Algebraic independence of the values of a certain map defined on the set of orbits of the action of Klein four-group

慶應義塾大学理工学部 田中 孝明(Taka-aki Tanaka) Faculty of Science and Technology, Keio Univ.

1 Introduction

Let $\{R_k\}_{k\geq 1}$ be a linear recurrence of positive integers satisfying

$$R_{k+n} = c_1 R_{k+n-1} + \dots + c_n R_k \quad (k \ge 1), \tag{1}$$

where $n \geq 2$ and c_1, \ldots, c_n are nonnegative integers with $c_n \neq 0$. The author [9] studied the two-variable function E(x,q) defined by

$$E(x,q) = \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{xq^{R_l}}{1 - q^{R_l}} = \sum_{k=1}^{\infty} \frac{x^k q^{R_1 + R_2 + \dots + R_k}}{(1 - q^{R_1})(1 - q^{R_2}) \cdots (1 - q^{R_k})},$$

which may be regarded as an analogue of q-exponential function

$$E_q(x) = 1 + \sum_{k=1}^{\infty} \frac{x^k q^{1+2+\dots+k}}{(1-q)(1-q^2)\dots(1-q^k)}$$

(cf. Gasper and Rahman [2]), if we replace k in the exponent of q in $E_q(x)$ with $\{R_k\}_{k\geq 1}$ defined above.

Let

$$\Phi(X) = X^n - c_1 X^{n-1} - \dots - c_n \tag{2}$$

and let $\overline{\mathbb{Q}}^{\times}$ be the set of nonzero algebraic numbers. The author proved the following

Theorem 0 (Corollary 4 of [9]). Let $\{R_k\}_{k\geq 1}$ be a linear recurrence satisfying (1). Suppose that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity. Assume that $\{R_k\}_{k\geq 1}$ is not a geometric progression. Then the values

$$E(x,q) \quad (x,q \in \overline{\mathbb{Q}}^{\times}, |q| < 1)$$

are algebraically dependent if and only if there exist some distinct pairs (x_1, q_1) and (x_2, q_2) of nonzero algebraic numbers x_1, x_2, q_1 , and q_2 with $|q_1|, |q_2| < 1$ such that $x_1 = x_2$ and $q_1^{N_k} = q_2^{N_k}$ for some $k \ge 1$, where $N_k = \text{g.c.d.}(R_k, R_{k+1}, \ldots, R_{k+n-1})$.

In particular, if $N_k = 1$ for any $k \geq 1$, then the values E(x,q) are algebraically independent for any distinct pairs (x,q) of nonzero algebraic numbers x and q with |q| < 1.

Example 0. Let $\{F_k\}_{k\geq 1}$ be the sequence of Fibonacci numbers defined by $F_1=1$, $F_2=1$, and $F_{k+2}=F_{k+1}+F_k$ $(k\geq 1)$. Since $\{F_k\}_{k\geq 1}$ satisfies the conditions in Theorem 0, the infinite set of the values

$$\left\{ \sum_{k=1}^{\infty} \frac{x^k q^{F_1 + F_2 + \dots + F_k}}{(1 - q^{F_1})(1 - q^{F_2}) \cdots (1 - q^{F_k})} \, \middle| \, x, q \in \overline{\mathbb{Q}}^{\times}, |q| < 1 \right\}$$

is algebraically independent.

The two-variable function E(x,q) converges on the domain

$$(\mathbb{C} \times \{|q| < 1\}) \cup (\{|x| < 1\} \times \{|q| > 1\}) := \{(x, q) \in \mathbb{C}^2 \mid |q| < 1 \lor (|x| < 1 \land |q| > 1)\},$$

whereas a 'balanced' analogue

$$\Theta(x,q) = \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{xq^{R_l}}{1 - q^{2R_l}} = \sum_{k=1}^{\infty} \frac{x^k q^{R_1 + R_2 + \dots + R_k}}{(1 - q^{2R_1})(1 - q^{2R_2}) \cdots (1 - q^{2R_k})}$$

converges on the wider domain

$$\mathbb{C} \times \{ |q| \neq 1 \} := \{ (x, q) \in \mathbb{C}^2 \mid |q| \neq 1 \}.$$

Indeed, if $q \neq 0$, $\Theta(x,q)$ is invariant under the map

$$\sigma_1: (x,q) \longmapsto (-x,q^{-1}),$$

namely

$$\Theta(\sigma_1(x,q)) = \sum_{k=1}^{\infty} \frac{(-x)^k q^{-R_1 - R_2 - \dots - R_k}}{(1 - q^{-2R_1})(1 - q^{-2R_2}) \cdots (1 - q^{-2R_k})} = \Theta(x,q)$$

and so $\Theta(x,q)$ converges on $\mathbb{C} \times \{|q| \neq 1\}$ by the similar reason to the convergence of E(x,q).

Moreover, if $\{R_k\}_{k\geq 1}$ is a sequence of odd integers, then $\Theta(x,q)$ is invariant also under the maps

$$\sigma_2$$
: $(x,q) \longmapsto (-x,-q),$
 σ_3 : $(x,q) \longmapsto (x,-q^{-1}).$

Since $\sigma_1 \circ \sigma_1 = \sigma_2 \circ \sigma_2 = \text{id}$ and $\sigma_1 \circ \sigma_2 = \sigma_2 \circ \sigma_1 = \sigma_3$, we see that $G_4 = \{\text{id}, \sigma_1, \sigma_2, \sigma_3\}$ is Klein four-group. Therefore, $\Theta(x,q)$ can be regarded as a map defined on the set of orbits $(\mathbb{C} \times \{|q| \neq 0, 1\})/G_4$, where $\mathbb{C} \times \{|q| \neq 0, 1\} = \{(x,q) \in \mathbb{C}^2 \mid |q| \neq 0, 1\}$, namely the map

$$\widetilde{\Theta} : (\mathbb{C} \times \{|q| \neq 0, 1\})/G_4 \longrightarrow \Theta(\mathbb{C} \times \{|q| \neq 0, 1\})$$

given by

the orbit of
$$(x,q) \longmapsto \Theta(x,q)$$

is well-defined. Hence the restriction to algebraic points

$$\widetilde{\Theta}: \left(\left(\mathbb{C} \times \{ |q| \neq 0, 1 \} \right) \cap \left(\overline{\mathbb{Q}}^{\times} \right)^{2} \right) \middle/ G_{4} \longrightarrow \Theta \left(\left(\mathbb{C} \times \{ |q| \neq 0, 1 \} \right) \cap \left(\overline{\mathbb{Q}}^{\times} \right)^{2} \right),$$

or equivalently

$$\widetilde{\Theta}: \left(\overline{\mathbb{Q}}^{\times} \times (\overline{\mathbb{Q}}^{\times} \setminus \{|q|=1\})\right) / G_4 \longrightarrow \Theta\left(\overline{\mathbb{Q}}^{\times} \times (\overline{\mathbb{Q}}^{\times} \setminus \{|q|=1\})\right)$$

is also well-defined, where the second $\overline{\mathbb{Q}}^{\times}$ denotes the multiplicative group of nonzero algebraic numbers while the first $\overline{\mathbb{Q}}^{\times}$ simply denotes the set of nonzero algebraic numbers. In this paper we prove the following

Theorem 1. Let $\{R_k\}_{k\geq 1}$ be a linear recurrence satisfying (1). Suppose that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity. Assume that $g.c.d.(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for any $k \geq 1$. Assume further that $\Phi(2) < 0$ and that $\{R_k\}_{k\geq 1}$ is a sequence of odd integers. Then the infinite set of the values

$$\widetilde{\Theta}\left(\left(\overline{\mathbb{Q}}^{\times}\times(\overline{\mathbb{Q}}^{\times}\setminus\{|q|=1\})\right)\middle/G_{4}\right)$$

is algebraically independent.

Remark 1. The condition that g.c.d. $(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for any $k \ge 1$ implies that the sequence $\{R_k\}_{k\ge 1}$ is not a geometric progression.

Corollary 1. Let $\{R_k\}_{k\geq 1}$ be as in Theorem 1. Then the infinite set consisting of the distinct values of

$$\left\{ \sum_{k=1}^{\infty} \frac{x^k q^{R_1 + R_2 + \dots + R_k}}{(1 - q^{2R_1})(1 - q^{2R_2}) \cdots (1 - q^{2R_k})} \mid x, q \in \overline{\mathbb{Q}}^{\times}, |q| \neq 1 \right\}$$

is algebraically independent.

Example 1. Let $\{P_k\}_{k\geq 1}$ be the sequence defined either by $P_1=P_2=1$ and $P_{k+2}=2P_{k+1}+P_k$ $(k\geq 1)$ or by $P_1=P_2=P_3=1$ and $P_{k+3}=P_{k+2}+P_{k+1}+3P_k$ $(k\geq 1)$. Since $\{P_k\}_{k\geq 1}$ satisfies all the conditions of Theorem 1, the infinite set consisting of the distinct values of

$$\left\{ \sum_{k=1}^{\infty} \frac{x^k q^{P_1 + P_2 + \dots + P_k}}{(1 - q^{2P_1})(1 - q^{2P_2}) \cdots (1 - q^{2P_k})} \; \middle| \; x, q \in \overline{\mathbb{Q}}^{\times}, \; |q| \neq 1 \right\}$$

is algebraically independent.

If $\{R_k\}_{k\geq 1}$ is a sequence of odd integers, then

$$\Theta_{+}(x,q) := \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{xq^{R_{l}}}{1+q^{2R_{l}}} = \sum_{k=1}^{\infty} \frac{x^{k}q^{R_{1}+R_{2}+\cdots+R_{k}}}{(1+q^{2R_{1}})(1+q^{2R_{2}})\cdots(1+q^{2R_{k}})}$$

is invariant under the maps

$$\tau_1 : (x,q) \longmapsto (x,q^{-1}),$$

$$\tau_2 : (x,q) \longmapsto (-x,-q),$$

$$\tau_3 : (x,q) \longmapsto (-x,-q^{-1}).$$

Since $\tau_1 \circ \tau_1 = \tau_2 \circ \tau_2 = \text{id}$ and $\tau_1 \circ \tau_2 = \tau_2 \circ \tau_1 = \tau_3$, we see that $G'_4 = \{\text{id}, \tau_1, \tau_2, \tau_3\}$ is also Klein four-group. Hence the map

$$\widetilde{\Theta}_+: (\mathbb{C} \times \{|q| \neq 0, 1\})/G'_4 \longrightarrow \Theta_+(\mathbb{C} \times \{|q| \neq 0, 1\})$$

given by

the orbit of
$$(x,q) \longmapsto \Theta_+(x,q)$$

is well-defined. We also have the following

Theorem 2. Let $\{R_k\}_{k\geq 1}$ be as in Theorem 1. Then the infinite set of the values

$$\widetilde{\Theta}_+\left(\left(\overline{\mathbb{Q}}^\times \times (\overline{\mathbb{Q}}^\times \setminus \{|q|=1\})\right)\middle/ G_4'\right)$$

is algebraically independent.

Example 2. Let $\{P_k\}_{k\geq 1}$ be one of the linear recurrences defined in Example 1. Since $\{P_k\}_{k\geq 1}$ satisfies all the conditions of Theorem 1, the infinite set consisting of the distinct values of

$$\left\{ \sum_{k=1}^{\infty} \frac{x^k q^{P_1 + P_2 + \dots + P_k}}{(1 + q^{2P_1})(1 + q^{2P_2}) \cdots (1 + q^{2P_k})} \, \middle| \, x, q \in \overline{\mathbb{Q}}^{\times}, |q| \neq 1 \right\}$$

is algebraically independent.

2 Lemmas

Let $F(z_1, ..., z_n)$ and $F[[z_1, ..., z_n]]$ denote the field of rational functions and the ring of formal power series in variables $z_1, ..., z_n$ with coefficients in a field F, respectively, and F^{\times} the multiplicative group of nonzero elements of F. Let $\Omega = (\omega_{ij})$ be an $n \times n$ matrix with nonnegative integer entries. Then the maximum ρ of the absolute values of the eigenvalues of Ω is itself an eigenvalue (cf. Gantmacher [1, p. 66, Theorem 3]). If $\mathbf{z} = (z_1, ..., z_n)$ is a point of \mathbb{C}^n , we define a transformation $\Omega : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\Omega \mathbf{z} = \left(\prod_{j=1}^{n} z_j^{\omega_{1j}}, \prod_{j=1}^{n} z_j^{\omega_{2j}}, \dots, \prod_{j=1}^{n} z_j^{\omega_{nj}} \right).$$
 (3)

We suppose that Ω and an algebraic point $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)$, where α_i are nonzero algebraic numbers, have the following four properties:

- (I) Ω is nonsingular and none of its eigenvalues is a root of unity, so that in particular $\rho > 1$.
- (II) Every entry of the matrix Ω^k is $O(\rho^k)$ as k tends to infinity.
- (III) If we put $\Omega^k \boldsymbol{\alpha} = (\alpha_1^{(k)}, \dots, \alpha_n^{(k)})$, then

$$\log |\alpha_i^{(k)}| \le -c\rho^k \quad (1 \le i \le n)$$

for all sufficiently large k, where c is a positive constant.

(IV) For any nonzero $f(z) \in \mathbb{C}[[z_1, \dots, z_n]]$ which converges in some neighborhood of the origin, there are infinitely many positive integers k such that $f(\Omega^k \alpha) \neq 0$.

Lemma 1 (Lemma 4 and Proof of Theorem 2 in [6]). Suppose that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity, where $\Phi(X)$ is the polynomial defined by (2). Let

$$\Omega = \begin{pmatrix}
c_1 & 1 & 0 & \dots & 0 \\
c_2 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
\vdots & \vdots & & \ddots & 1 \\
c_n & 0 & \dots & \dots & 0
\end{pmatrix}$$
(4)

and let β_1, \ldots, β_s be multiplicatively independent algebraic numbers with $0 < |\beta_j| < 1$ $(1 \le j \le s)$. Let p be a positive integer and put $\Omega' = \operatorname{diag}(\underline{\Omega^p, \ldots, \Omega^p})$. Then the matrix Ω'

and the point
$$\boldsymbol{\beta} = (\underbrace{1, \dots, 1}_{n-1}, \beta_1, \dots, \underbrace{1, \dots, 1}_{n-1}, \beta_s)$$
 have the properties (I)-(IV).

Lemma 2 (Kubota [3], see also Nishioka [5]). Let K be an algebraic number field. Suppose that $f_1(\mathbf{z}), \ldots, f_m(\mathbf{z}) \in K[[z_1, \ldots, z_n]]$ converge in an n-polydisc U around the origin and satisfy the functional equations

$$f_i(\mathbf{z}) = a_i(\mathbf{z}) f_i(\Omega \mathbf{z}) + b_i(\mathbf{z}) \quad (1 \le i \le m),$$

where $a_i(\mathbf{z}), b_i(\mathbf{z}) \in K(z_1, \ldots, z_n)$ and $a_i(\mathbf{z})$ $(1 \leq i \leq m)$ are defined and nonzero at the origin. Assume that the $n \times n$ matrix Ω and a point $\alpha \in U$ whose components are nonzero algebraic numbers have the properties (I)-(IV) and that $a_i(\mathbf{z})$ $(1 \leq i \leq m)$ are defined and nonzero at $\Omega^k \alpha$ for any $k \geq 1$. If $f_1(\mathbf{z}), \ldots, f_m(\mathbf{z})$ are algebraically independent over $K(z_1, \ldots, z_n)$, then the values $f_1(\alpha), \ldots, f_m(\alpha)$ are algebraically independent.

In what follows, C denotes a field of characteristic 0. Let $L = C(z_1, \ldots, z_n)$ and let M be the quotient field of $C[[z_1, \ldots, z_n]]$. Let Ω be an $n \times n$ matrix with nonnegative integer entries having the property (I). We define an endomorphism $\tau: M \to M$ by $f^{\tau}(z) = f(\Omega z)$ $(f(z) \in M)$ and a subgroup H of L^{\times} by

$$H = \{ g^{\tau} g^{-1} \mid g \in L^{\times} \}.$$

Lemma 3 (Kubota [3], see also Nishioka [5]). Let $f_{ij} \in M$ (i = 1, ..., h; j = 1, ..., m(i)) satisfy

$$f_{ij} = a_i f_{ij}^{\tau} + b_{ij},$$

where $a_i \in L^{\times}$, $b_{ij} \in L$ $(1 \leq i \leq h, 1 \leq j \leq m(i))$, and $a_i a_{i'}^{-1} \notin H$ for any distinct i, i' $(1 \leq i, i' \leq h)$. Suppose for any i $(1 \leq i \leq h)$ there is no element g of L satisfying

$$g = a_i g^{\tau} + \sum_{j=1}^{m(i)} c_j b_{ij},$$

where $c_1, \ldots, c_{m(i)} \in C$ are not all zero. Then the functions f_{ij} $(i = 1, \ldots, h; j = 1, \ldots, m(i))$ are algebraically independent over L.

Let $\{R_k\}_{k\geq 1}$ be a linear recurrence satisfying (1) and define a monomial

$$M(\mathbf{z}) = z_1^{R_n} \cdots z_n^{R_1},\tag{5}$$

which is denoted similarly to (3) by

$$M(z) = (R_n, \dots, R_1)z. \tag{6}$$

Let Ω be the matrix defined by (4). It follows from (1), (3), and (6) that

$$M(\Omega^k \mathbf{z}) = z_1^{R_{k+n}} \cdots z_n^{R_{k+1}} \quad (k \ge 0).$$
 (7)

Lemma 4 (Theorem 2 of [7]). Suppose that $\{R_k\}_{k\geq 1}$ is not a geometric progression. Assume that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity. Let \overline{C} be an algebraically closed field of characteristic 0. Suppose that F(z) is an element of the quotient field of $\overline{C}[[z_1,\ldots,z_n]]$ satisfying the functional equation of the form

$$F(\boldsymbol{z}) = \left(\prod_{k=u}^{p+u-1} Q_k(M(\Omega^k \boldsymbol{z}))\right) F(\Omega^p \boldsymbol{z}),$$

where Ω is defined by (4), p > 0, $u \geq 0$ are integers, and $Q_k(X) \in \overline{C}(X)$ ($u \leq k \leq p+u-1$) are defined and nonzero at X=0. If $F(z) \in \overline{C}(z_1,\ldots,z_n)$, then $F(z) \in \overline{C}$ and $Q_k(X) \in \overline{C}^{\times}$ ($u \leq k \leq p+u-1$).

We adopt the usual vector notation, that is, if $I=(i_1,\ldots,i_n)\in\mathbb{Z}^n_{\geq 0}$ with $\mathbb{Z}_{\geq 0}$ the set of nonnegative integers, we write $\mathbf{z}^I=z_1^{i_1}\cdots z_n^{i_n}$. We denote by $C[z_1,\ldots,z_n]$ the ring of polynomials in variables z_1,\ldots,z_n with coefficients in C.

Lemma 5 (Lemma 3.2.3 in Nishioka [5]). If $A, B \in C[z_1, \ldots, z_n]$ are coprime, then $g.c.d.(A^{\tau}, B^{\tau}) = \mathbf{z}^I$, where $I \in \mathbb{Z}_{>0}^n$.

Lemma 6 (Lemma 12 of [7]). Let Ω be an $n \times n$ matrix with nonnegative integer entries which has the property (I). Let R(z) be a nonzero polynomial in $C[z_1, \ldots, z_n]$. If $R(\Omega z)$ divides $R(z)z^I$, where $I \in \mathbb{Z}_{>0}^n$, then R(z) is a monomial in z_1, \ldots, z_n .

Lemma 7 (Lemma 6 of [8]). Let P(z) be a nonconstant polynomial in $z = (z_1, \ldots, z_n)$ with $n \geq 2$. Let Ω be an $n \times n$ matrix with positive integer entries which has the property (I). Then

$$\deg_{\boldsymbol{z}} P(\Omega \boldsymbol{z}) > \deg_{\boldsymbol{z}} P(\boldsymbol{z}).$$

3 Proof of the main theorem

We prove only Theorem 1, since Theorem 2 is proved in the same way.

Proof of Theorem 1. A complete set of representatives of the orbits $\left(\overline{\mathbb{Q}}^{\times} \times (\overline{\mathbb{Q}}^{\times} \setminus \{|q|=1\})\right) / G_4$ is given by

$$\left\{\,(x,q)\in\left(\overline{\mathbb{Q}}^\times\right)^2\;\middle|\;\;|q|<1,\;0\leq\operatorname{Arg}q<\pi\right\}=:\Lambda$$

since, under the action of the Klein four-group G_4 , the second component q is transformed either to q, q^{-1} , -q, or $-q^{-1}$. Hence it is enough to prove that the values

$$\eta_i := \Theta(x_i, q_i) = \sum_{k=1}^{\infty} \prod_{l=1}^k \frac{x_i q_i^{R_l}}{1 - q_i^{2R_l}} \quad (i = 1, \dots, r)$$

are algebraically independent for any finite number of distinct pairs (x_1, q_1) , $(x_2, q_2), \ldots, (x_r, q_r)$ belonging to Λ .

Assume that the values η_1, \ldots, η_r are algebraically dependent. There exist multiplicatively independent algebraic numbers β_1, \ldots, β_s with $0 < |\beta_j| < 1$ $(1 \le j \le s)$ and a primitive N-th root of unity ζ such that

$$q_i = \zeta^{m_i} \prod_{i=1}^s \beta_j^{e_{ij}} \quad (1 \le i \le r),$$
 (8)

where m_1, \ldots, m_s are integers with $0 \le m_i \le N-1$ and e_{ij} $(1 \le i \le r, 1 \le j \le s)$ are nonnegative integers (cf. Loxton and van der Poorten [4], Nishioka [5]). We can choose a positive integer p and a sufficiently large integer u, which will be determined later, such that $R_{k+p} \equiv R_k \pmod{N}$ for any $k \ge u+1$. Let $y_{j\lambda}$ $(1 \le j \le s, 1 \le \lambda \le n)$ be variables and let $\mathbf{y}_j = (y_{j1}, \ldots, y_{jn})$ $(1 \le j \le s), \mathbf{y} = (\mathbf{y}_1, \ldots, \mathbf{y}_s)$. Define

$$f_{i}(\boldsymbol{y}) = \sum_{k=u}^{\infty} \prod_{l=u}^{k} \frac{x_{i} \zeta^{m_{i} R_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \boldsymbol{y}_{j})^{e_{ij}}}{1 - \left(\zeta^{m_{i} R_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \boldsymbol{y}_{j})^{e_{ij}} \right)^{2}} \quad (1 \leq i \leq r),$$

where M(z) and Ω are defined by (5) and (4), respectively. Letting

$$\boldsymbol{\beta} = (\underbrace{1,\ldots,1}_{n-1},\beta_1,\ldots,\underbrace{1,\ldots,1}_{n-1},\beta_s),$$

we see by (7) and (8) that

$$f_i(\boldsymbol{\beta}) = \sum_{k=u}^{\infty} \prod_{l=u}^{k} \frac{x_i q_i^{R_{l+1}}}{1 - q_i^{2R_{l+1}}} = \sum_{k=u+1}^{\infty} \prod_{l=u+1}^{k} \frac{x_i q_i^{R_l}}{1 - q_i^{2R_l}}$$

and so

$$\eta_i = \left(\prod_{k=1}^u \frac{x_i q_i^{R_k}}{1 - q_i^{2R_k}}\right) f_i(\beta) + \sum_{k=1}^u \prod_{l=1}^k \frac{x_i q_i^{R_l}}{1 - q_i^{2R_l}}.$$

Since η_1, \ldots, η_r are algebraically dependent, so are $f_i(\beta)$ $(1 \le i \le r)$. Let

$$\Omega' = \operatorname{diag}(\underbrace{\Omega^p, \dots, \Omega^p}_s).$$

Then each $f_i(\mathbf{y})$ satisfies the functional equation

$$f_i(\boldsymbol{y}) = \left(\prod_{k=u}^{p+u-1} \frac{x_i \zeta^{m_i R_{k+1}} \prod_{j=1}^s M(\Omega^k \boldsymbol{y}_j)^{e_{ij}}}{1 - \left(\zeta^{m_i R_{k+1}} \prod_{j=1}^s M(\Omega^k \boldsymbol{y}_j)^{e_{ij}} \right)^2} \right) f_i(\Omega' \boldsymbol{y})$$

$$+ \sum_{k=u}^{p+u-1} \prod_{l=u}^{k} \frac{x_{i} \zeta^{m_{i}R_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \boldsymbol{y}_{j})^{e_{ij}}}{1 - \left(\zeta^{m_{i}R_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \boldsymbol{y}_{j})^{e_{ij}}\right)^{2}},$$

where $\Omega' \boldsymbol{y} = (\Omega^p \boldsymbol{y}_1, \dots, \Omega^p \boldsymbol{y}_s)$. Let $D = |\det(\Omega - E)| = |\Phi(1)|$, where E is the identity matrix. Then D is a positive integer, since $\Phi(1) \neq 0$. Let $y'_{j\lambda} = y_{j\lambda}^{1/D}$ $(1 \leq j \leq s, \ 1 \leq \lambda \leq n)$, $\boldsymbol{y}'_j = (y'_{j1}, \dots, y'_{jn})$ $(1 \leq j \leq s)$, and $\boldsymbol{y}' = (\boldsymbol{y}'_1, \dots, \boldsymbol{y}'_s)$. Noting that $\prod_{j=1}^s M((\Omega - E)^{-1}\Omega^u \boldsymbol{y}_j)^{e_{ij}} = \prod_{j=1}^s M(D(\Omega - E)^{-1}\Omega^u \boldsymbol{y}_j')^{e_{ij}} \in \overline{\mathbb{Q}}(\boldsymbol{y}')$, we define

$$g_i(\mathbf{y}') = \left(\prod_{j=1}^s M((\Omega - E)^{-1}\Omega^u \mathbf{y}_j)^{e_{ij}}\right) f_i(\mathbf{y}) - T_i(\mathbf{y}')$$

$$= \left(\prod_{j=1}^s M(D(\Omega - E)^{-1}\Omega^u \mathbf{y}_j')^{e_{ij}}\right) f_i(\mathbf{y}') - T_i(\mathbf{y}') \quad (1 \le i \le r),$$

where

$$f_{i}(\boldsymbol{y}') = \sum_{k=u}^{\infty} \prod_{l=u}^{k} \frac{x_{i} \zeta^{m_{i}R_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \boldsymbol{y}'_{j})^{D e_{ij}}}{1 - \left(\zeta^{m_{i}R_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \boldsymbol{y}'_{j})^{D e_{ij}}\right)^{2}} \in \overline{\mathbb{Q}}[[\boldsymbol{y}']],$$

$$T_{i}(\boldsymbol{y}') = \left(\prod_{j=1}^{s} M(D(\Omega - E)^{-1} \Omega^{u} \boldsymbol{y}'_{j})^{e_{ij}}\right) \sum_{k=u}^{k_{1}} \prod_{l=u}^{k} \frac{x_{i} \zeta^{m_{i}R_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \boldsymbol{y}'_{j})^{D e_{ij}}}{1 - \left(\zeta^{m_{i}R_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \boldsymbol{y}'_{j})^{D e_{ij}}\right)^{2}}$$

$$\in \overline{\mathbb{Q}}(\boldsymbol{y}'),$$

and k_1 is such a large integer that $g_i(\mathbf{y}') \in \overline{\mathbb{Q}}[[\mathbf{y}']]$ $(1 \leq i \leq r)$. Since $M(D(\Omega - E)^{-1}\Omega^u \mathbf{y}'_j) \prod_{k=u}^{p+u-1} M(\Omega^k \mathbf{y}'_j)^D = M(D(\Omega - E)^{-1}\Omega^{u+p} \mathbf{y}'_j)$, each $g_i(\mathbf{y}')$ satisfies the functional equation

$$g_{i}(\mathbf{y}') = \left(\prod_{k=u}^{p+u-1} \frac{x_{i}\zeta^{m_{i}R_{k+1}}}{1 - \left(\zeta^{m_{i}R_{k+1}}\prod_{j=1}^{s} M(\Omega^{k}\mathbf{y}'_{j})^{De_{ij}}\right)^{2}}\right) g_{i}(\Omega'\mathbf{y}')$$

$$+ \left(\prod_{j=1}^{s} M(D(\Omega - E)^{-1}\Omega^{u}\mathbf{y}'_{j})^{e_{ij}}\right) \sum_{k=u}^{p+u-1} \prod_{l=u}^{k} \frac{x_{i}\zeta^{m_{i}R_{l+1}}\prod_{j=1}^{s} M(\Omega^{l}\mathbf{y}'_{j})^{De_{ij}}}{1 - \left(\zeta^{m_{i}R_{l+1}}\prod_{j=1}^{s} M(\Omega^{l}\mathbf{y}'_{j})^{De_{ij}}\right)^{2}}$$

$$+ \left(\prod_{k=u}^{p+u-1} \frac{x_{i}\zeta^{m_{i}R_{k+1}}}{1 - \left(\zeta^{m_{i}R_{k+1}}\prod_{j=1}^{s} M(\Omega^{k}\mathbf{y}'_{j})^{De_{ij}}\right)^{2}}\right) T_{i}(\Omega'\mathbf{y}') - T_{i}(\mathbf{y}'),$$

where $\Omega' \mathbf{y}' = (\Omega^p \mathbf{y}'_1, \dots, \Omega^p \mathbf{y}'_s)$. Since $f_i(\boldsymbol{\beta})$ $(1 \leq i \leq r)$ are algebraically dependent, so are $g_i(\boldsymbol{\beta}')$ $(1 \leq i \leq r)$, where

$$\boldsymbol{\beta}' = (\underbrace{1, \dots, 1}_{n-1}, \beta_1^{1/D}, \dots, \underbrace{1, \dots, 1}_{n-1}, \beta_s^{1/D}).$$

By Lemma 1, the matrix Ω' and $\boldsymbol{\beta}'$ have the properties (I)-(IV). By Lemma 2, the functions $g_i(\boldsymbol{y}')$ $(1 \leq i \leq r)$ are algebraically dependent over $\overline{\mathbb{Q}}(\boldsymbol{y}')$.

In order to apply Lemma 3, we assert that

$$Q_{ii'}(\mathbf{y}') = \prod_{k=u}^{p+u-1} \frac{x_i \zeta^{m_i R_{k+1}} \left(1 - \left(\zeta^{m_{i'} R_{k+1}} \prod_{j=1}^s M(\Omega^k \mathbf{y}'_j)^{De_{i'j}} \right)^2 \right)}{x_{i'} \zeta^{m_{i'} R_{k+1}} \left(1 - \left(\zeta^{m_i R_{k+1}} \prod_{j=1}^s M(\Omega^k \mathbf{y}'_j)^{De_{ij}} \right)^2 \right)}$$

$$\in H = \left\{ \frac{h(\Omega' \mathbf{y}')}{h(\mathbf{y}')} \mid h(\mathbf{y}') \in \overline{\mathbb{Q}}(\mathbf{y}') \setminus \{0\} \right\}$$

if and only if $m_i = m_{i'}$, $(e_{i1}, \ldots, e_{is}) = (e_{i'1}, \ldots, e_{i's})$, and $x_i^p = x_{i'}^p$. It is clear that, if $m_i = m_{i'}$, $(e_{i1}, \ldots, e_{is}) = (e_{i'1}, \ldots, e_{i's})$, and $x_{i'}^p = x_i^p$, then $Q_{ii'}(\mathbf{y}') = 1 \in H$. Conversely, suppose that $Q_{ii'}(\mathbf{y}') \in H$. Then there exits an $F(\mathbf{y}') \in \overline{\mathbb{Q}}(\mathbf{y}') \setminus \{0\}$ satisfying

$$F(\mathbf{y}') = \left(\prod_{k=u}^{p+u-1} \frac{x_{i'} \zeta^{m_{i'} R_{k+1}} \left(1 - \left(\zeta^{m_{i} R_{k+1}} \prod_{j=1}^{s} M(\Omega^{k} \mathbf{y}'_{j})^{De_{ij}} \right)^{2} \right)}{x_{i} \zeta^{m_{i} R_{k+1}} \left(1 - \left(\zeta^{m_{i'} R_{k+1}} \prod_{j=1}^{s} M(\Omega^{k} \mathbf{y}'_{j})^{De_{i'j}} \right)^{2} \right)} \right) F(\Omega' \mathbf{y}').$$
(9)

Let P be a positive integer divisible by D and let

$$\mathbf{y}'_{j} = (y'_{j1}, \dots, y'_{jn}) = (z_{1}^{P^{j}/D}, \dots, z_{n}^{P^{j}/D}) \quad (1 \le j \le s).$$

We choose a sufficiently large P such that the following two properties are both satisfied:

(a) If
$$(e_{i1}, \dots, e_{is}) \neq (e_{i'1}, \dots, e_{i's})$$
, then $\sum_{j=1}^{s} e_{ij} P^j \neq \sum_{j=1}^{s} e_{i'j} P^j$.

(b)
$$F^*(\boldsymbol{z}) = F(z_1^{P/D}, \dots, z_n^{P/D}, \dots, z_1^{P^s/D}, \dots, z_n^{P^s/D}) \in \overline{\mathbb{Q}}(z_1, \dots, z_n) \setminus \{0\}.$$

Then by (9), $F^*(z)$ satisfies the functional equation

$$F^{*}(\boldsymbol{z}) = \left(\prod_{k=u}^{p+u-1} \frac{x_{i'} \zeta^{m_{i'} R_{k+1}} \left(1 - \left(\zeta^{m_{i'} R_{k+1}} M(\Omega^{k} \boldsymbol{z})^{\ell_{i}}\right)^{2}\right)}{x_{i} \zeta^{m_{i} R_{k+1}} \left(1 - \left(\zeta^{m_{i'} R_{k+1}} M(\Omega^{k} \boldsymbol{z})^{\ell_{i'}}\right)^{2}\right)}\right) F^{*}(\Omega^{p} \boldsymbol{z}), \tag{10}$$

where $\ell_i = \sum_{j=1}^s e_{ij} P^j$ $(1 \le i \le r)$. Therefore by Lemma 4 we see that

$$\frac{x_{i'}\zeta^{m_{i'}R_{k+1}}\left(1-\zeta^{2m_{i}R_{k+1}}X^{2\ell_{i}}\right)}{x_{i}\zeta^{m_{i}R_{k+1}}\left(1-\zeta^{2m_{i'}R_{k+1}}X^{2\ell_{i'}}\right)} \in \overline{\mathbb{Q}}^{\times}$$

for any k ($u \le k \le p+u-1$), where X is a variable, and $F^*(\boldsymbol{z}) \in \overline{\mathbb{Q}}^{\times}$. Hence $\ell_i = \ell_{i'}$ and $\zeta^{2m_iR_{k+1}} = \zeta^{2m_{i'}R_{k+1}}$ ($u \le k \le p+u-1$). Thus $(e_{i1},\ldots,e_{is}) = (e_{i'1},\ldots,e_{i's})$ by the property (a), and $\zeta^{2m_i} = \zeta^{2m_{i'}}$ since g.c.d. $(R_k,R_{k+1},\ldots,R_{k+n-1})=1$ for any $k \ge 1$. Hence $q_i^2 = q_{i'}^2$ by (8) and so $q_i = q_{i'}$ since $0 \le \operatorname{Arg} q_i < \pi$ ($1 \le i \le r$). Then $m_i = m_{i'}$, and the functional equation (10) becomes $x_i^p F^*(\boldsymbol{z}) = x_{i'}^p F^*(\Omega^p \boldsymbol{z})$. Since $F^*(\boldsymbol{z}) \in \overline{\mathbb{Q}}^{\times}$, we have $x_i^p = x_{i'}^p$, and the assertion is proved.

Now let S be a maximal subset of $\{1,\ldots,r\}$ such that $(x_i^p,q_i)=(x_{i'}^p,q_{i'})$ for any $i,i'\in S$, which is equivalent to $x_i^p=x_{i'}^p,\,m_i=m_{i'},\,$ and $(e_{i1},\ldots,e_{is})=(e_{i'1},\ldots,e_{i's})$. Fix a $\lambda\in S$ and let $\xi=x_\lambda^p,\,m=m_\lambda$, and $e_j=e_{\lambda j}\,\,(1\leq j\leq s)$. Then $x_i^p=\xi,\,m_i=m$, and $(e_{i1},\ldots,e_{is})=(e_1,\ldots,e_s)$ for any $i\in S$ and by Lemma 3 there exits a $G(\boldsymbol{y'})\in\overline{\mathbb{Q}}(\boldsymbol{y'})$ satisfying

$$G(\mathbf{y}') = \xi \left(\prod_{k=u}^{p+u-1} \frac{\zeta^{mR_{k+1}}}{1 - \left(\zeta^{mR_{k+1}} \prod_{j=1}^{s} M(\Omega^{k} \mathbf{y}'_{j})^{De_{j}} \right)^{2}} \right) G(\Omega' \mathbf{y}')$$

$$+ \left(\prod_{j=1}^{s} M(D(\Omega - E)^{-1} \Omega^{u} \mathbf{y}'_{j})^{e_{j}} \right)$$

$$\times \sum_{k=u}^{p+u-1} \left(\sum_{i \in S} c_{i} x_{i}^{k-u+1} \right) \prod_{l=u}^{k} \frac{\zeta^{mR_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \mathbf{y}'_{j})^{De_{j}}}{1 - \left(\zeta^{mR_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \mathbf{y}'_{j})^{De_{j}} \right)^{2}}$$

$$+ \xi \left(\prod_{k=u}^{p+u-1} \frac{\zeta^{mR_{k+1}}}{1 - \left(\zeta^{mR_{k+1}} \prod_{j=1}^{s} M(\Omega^{k} \mathbf{y}'_{j})^{De_{j}} \right)^{2}} \right) \sum_{i \in S} c_{i} T_{i}(\Omega' \mathbf{y}') - \sum_{i \in S} c_{i} T_{i}(\mathbf{y}'),$$

where c_i $(i \in S)$ are algebraic numbers not all zero. Then

$$G^*(\boldsymbol{y}') = \left(\prod_{j=1}^s M(D(\Omega - E)^{-1}\Omega^u \boldsymbol{y}_j')^{e_j}\right)^{-2} \left(G(\boldsymbol{y}') + \sum_{i \in S} c_i T_i(\boldsymbol{y}')\right) \in \overline{\mathbb{Q}}(\boldsymbol{y}')$$

satisfies the functional equation

$$G^{*}(\mathbf{y}') = \xi \left(\prod_{k=u}^{p+u-1} \frac{\zeta^{mR_{k+1}} \prod_{j=1}^{s} M(\Omega^{k} \mathbf{y}'_{j})^{2D e_{j}}}{1 - \left(\zeta^{mR_{k+1}} \prod_{j=1}^{s} M(\Omega^{k} \mathbf{y}'_{j})^{D e_{j}} \right)^{2}} \right) G^{*}(\Omega' \mathbf{y}')$$

$$+ \frac{1}{\prod_{j=1}^{s} M(D(\Omega - E)^{-1} \Omega^{u} \mathbf{y}'_{j})^{e_{j}}}$$

$$\times \sum_{k=u}^{p+u-1} \left(\sum_{i \in S} c_{i} x_{i}^{k-u+1} \right) \prod_{l=u}^{k} \frac{\zeta^{mR_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \mathbf{y}'_{j})^{D e_{j}}}{1 - \left(\zeta^{mR_{l+1}} \prod_{j=1}^{s} M(\Omega^{l} \mathbf{y}'_{j})^{D e_{j}} \right)^{2}}.$$
(11)

Let P be a positive integer and let $y'_j = (y'_{j1}, \dots, y'_{jn}) = (z_1^{P^j}, \dots, z_n^{P^j})$ $(1 \le j \le s)$. We choose a sufficiently large P such that

$$H(\boldsymbol{z}) = G^*(z_1^P, \dots, z_n^P, \dots, z_1^{P^s}, \dots, z_n^{P^s}) \in \overline{\mathbb{Q}}(z_1, \dots, z_n).$$

Then by (11), H(z) satisfies the functional equation

$$\begin{split} H(\boldsymbol{z}) &= \xi \left(\prod_{k=u}^{p+u-1} \frac{\zeta^{mR_{k+1}} M(\Omega^k \boldsymbol{z})^{2D\ell}}{1 - (\zeta^{mR_{k+1}} M(\Omega^k \boldsymbol{z})^{D\ell})^2} \right) H(\Omega^p \boldsymbol{z}) \\ &+ \frac{1}{M(D(\Omega - E)^{-1} \Omega^u \boldsymbol{z})^\ell} \sum_{k=u}^{p+u-1} \left(\sum_{i \in S} c_i x_i^{k-u+1} \right) \prod_{l=u}^k \frac{\zeta^{mR_{l+1}} M(\Omega^l \boldsymbol{z})^{D\ell}}{1 - (\zeta^{mR_{l+1}} M(\Omega^l \boldsymbol{z})^{D\ell})^2} \end{split}$$

where $\ell = \sum_{j=1}^s e_j P^j$. Letting $H(\boldsymbol{z}) = A(\boldsymbol{z})/B(\boldsymbol{z})$, where $A(\boldsymbol{z})$ and $B(\boldsymbol{z})$ are coprime polynomials in $\overline{\mathbb{Q}}[z_1,\ldots,z_n]$ with $B \not\equiv 0$, and letting $M(D(\Omega-E)^{-1}\Omega^u\boldsymbol{z}) = M_1(\boldsymbol{z})/M_2(\boldsymbol{z})$, where $M_1(\boldsymbol{z})$ and $M_2(\boldsymbol{z})$ are coprime monomials in $\overline{\mathbb{Q}}[z_1,\ldots,z_n]$, we have

$$A(\boldsymbol{z})B(\Omega^{p}\boldsymbol{z})M_{1}(\boldsymbol{z})^{\ell}\prod_{k=n}^{p+u-1}\left(1-\left(\zeta^{mR_{k+1}}M(\Omega^{k}\boldsymbol{z})^{D\ell}\right)^{2}\right)$$

$$= \xi A(\Omega^{p} \boldsymbol{z}) B(\boldsymbol{z}) M_{1}(\boldsymbol{z})^{\ell} \prod_{k=u}^{p+u-1} \zeta^{mR_{k+1}} M(\Omega^{k} \boldsymbol{z})^{2D\ell}$$

$$+ \sum_{k=u}^{p+u-1} \left(\sum_{i \in S} c_{i} x_{i}^{k-u+1} \right) B(\boldsymbol{z}) B(\Omega^{p} \boldsymbol{z}) M_{2}(\boldsymbol{z})^{\ell} \prod_{l=u}^{k} \zeta^{mR_{l+1}} M(\Omega^{l} \boldsymbol{z})^{D\ell}$$

$$\times \prod_{l'=k+1}^{p+u-1} \left(1 - \left(\zeta^{mR_{l'+1}} M(\Omega^{l'} \boldsymbol{z})^{D\ell} \right)^{2} \right).$$

$$(12)$$

In what follows, let u be sufficiently large. By the condition $\Phi(2) < 0$, the root ρ of $\Phi(X)$ such that $R_k = b\rho^k + o(\rho^k)$ with b > 0 (cf. Remark 4 in [6]) satisfies $\rho > 2$ and hence $R_{k+1} > 2R_k$ for all sufficiently large k. Then the componentwise inequality $(R_n, \dots, R_1)D(\Omega - E)^{-1}\Omega^u = (R_n, \dots, R_1)\Omega^u D(\Omega - E)^{-1} = (R_{u+n}, \dots, R_{u+1})D(\Omega - E)^{-1}$ $(E)^{-1} < D(R_{u+n}, \dots, R_{u+1})$ holds and so $z_1 \cdots z_n M_1(z)^\ell$ divides $M(\Omega^u z)^{D\ell} = M(D\Omega^u z)^\ell$. In what follows, p is replaced with its multiple if necessary. We can put the greatest common divisor of $A(\Omega^p z)$ and $B(\Omega^p z)$ as $z^{I(p)}$, where I(p) is an n-dimensional vector with nonnegative integer components, by Lemma 5. Then $B(\Omega^p z)$ divides $B(\boldsymbol{z})M_1(\boldsymbol{z})^{\ell}\boldsymbol{z}^{I(p)}\prod_{k=u}^{p+u-1}M(\Omega^k\boldsymbol{z})^{2D\ell}$ by (12). Therefore $B(\boldsymbol{z})$ is a monomial in z_1,\ldots,z_n by Lemmas 1 and 6. Since p and u are independent, the right-hand side of (12) is divisible by $z_1 \cdots z_n M_1(\boldsymbol{z})^{\ell} B(\Omega^p \boldsymbol{z})$ and thus $A(\boldsymbol{z})$ is divisible by $z_1 \cdots z_n$. Since $A(\boldsymbol{z})$ and $B(\boldsymbol{z})$ are coprime, $B(z) \in \overline{\mathbb{Q}}^{\times}$. If $A(z) \notin \overline{\mathbb{Q}}$ and if p is sufficiently large, then by Lemma 7, $\deg_{\mathbf{z}} A(\Omega^p \mathbf{z}) > \max\{\deg_{\mathbf{z}} A(\mathbf{z}), \deg_{\mathbf{z}} M_2(\mathbf{z})^\ell\}$, which is a contradiction by comparing the total degrees of both sides of (12). Hence $A(z) \in \overline{\mathbb{Q}}$. Then by (12), we see that $\sum_{i \in S} c_i x_i^{k-u+1} = 0 \ (u \le k \le p+u-1) \text{ and so } \sum_{i \in S} c_i x_i^k = 0 \ (1 \le k \le p). \text{ Hence } x_i = x_{i'}$ for some distinct $i, i' \in S$ since c_i $(i \in S)$ are not all zero. Then $(x_i, q_i) = (x_{i'}, q_{i'})$, which is a contradiction, and the proof of the theorem is completed.

References

- [1] F. R. Gantmacher, Applications of the Theory of Matrices, vol. II, Interscience, New York, 1959.
- G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
- [3] K. K. Kubota, On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9–50.
- [4] J. H. Loxton and A. J. van der Poorten, Algebraic independence properties of the Fredholm series, J. Austral. Math. Soc. Ser. A 26 (1978), 31–45.
- [5] K. Nishioka, Mahler functions and transcendence, Lecture Notes in Mathematics No. 1631, Springer, 1996.
- [6] T. Tanaka, Algebraic independence of the values of power series generated by linear recurrences, Acta Arith. **74** (1996), 177–190.
- [7] T. Tanaka, Algebraic independence results related to linear recurrences, Osaka J. Math. 36 (1999), 203–227.
- [8] T. Tanaka, Algebraic independence of the values of Mahler functions associated with a certain continued fraction expansion, J. Number Theory 105 (2004), 38–48.
- T. Tanaka, Conditions for the algebraic independence of certain series involving continued fractions and generated by linear recurrences, J. Number Theory 129 (2009), 3081–3093.