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1 Introduction

For any sequence {x,} of positive integers such that 22 | z,,, and 22 # z,., for all
sufficiently large n and ¢,, € {—1, 1}, we define the sum

o0
€
S=1+)» —=.
>
n=1
In this paper we give the explicit continued fraction expansion of the sum and compute

its irrationality exponent, where the irrationality exponent pu(«) of a real number « is
defined by the supremum of the set of numbers p for which the inequality

has infinitely many rational solutions p/q. Every irrational o has p(«) > 2. If pu(«) > 2,
then « is transcendental by Roth’s theorem. Our result is as follows (see Theorem 2 in
Section 3):

log z,,
w(S) = lim sup 08 Lntt
n—oo 108 Ty,

For the proof of Theorem 2, we first expand the partial sums

n 1
S,=14+)» —

in continued fractions in the generic case x1 > 3, 22 | 2,11, and 22 # 2, (n > 1) (see
Theorem 2 in Section 3), which were given by Hone [4] when ¢, = 1 for all n > 1. The
continued fractions obtained in Theorem 1 have certain symmetric patterns; namely, if
the continued fraction expansion of the nth partial sum is written using the standard
notation as

Sp=1[1;a1,as,...,a4,)



with a;, # 1, then

Sn+1 = [17 A1, a2, .. . 7aln+1]

. 2
= [17 ag, ag, . .. 7aln7ITL+1/In - 17 17 ay, — 13 ap,—1, - - - 7&1]

if £,41 = 1, and otherwise,

STL+1 = [17 aln,+1> cee, A2, al]
(see the formula (11) in Theorem 1). By means of this recursive construction of the
continued fraction expansions of S,,, we can compute the irrationality exponent of the sum
S = lim, o 5, using the following formula (cf., eg., [5, Theorem 1]): The irrationality

exponent of the simple continued fraction « = [ag;az, as,...] with the nth convergent
P/ = [a0; a1, az, ..., a,] is given by
log a,,
(o) = 2 + limsup 08 dnit (1)

nooo  logq,

The assumption x; > 3 in Theorem 1 is indispensable, since the minimal partial de-
nominator in the continued fraction expansions of the sums S,, is x; — 2, which vanishes
if 21 = 2. In this degenerate case, we remove these zeros using the formula (6) below and
obtain the simple continued fraction expansions, which will be exhibited in Theorem 3 in

the final section 4.

2 Continued fraction expansion of the sums

We employ the standard notion for continued fractions:

[ag; a, ag, ... = lim [ag; aq, ..., an],
n—oo
where
1
[ao;al,a%...]:ag—ﬁ——a n 1
1 ast T
o

The numerators p, and denominators ¢, of the nth convergent p,, /g, satisfy the following

relations:
P—1 = 17 Po = Qo, Pn = ApPp—1 +pn71, (2)
-1=0, @=1, ¢u=anth1+ G,
q
= = [an;an—lu--‘7a27al]7 (3)
Gn—1

Pndn—1 — Pn—14n = (71)71-4-1. (4)
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We also use the formulas:

1—1[0;a1,0as,...,a,) =[0;1,a; — 1, as,...,a,], (5)

[...,a,0,b,...]=1]..,a+0,...]. (6)

A continued fraction [ag; a1, as, .. .] is said to be simple, if aq is an integer and ay, as, . . .

are positive integers. We define the length of a finite continued fraction [ag; a1, az, . . . , a,)
by n.

Theorem 1. Let {x,} be a sequence of positive integers such that

Tn
x; >2  (n>0), (7)

2
ro=1 x1>3, =z | Tpnt1,  Rnt1 =

and let €, € {—1,1}. Then the sums
S, =1+ zn: = (8)
P

have the following simple continued fraction expansions:
Case 1. Let ey = 1. Then

S, = [1;21_171722_1721] Zf 52:17
2 121,20 — 1,1,20 = 1] if ep=—1.
Forn > 2, if the expansion
Sp =1[1l;a1,0a9,...,a;] (10)
with ai, # 1 and 1, = 3-2""1 — 2 (n > 2) is given, then
g . _ [1,a1,...,a1,, 2001 — L, Lay, —1ap,—1,...,a1] if epy1 =1, (11)
nH Lar,....ap,-1,a, — 1,1, 2000 — Lay,,...,a1] if €p41 =—1

with length 1,1 = 21, + 2.
Case 2. Let ey = —1. Then

S =[0;1,by — 1,bo, ..., by ] (12)

with by, # 1, where the expansion

b boy. . by =1- 5 2

T
=1 -k

s given by Case 1.



Corollary 1. Make the same notations as in Theorem 1. Then

) lim [l;al,ag,...,aln] zf g =1,
DD iy |
w1 Ln nh_{go [O;labl - 1,b27...7bln] if e =—1.

Theorem 1 follows immediately from the following formulas.

Lemma 1 (cf. [6]). Let A, ay, ao, ..., ax be positive real numbers and let py/q, = [0; a1, as, . . .

Assume that a, > 1 and A > 1. Then

0;a1,a9,...,a5, A—1,1,ar — 1, a_1,...,a9,a1] = Pre + (_lgk, (13)
a  Ag
pe  (=1)F

[O;G/l.,az,... yAp 1, — 1,1714— 17ak,...7a2,a1} = ;: — (Aq% . (14)

Proof of Theorem 1. The expansions (9) can be obtained by direct calculation. Noting
that xj | 241, we have by (8) and (10) x, = ¢, (n > 1).

Case 1. Let €; = 1. Assume first that €,,1 = 1. Applying the formula (13) with & = [,,
A= z,11, and q, = x,, we get

—1)
Lay,... a0, 200 — L 1Lay, —1a,1,...,a1] = P ( )2 =S, + = On+1-
qi, Zn+14), LTp1
Similarly, we can prove (11) with &, = —1 using (14).

Case 2. Let ey = —1. The expansion (12) follows from Case 1 and the formula (5), and
the proof is completed. O

3 Irrationality exponent of the sum
Theorem 2. Let {z,} be a sequence of positive integers such that
1‘721 ‘ Tn+1, 1‘721 7£ Tn+1 (15)

for all sufficiently large n and let £, € {—1,1}. Then the irrationality exponent of the

sum .
En
S=1 — 16
" "
s given by
1 n
w(S) = lim sup 08 fntl (17)

n—oo 108 Ty

Corollary 2. The sum S as in (16) is transcendental, if

1 ,
w(S) = limsup 8 Tnt1
n—oo 10Ty

> 2. (18)
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Corollary 3. Let {x,} and {e,} be as in Theorem 2. Then

For the proof of Theorem 2, we need the following lemma (cf., eg., [3, Lemma 1]):

Lemma 2. If « is an irrational number, then

o-n(22)

for any integers a, b, ¢, and d with ad — bc # 0.

Proof of Theorem 2. We may assume in view of Lemma 2 that {z,} fulfills (7). So we
can apply Theorem 1 to the sum S = lim,,_,, S,.
Case 1. Let €; = 1. Then by (10) and (11), we have

max
1<k<lp+t1 log Q-1

max

log a log ay, log(Zn+1 -1)
= maxy e logge—1’  logq,

if £,41 = 1. Otherwise, namely, if €,,; = —1, the last formula holds with the equality
replaced by the inequality <. Hence, we obtain

) log ay, ) log(zpe1 — 1)
limsup ———— = limsup ——— =
koo  10g qk—1 n—oco log 2, n—oo  10g Ty,

and the formula (1) yields (17).
Case 2. Let ¢y = —1. Then

L log 7,
w(S)=pu2-95)=n <1++Z€k> = lim sup 08 Tn+1
b Uk

T nooo 108 Ty

by Lemma 2 and Case 1, and the proof is completed. O

4 Continued fraction expansions in the degenerate case

In this section we give the continued fraction expansions of the sums S, in the case
x1 = 2. We focus on the case e; = 1, since the other case can be dealt with by using
the formula (5). By the formulas (10) and (11) in Theorem 1, partial denominators
ar (1 < k < l,41) in the expansion of S,.; consist of those in the expansion of S,,
namely, a;, (1 <k <1,), plus 1, z,.1 — 1(#£ 0), and a;, — 1. We start with the expansions
of S3 with length [3 = 10.
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Example 1. The continued fraction expansions of Sz with e1 = 1.

[1;21717172271321723717172171722717172171] Zf (62753):(171)7
[1;Z1_1717Z2_1721_1:17Z3_17Z17Z2_1717Z1_1] Zf (52753):(17_1):
[1;217227171721717237171721727172271721} Zf (62753) = (7171)7
[1;Z17Z2_171721_271723_17'21_171722_1721} Zf (52753) = (_L_l)
Example 1 implies that, if e, = —1, there is only one zero z; — 2 in the expansions of

Ss and ay = a;, = z; for all n > 3. Hence, since q;, —1 = z; — 1 # 0, all zeros appearing
in the expansion of S are generated from the zero z; — 2 in S3 by the recursive procedure
from (10) to (11). On the other hand, if e5 = 1, there is no zero in the expansions of Sj.
To study this case more precisely, we observe:

Example 2. The continued fraction expansions of Sy with (£1,e9) = (1,1).

[1;0,17...70,9,21—1724—171,21—270/9,...70,1] Zf 54:17
[Lar,...,a0,21 —2, 1,24 — 1,20 — Lyag,...,a1] if e4=—1
with length ly = 22, where the expansions Sz = [1; a1, ..., a0 are given in Example 1 with

52:1.

Example 1 and 2 with (11) imply that, if e = 1, there is only one zero z; — 2 in the
expansions of Sy and a; = q;, = z; — 1 for all n > 3. Hence each of the expansions of S, 11
(n > 4) contains zeros which come from that of S,, plus one new zero a;, — 1 = 2z, — 2.

In this way, we can locate all zeros, namely, z; — 2, in the expansions of S and remove
them using the formula (6). Rewriting the continued fractions of the form [... 1,z — 1]
as [...,2], we obtain:

Theorem 3. Let {x,} be a sequence of positive integers such that

X
2 n+1
T =2, T|Thy1,  Zppr = o =2 (n>1),

and let e, € {—1,1}. Then the sums

have the following simple continued fraction expansions:

Case 1.1. Let (g1,e2) = (1,1). Then

. 1:1,1,20 — 1,2, — 1,1,1,20 — 1,2] if e3=1,
STl MLl 11,1, 1,2, —1,2] if ey =1
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with length 9. Forn > 3, if the expansionT,, = [1;1,1,as, ..., as, 1,2] witht, = 52721
18 given, then

T [1;1,1,a3,...,atn,1,1,1,zn+1—1,2,atn,2,...,a3,2] Zf Entl = 17
T L Lag 02 2 — L1 L 108,26 g = —1

with length t, 1 = 2t, + 1.
Case 1.2. Let (e1,e2) = (1,—1). Then
[1;2,22*1,1,1,23*1,2722*1,2] Zf 83217
Dl 2a-125-1115-12 if &=-1
with length 8. For n > 3, if the expansion T,, = [1;2, as, ..., ay, 1, 2] with length t, — 1 is
given, then
T [1;2,@2,...,atn_l,27zn+1—1,171,atn_2,..,,a2,2] Zf €n+1 :].7
e [1;27a2a"'7atn—27171azn+1 _172aatn—17~~~7a272] Zf Ent+1 = -1

with length t, .1 — 1.
Case 2. Let e, = —1. Then

T _ [O;Q,bg,...,btn] Zf E9 = —].7
" [0;1,1,bg,...,b,, 1] if e2=1,

where the expansion

n

€k
1—23;7 = [1;01,ba, ..., by,]
k=1

with w, = t, if eo = —1, =t, 1 if €2 = 1 is given by Case 1.1 or 1.2.

After the conference Amou kindly sent the last named author his joint paper [1] with
Bugeaud, in which our Theorem 2 was already generalized (see [1, Lemma 3]). Recently,
the authors proved the following theorems which improves the result in [1].

Theorem ([2, Theorem 1]). Let {x,} be a sequence of rational numbers greater than one
and let €, € {1,1} with e, = 1. Put 2 = 21, 2,11 = Tp17,> (n > 1) and define

01 = denz, Ons1 = O2denz, i (n>1). (19)
Assume that the following two conditions hold:
(i) 2z, > 1 for all sufficiently large n,

(11) IOg 5n+1 = O(IOg xn)
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Then the irrationality exponent of the number

2 e
S = E —=
Ln
n=1
15 equal to
log x,,
7 = limsup B Tnil

nooo  logx,
Theorem ([2, Theorem 2]). Make the same notations as in Theorem 2. Put x,, = t, /s,

with t,, s, € Zsg. Assume that the following two conditions hold:
(i)' 82[spa1, t2|tnsr for all sufficiently large n,

(ii)" log sp+1 = o(logty,).

Then the irrationality exponent of the number S is equal to
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