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Algebraic independence of the values
of a certain map defined on the set of orbits
of the action of Klein four-group

BEERARFILTEE Hr 2280 (Taka-aki Tanaka)
Faculty of Science and Technology, Keio Univ.

1 Introduction
Let {Ry}r>1 be a linear recurrence of positive integers satisfying
Riyn =c1Rpin1+--+ Ry (k> 1), (1)

where n > 2 and ¢y, ..., ¢, are nonnegative integers with ¢, # 0. The author [9] studied
the two-variable function E(z,q) defined by

> R, s k  Ri+Ra+--+Ry,
rq zhq
E(I,q):ZH R :Z R R. R\’
e k:l(l_q J(L—gf2) - (1 —qft)

which may be regarded as an analogue of g-exponential function

k 1+2+ +k

- Zlfqlfq) “(1—q")

(cf. Gasper and Rahman [2]), if we replace & in the exponent of ¢ in E,(z) with { Ry }r>1
defined above.
Let
PX)=X"—c X"~ (2)

and let @X be the set of nonzero algebraic numbers. The author proved the following

Theorem 0 (Corollary 4 of [9]). Let { Ry, }r>1 be a linear recurrence satisfying (1). Suppose
that ®(£1) # 0 and the ratio of any pair of distinct roots of ®(X) is not a root of unity.
Assume that { Ry }r>1 s not a geometric progression. Then the values

E(z,q) (x,q€Q", |g| <1)

are algebraically dependent if and only if there exist some distinct pairs (z1,q1) and (xa, ga)
of monzero algebraic numbers 1, x2, q1, and g with |q1],|q| < 1 such that xy = x5 and
q{vk = qév’“ for some k > 1, where Ny = g.c.d.(Rg, Rgs1y -+, Ripn—1)-

In particular, if N, = 1 for any k > 1, then the values E(x,q) are algebraically
independent for any distinct pairs (x,q) of nonzero algebraic numbers x and q with |q| < 1.
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Example 0. Let {F},};>1 be the sequence of Fibonacci numbers defined by F; =1, F, =
1, and Fyio = Fiy1 + Fy (kK > 1). Since {Fy}r>1 satisfies the conditions in Theorem 0,
the infinite set of the values

[} .%‘qul+F2+ A+ Fy, .
kz:;<1—qF1>(1—qF2).-.(1_qu) r.g€Q, Jof <1

is algebraically independent.

The two-variable function E(x,q) converges on the domain

(Cx{lgl < 1HU{lz] <1} x {lal > 1}) = {(z,9) € C* | |q| < 1V (|| <1 Alq| > D)},
whereas a ‘balanced’ analogue
g P

g™ _ 4q
ZH R _Z(1_qul)(l_qQRZ)...<1_q2Rk)

k=1 1=1 k=1

converges on the wider domain

Cx {lg| # 1} = {(z,q) € C* | |q| # 1}.
Indeed, if ¢ # 0, ©(x, ¢) is invariant under the map

o1 (2,q) — (—x,q7Y),

namely
> x)kq—Rl Ry——Ry,
O(o1(z,9)) Z — 723 —  9Rs ... (1 _ 2R = 0O(7,q)
b1 (1—q2M)(1 —g282) - (1 — g72%)

and so O(z,q) converges on C x {|q| # 1} by the similar reason to the convergence of
E(x,q).
Moreover, if { Ry }r>1 is a sequence of odd integers, then ©(x, ¢) is invariant also under

the maps

o2 (w,q) — (=2, —q),

o3 1 (z,q9) —> (v,—q7").
Since 01 0 01 = 09 0 09 = id and 07 0 09 = 09 0 01 = 03, we see that Gy = {id, o1, 09, 03}
is Klein four-group. Therefore, ©(x,q) can be regarded as a map defined on the set of
orbits (C x {|q| # 0,1})/G4, where C x {|q| # 0,1} = {(x,q) € C* | |q| # 0,1}, namely
the map N

© : (Cx{lgl#0,1})/Gs — O(C x {|q| #0,1})
given by
the orbit of (x,q) — O(x,q)

is well-defined. Hence the restriction to algebraic points

6:((©x 200 (T)°) /e — e (@©x 200 (T)°).
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or equivalently
6: (Tx @\ {lal =11) /G — 0 (Tx @\ {la = 1))

is also well-defined, where the second @X denotes the multiplicative group of nonzero
algebraic numbers while the first Q" simply denotes the set of nonzero algebraic numbers.
In this paper we prove the following

Theorem 1. Let {Ry.}i>1 be a linear recurrence satisfying (1). Suppose that ®(£1) # 0
and the ratio of any pair of distinct roots of ®(X) is not a root of unity. Assume that
g.c.d.(Ry, Rit1, - -y Rian1) = 1 for any k > 1. Assume further that ®(2) < 0 and that
{Ri}x>1 18 a sequence of odd integers. Then the infinite set of the values

6 ((@x@ \{lal=1})/ c)
1s algebraically independent.

Remark 1. The condition that g.c.d.(Rg, Rgy1, ..., Rekin_1) = 1 for any k > 1 implies
that the sequence { Ry }r>1 is not a geometric progression.

Corollary 1. Let {Ry}r>1 be as in Theorem 1. Then the infinite set consisting of the
distinct values of

ad kgt Rate Ry .
kz:(1—q2R1>(1_q2R2)...(1_q2Rk) r,q€Q", gl #1
=1

1s algebraically independent.

Example 1. Let {P;};>1 be the sequence defined either by P, = P, = 1 and Pryo =
2P]€+1 +Pk (k 2 1) or by P1 = Pg = P3 =1 and Pk+3 = Pk+2 —|—Pk+1 +3Pk (k 2 1) Since
{ Py }rx>1 satisfies all the conditions of Theorem 1, the infinite set consisting of the distinct
values of

> a;-k?qP1+P2+“'+Pk —
2,q€Q", 1
D e (e ] R e
is algebraically independent.
If {Ri}r>1 1s a sequence of odd integers, then
o k R S ok Ri+Rot+ Ry,
xq 1 €T q 1 2 k
O+ (w,q) := H 2R, Z 2R 2R 2R

k:ll:11+q 1 k:1(1+q 1)(1+q 2).(1+q k:)

is invariant under the maps
o (qu) — (I7q71)7
T2 - (‘/Lv(I) — (7$7iq)7
T3 (CC,q) — (_1.7 _q_l)'
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Since mom =T o7 =id and 7 0 Ty = 7o 0 7y = T3, we see that G} = {id, 71, 7o, T3} is
also Klein four-group. Hence the map

O, : (Cx{lgl #0,1})/G — 6,(C x {lg| #0,1})

given by
the orbit of (x,q) — O, (x,q)

is well-defined. We also have the following

Theorem 2. Let {Ry}r>1 be as in Theorem 1. Then the infinite set of the values
O, ((@x@ \{ld=1p)/ ")
is algebraically independent.

Example 2. Let {Py}r>1 be one of the linear recurrences defined in Example 1. Since
{Py}r>1 satisfies all the conditions of Theorem 1, the infinite set consisting of the distinct
values of

{ o0 k  Pi+Pot-+P

xtq .
Z(1+q2P1)(1+q2Pz)...(1+quk) ' 7q€Q, Iql#l}

k=1
is algebraically independent.

2 Lemmas

Let F(z1,...,2,) and F|[z1,...,2,]] denote the field of rational functions and the ring
of formal power series in variables z1,...,z, with coeflicients in a field F', respectively,
and F* the multiplicative group of nonzero elements of F. Let Q = (w;;) be an n x n
matrix with nonnegative integer entries. Then the maximum p of the absolute values of
the eigenvalues of € is itself an eigenvalue (cf. Gantmacher [1, p. 66, Theorem 3]). If

z=1(z1,...,2,) is a point of C"*, we define a transformation 2 : C* — C™ by
w1 waj Wnj
Qz:(sz7, i | B ) (3)
j=1 j=1 Jj=1
We suppose that Q and an algebraic point e = (o, ..., a,), where «; are nonzero alge-

braic numbers, have the following four properties:

(I) € is nonsingular and none of its eigenvalues is a root of unity, so that in particular
p> 1.

(I) Every entry of the matrix QF is O(p*) as k tends to infinity.
(I1) If we put Qfa = (i, ..., al), then
log o < —cp (1 <i<n)

for all sufficiently large k, where c is a positive constant.



(IV) For any nonzero f(z) € C[[z1, ..., z,]] which converges in some neighborhood of the
origin, there are infinitely many positive integers k such that f(Q*a) # 0.

Lemma 1 (Lemma 4 and Proof of Theorem 2 in [6]). Suppose that ®(+1) # 0 and
the ratio of any pair of distinct roots of ®(X) is not a root of unity, where ®(X) is the
polynomial defined by (2). Let

cc 1 0 ... 0
c 0 1 :
Q= | : o (1)
: 1
¢, O 0

and let B, ..., Bs be multiplicatively independent algebraic numbers with 0 < |8;] <1 (1 <
Jj < s). Let p be a positive integer and put Q' = diag(Q?, ..., Q). Then the matriz
————

and the point 3= (1,...,1,B1,...... 1, ... 1, 85) have the properties (I)—(IV).

21 21
Lemma 2 (Kubota [3], see also Nishioka [5]). Let K be an algebraic number field. Suppose
that f1(z),..., fm(2) € K[[z1,...,2,]] converge in an n-polydisc U around the origin and
satisfy the functional equations

fi(z) = ai(2) [i(Qz) + bi(z) (1 <i<m),

where a;(z),b;(z) € K(z1,...,2,) and a;(z) (1 < i < m) are defined and nonzero at the
origin. Assume that the n xn matriz  and a point a € U whose components are nonzero
algebraic numbers have the properties (I)—(IV) and that a;(z) (1 < i < m) are defined
and nonzero at Q¥ for any k > 1. If fi(2),..., fm(2) are algebraically independent over
K(z1,...,2y), then the values fi(a), ..., fm(a) are algebraically independent.

In what follows, C' denotes a field of characteristic 0. Let L = C(zy,...,2,) and let
M be the quotient field of C[[z1,...,2,]]. Let Q be an n X n matrix with nonnegative
integer entries having the property (I). We define an endomorphism 7 : M — M by
f7(z) = f(Qz2) (f(z) € M) and a subgroup H of L* by

H={gg"'|geL"}

Lemma 3 (Kubota [3], see also Nishioka [5]). Let f;; € M (i =1,...,h; j=1,...,m(i))
satisfy
fij = aifj; + by,
where a; € L*, b € L (1 <i < h, 1 <j<m()), and aia,i_,l ¢ H for any distinct
i,i" (1 <4,7 < h). Suppose for any i (1 <1i < h) there is no element g of L satisfying
m(i)

g=ag +Y ciby,
j=1

where c1,...,cmu € C are not all zero. Then the functions fi; (i = 1,...,h; j =
1,...,m(i)) are algebraically independent over L.

181
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Let {Ry}r>1 be a linear recurrence satisfying (1) and define a monomial

M(z) =2z 20 (5)

n

which is denoted similarly to (3) by
M(z) = (Rn, ..., Ry)z. (6)
Let Q be the matrix defined by (4). It follows from (1), (3), and (6) that
M(QFz) = 2% . 2B (k> 0). (7)

Lemma 4 (Theorem 2 of [7]). Suppose that {Ry}r>1 i not a geometric progression.
Assume that (1) # 0 and the ratio of any pair of distinct roots of ®(X) is not a root
of unity. Let C be an algebraically closed field of characteristic 0. Suppose that F(z) is
an element of the quotient field of C|[z1, ..., 2| satisfying the functional equation of the
form

F(z) = < 11 Qk<M<Q’“z>>> F(z),
k=u

where Q is defined by (4), p > 0, u > 0 are integers, and Qx(X) € C(X) (u < k <
p+u—1) are defined and nonzero at X = 0. If F(z) € C(z1,...,2,), then F(z) € C and
Q(X)eC  u<k<p+u—1).

We adopt the usual vector notation, that is, if I = (iy,...,i,) € Z%, with Z, the set
of nonnegative integers, we write 2/ = z{* - z». We denote by C|z, ..., 2,] the ring of
polynomials in variables z1, ..., z, with coefficients in C'.

Lemma 5 (Lemma 3.2.3 in Nishioka [5]). If A,B € Clz,...,2,) are coprime, then
g.c.d.(A",B7) = 2!, where I € 7%,

Lemma 6 (Lemma 12 of [7]). Let Q be an n x n matriz with nonnegative integer entries
which has the property (I). Let R(z) be a nonzero polynomial in Clzy, ..., z,]. If R(Q2z)
divides R(z)z", where I € 7%, then R(z) is a monomial in z,. .., z,.

Lemma 7 (Lemma 6 of [8]). Let P(z) be a nonconstant polynomial in z = (z1,...,2,)
with n > 2. Let Q be an n x n matrix with positive integer entries which has the property
(I). Then

deg, P(Qz) > deg, P(2).

3 Proof of the main theorem

We prove only Theorem 1, since Theorem 2 is proved in the same way.

Proof of Theorem 1. A complete set of representatives of the orbits

<@X X (@X \ {lq| = 1}))/G4 is given by

{(w,q) c (@X)2 ' gl <1, 0< Argq < w} A



since, under the action of the Klein four-group G4, the second component ¢ is transformed
either to ¢, ¢~%, —q, or —¢~'. Hence it is enough to prove that the values

Ry
iQZ -
_@xw% g HltiBl (Z:L.‘.,T)

k=1 l=1

are algebraically independent for any finite number of distinct pairs (z1,q1),
(z2,42), .-, (z,,q) belonging to A.

Assume that the values 7, ..., 7, are algebraically dependent. There exist multiplica-
tively independent algebraic numbers 3y,...,0; with 0 < |5;] <1 (1 < j < s) and a
primitive N-th root of unity ¢ such that

=I5 a<i<n), (8)
j=1

where my, ..., m, are integers with 0 < m; < N —lande; (1 <i<r 1<j<s)are
nonnegative integers (cf. Loxton and van der Poorten [4], Nishioka [5]). We can choose a
positive integer p and a sufficiently large integer u, which will be determined later, such
that Ry, = Ry (mod N) for any k> u+1. Let y;, (1 <j <s, 1 <A< n)be variables
and let y] = (yjla s 7y]n) (1 S .] S S)? Yy = (y1> s 7ys)‘ Define
) S VRGPS
= 2
k=ul=u 1 — (("“RHI [T M(Qlyj)ew)
where M(z) and Q are defined by (5) and (4), respectively. Letting

B=(,....1B,.......1,....18),
\‘/_/ ——

(1<i<r)

- — )

we see by (7) and (8) that

[e9) k Ry
ZH xquZRHl Z H 1_lq;231

k=u l=u k=u+1l=u+1

and so

u Ry,
Xiq; Iqu
’72‘:<H1_ 2Rk> +ZH — R
k=1 i k=1 1=1 4;

Since 7y, . .., n, are algebraically dependent, so are f;(3) (1 <i <7r). Let
O = diag(€, ..., Q").

’.
Then each f;(y) satisfies the functional equation

ptu—1 m; Ry s k e;

a; (M [ M(QPy; )

fw) = | TI : 7 | £y
e 1 (gmﬂml [T, M(Qky ))

183
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ptu—1 k mi R l e
r G T, ()
+ II >
o el — (gmzﬁm [T, M(Qy ))
where 'y = (Qyy,...,y,). Let D = |det(Q2 — E)| = |®(1)|, where E is the identity
matrix. Then D is a positive integer, since (1) # 0. Let y;-)\ = y]1./<D (1<j<s,1<A<
n), ¥ = Wi, ¥ (1 <7 <s),andy = g/l,y’s) Noting that [Tj_, M((Q —
E)'Quy )i =[5, M(D(Q — E)7'Q"y))* € Q(y'), we define

(HM (Q— E) 'Oy )> fily) = Ti(y')

Jj=1

3

9:(y')

(HM Q-F IQ"y’j)‘f”) i) -Ti(y) (1<i<w),

where

x‘cm’R‘“ HS M(Qly’.)D €ij o

o k
£) = Y 11— = € Q1

=iz 1 — (gmem T, My )Dw)

s k 2 (MR TTE L M(Qly! )P s
( M(D(Q - E)"'Q"y/ %) ZH ¢ [[= M(Qy;)) 2
7=1 k=u l=u 1 — ((m iRt H L M(Qly )Deij)

Ti(y')

€ QW)
and k; is such a large integer that g;(y') € Q[[¥]] (1 < i < 7). Since M(D(Q —
E)Quy ) TP M(QFy)P = M(D(Q — E)"'Qutry’), each g;(y') satisfies the func-

tional equation
ptu—1 x.cmiRkH
2 1.0
aw) = | 11 5 | 6(QY)
e 1 (g‘miRm T, M(Q@;)Dew)

s » ptu—1 k xicmiRHJ HS: ]\/[(Qly/_)Deij
M(D 1Q“ )%) 1
<H kz—; 111 1-— ((m e [0 M(Qly )De”>2

ptu—1 IifmiRk“

+ T(QY) - Ti(y'),

o 1 (om [, M(Qby)Pe )

where 'y’ = (QPy), ..., Qy.). Since fi(B) (1 < i < r) are algebraically dependent, so
are g;(3') (1 <i <), where

B =01, 18" ... Lo, 1 BYP),

By Lemma 1, the matrix ' and 8" have the properties (I)—(IV). By Lemma 2, the
functions g;(y’) (1 < i < r) are algebraically dependent over Q(y').



In order to apply Lemma 3, we assert that

ptu—1 xicm,;RkJrl (1 _ (C7’Li’Rk+1 H;Zl M(Qk’y;)Dez’j)2>
ke Tip QM et <1 — (¢miften Hj‘:l M(Qky;‘)De"’j)2>

e i = {00 | ) T\ 0]

Qiir (y,) =

h(y')
if and only if m; = my, (ei1,...,ei5) = (€r1,...,ens), and zf = zf,. It is clear that, if
m; =my, (€1, ..., €s) = (€, ... ens), and 2, = 2%, then Qi (y') = 1 € H. Conversely,

suppose that Qi (y') € H. Then there exits an F(y’) € Q(y') \ {0} satisfying

pru—1 I‘/C”I’Rk’*l (1 _ (C"thH Hb; M(Qky/-)DeiJf)
N i Jj=1 J 1o
Fy)=| I —— L | F(QY). ()
k=u IZC Pk (1 - (C Tk Hj=1 M(Q yj) ”) )

Let P be a positive integer divisible by D and let
Y= W) = (1720 (1< <),
We choose a sufficiently large P such that the following two properties are both satisfied:
(a) If (ein, .. eis) # (€iny .oy €ins), then 355, e;; PI # > e Pl
(b) F*(z) = F(1/P, 2P 2P 2Py e Qe .. z) \ {O).
Then by (9), F'*(z) satisfies the functional equation

PRI g (@@ )N o
zZ) = 2),
- xiCmiRkH (1 _ (leleJrlM(ka)l’/)Z)

where £; = Y%

it e;;P7 (1 < i <r). Therefore by Lemma 4 we see that

xi/Cmi/Rk+l (1 _ CZmle+1 X?ll)
Ii(miRk+1 (1 _ szz/Rk+1X2£1’)

cQ”

for any k (u < k < p+u—1), where X is a variable, and F*(z) € Q. Hence (; = (;
and (?mifterr = (2milie (y < B < p+wu—1). Thus (ey,...,¢e5) = (er,...,ems) by
the property (a), and ¢*™ = (?™ since g.c.d.(Rg, Rgy1,- -+, Riin_1) = 1 for any k& > 1.
Hence ¢? = ¢2 by (8) and so ¢; = ¢» since 0 < Argq; < 7 (1 < i < r). Then m; = my,
and the functional equation (10) becomes ' F*(z) = f, F*(Qz). Since F*(z) € Q" we
have 27 = z%, and the assertion is proved.

Now let S be a maximal subset of {1,...,r} such that (z!,¢;) = (2},¢y) for any
i,7 € S, which is equivalent to z = 2%, m; = my, and (e, ..., €)= (€1, .., ers). Fix
ale€ Sandlet £ =28, m=m,, and ¢; = e); (1 <j <s). Then z¥ = ¢ m; =m, and
(€i1,---,¢€is) = (e1,...,es) for any i € S and by Lemma 3 there exits a G(y') € Q(y')
satisfying

185
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: EvE S o
Gy) = ¢| 11 : 5 | Gy
u 1- (cme [T, M ()P

U
ptu=—1 . k (MR Hj':l M(Qly/.)D%
S (e ) T

2
k=u \i€S = 1 — <C7"RL+1 1., M(Qy )Dej)
ptu—1

+¢& H ZCiTz‘(Q/y/) - Z aTi(y'),

2
R (C?ILRk+1H L M(Qky )Dﬁa) €S ies

<m3k+1

where ¢; (i € S) are algebraic numbers not all zero. Then

(HM )Ty ) (G(y’)+ZCiTi(y’)> € Q)

€S

satisfies the functional equation

ptu—1 mR, s ko, \2De;
oy (it I iy M(Qby5)™P oy
) = ¢| [] - 5 | G1(QY)
k=u 1 — <<‘ran+1 H M(Qk )DE’])
1
[}, M(D(Q = E)~'Quy))e

ptu—1 k mRy41 l De;
% Z (Zcixf_uH)H ¢ [T=, M(Q'y)) (1)

k=u \i€S I=u 1 — <§mRz+1 H L M(Qly )Dej>

Let P be a positive integer and let ;= (v}, ..., y},) = (2I,...,zP") (1 < j < 5). We
choose a sufficiently large P such that

H(z)=G*(2,....20 28 2P e Qa0 20).

’¥n ) n

+

Then by (11), H(z) satisfies the functional equation

ptu—1
CmRk“ ]W(ka)ZD[ »
H(z) = 5(}_1 — ( M (2 )M)2> H(z)
pu—1 k
" CleH M(le)DlZ
M(D(Q— E “10z) Z (Z : H)El—(cmﬁmme)W)”

where £ = 377 e;P7. Letting H(z) = A(2)/B(z), where A(2) and B(z) are coprime
polynomials in Q[zy, .. ., z,] with B # 0, and letting M (D(Q—E)"'Q%z) = M,(z)/My(z),
where M, (z) and Ms(2) are coprime monomials in Q[z, .. ., 2,], we have

ptu—1

A BEr2)Mi(2) T (1= (¢mem(@2)™)?)

k=u



p+u 1
= CA(Rz)B(z)M(2)" [] ¢ M(QFz)™"

k=u

ptu—1
+ Z (Z e k u+1> ) (Qp /HCmRHlM Ql )
k=u €S l=u

p+u—1

X H (1 — (¢ M(Q 2)PY) ) ‘ (12)
—k+1

In what follows, let u be sufficiently large. By the condition ®(2) < 0, the root p of
®(X) such that Ry = bp* + o(p¥) with b > 0 (cf. Remark 4 in [6]) satisfies p > 2
and hence Ryy; > 2Ry for all sufficiently large k. Then the componentwise inequal-
ity ( oo, R)DQ = E)7'Q% = (R, ..., R)QD(Q — E)™' = (Rysn, - -, Rup1)D(Q —
E)yl< D(Rum, ..., Ryi1) holds and so 2; - - - 2, M, (2)" divides M (Q%2)P* = M(DQ"z)".
In what follows, p is replaced with its multiple if necessary. We can put the great-
est common divisor of A(QPz) and B(QPz) as 2/®) where I(p) is an n-dimensional
vector with nonnegative integer components, by Lemma 5. Then B(QFz) divides
B(z)M,(2) 2'® [T224 M(QF2)?P! by (12). Therefore B(z) is a monomial in 2y, ..., 2,
by Lemmas 1 and 6. Since p and w are independent, the right-hand side of (12) is divisible
by 21 -+ 2, My (2) B(z) and thus A(z) is divisible by 2 ---z,. Since A(z) and B(z)
are coprime, B(z) € Q. If A(z) ¢ Q and if p is sufficiently large, then by Lemma 7,
degy A(Pz) > max{degy A(2), degy My(z)‘}, which is a contradiction by comparing
the total degrees of both sides of (12). Hence A(z) € Q. Then by (12), we see that
Sttt =0 (u<k<p+u—1)andso Yy, gczl =0 (1 <k <p). Hence z; = 2y
for some distinct i, € S since ¢; (i € S) are not all zero. Then (x;, ¢;) = (z#, gr), which
is a contradiction, and the proof of the theorem is completed. O
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