145-161.
[14] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. 208/209 (1999) 427-435.
[15] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001) 165-177.
[16] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer/.
[17] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. 308 (2008) 842-854.

[^0]: *This paper is a preliminary version and the final version will be submitted to elsewhere.
 ${ }^{\dagger}$ Corresponding author. E-mail address: maruta@mi.s.osakafu-u.ac.jp

