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1. Introduction

Let X be a finite set. We call mapping 7:2X — 92X 4 closure operator if T satisfies the following
conditions.

(Cl) VAC X: A C 7(A). (Exfensiona.lity)
(C2) VA,BC X:AC B=> 7(A) C 7(B). (Monotonicity)
(C3) VAC X:1(r(A)) = 1(A). (Idempoteﬁce)

A pair (X,7) of a finite set X and a closure operator 7:2X — 2X is called a closure space
(see [3]). A closure space (X, 7) is a matroid if T satisfies the following (Steinitz-MacLane)
Exchange Axiom:

(EA) VA C X,Vg & r(A):q € T(AUp) => p € 7(AUq)

(see Welsh [10] and Oxley [8]). On the other hand, a closure space (X, 7) is called an antima-
troid (or convez geometry) if T satisfies 7(§) = @ and the following Antiexchange Axiom:

(AE) VA C X,Vp,q & 7(A) with p # q:q € T(AUp) = p & T(AUy).

See Edelman and Jamison [2] and Korte, Lovész and Schrader [4] for surveys aud examples of
antimatroids.

The extreme point operator ex: 2% — 2% of a closure space (X, 7) is defined as ex(4) =
{rlpe A pg(A-p)} (A C X). As the name suggests, the concept of extreme point had
first appeared in the context of antimatroid. However, this concept can be applied to general
closure spaces. For example, if (X, 7) is a matroid, ex(A) is the set of isthmuses of A for each
A C X (see Remark 2.2 below). :

We characterize extreme point operators of closure spaces as follows.

Theorem 1.1: 4 mapping S:2X — 2% is.the extreme point operator of a closure space if and
only if S satisfies the following (Ex1)- (Ex3).

(Ex1) VAC X:S(A) C A. (Intensionality)
(Ex2) ACBC X => S(B)NAC S5(A). (Chernoff property)
(Ex3) VAC X,Vp,q g A:(p ¢ S(AUp),q € S(AUgq)) => g€ S(AUpUq).
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As corollaries of Theorem 1.1, we have following characterizations of the extreme point
operators of matroids and antimatroids. respectively.

Theorem 1.2: A mapping S:2X — 2X is the extreme point operator of a matroid if and only
if S satisfies (Ex1) -(Ex3) and the following (Ex4).

(Ex4) VAC X,¥pe X:pe S(AUp) = S(AUp) 2 S(4A) Up.
o

Theorem 1.3: A mapping S:2X — 2X is the extreme point operator of un antimatroid if and
only if S satisfies (Ex0)—(Ex2) and (Ex5). where Conditions (Ex0) and (Ex5) are defined as
follows.

(Ex0) Vp € X:S({p}) = {p}. | (Singleton Identity)
(Ex5) VA,BC X:S(B) C AC B = S(A) C S(B). (Aizerman’s Axiom)
a

Conditions (Ex2) and (Ex5) in Theorem 1.3 is easily seen to be equivalent to path-independent
condition. However, it is natural in view of Theorem 1.1 to list conditions (Ex0)-(Ex2) and
(Ex5) since, as we shall see, Aizerman’s Axiom [1] is a strengthening of Condition (Ex3).

The rest of this paper is organized as follows. In Section 2, we collect previously known
results on extreme point operator of closure spaces and antimatroids. In Section 3, we give a
proof of Theorem 1.1. In Section 4, we prove Theorems 1.2 and 1.3. In Section 5, we discuss
relationship between Theorem 1.3 and the result of Koshevoy [5].

2. Preliminaries

In this section, we collect important lemmas concerning extreme point operators of closure
spaces and antimatroids, which will be useful in the subsequent sections.
Extreme point operators of closure spaces can be described as follows.

Lemma 2.1: Suppose that (X, ) is a closure space. Then, for each A C X we have
ex(A) = {B|BC A,7(B) = r(A)}.

(Proof) Let p be an extreme point of A. Suppose that B C A and 7(B) = 7(A). If p & B, then
since B C A — p, we have 7(B) C 7(A — p) € 7(A), a contradiction. We thus have inclusion
c. .

Conversely, if p € A is not an extreme point of A. we have 7(A — p) = 7(A4). Hence,
inclusion D holds. O

Lenima 2.1 is partly due to Edelman and Jamison [2].
For a closure space (X,7) and A C X is called spanning if 7(A) = X. For A C X the
restriction of (X.7) by A is the closure space (A.74) dcfined by

74(C)=T(C)NA_ (CC A).



127

Remark 2.2: For a matroid (X,7) p € X is called an isthmus if p € B for each spauning set
B of X. Lemma 2.1 shows that ex(A) is the set of isthmuses of (X.74).

The following proposition shows that the extreme point operator of a closure space has an
important property called the Chernoff property (see Moulin [7]).

Proposition 2.3 (Chernoff property [9]): Let (X,7) be a closure space. If A C B C X. we
have ex(B) N A C ex(4).

(Proof) If p € ex(B)NA, we have p ¢ 7(B—p). Since 7(A—p) C 7(B—p), we have p & 7(A-p),
and hence, we have p € ex(A). O

The extreme point operator of a closure space is idempotent as is shown in the following
proposition.

Proposition 2.4 (Idempotency): Let (X,7) be a closure space. We have ex(ex(A)) = ex(A)
for each A C X.

(Proof) Since we have ex(A) C A, it follows from Lemma 2.3 that ex(A) = ex(A4) N ex(A) C
ex(ex(A)). O

Example 2.5: Cousider the closure space (X, 7) depicted in the left-hand side of the following
figure, where X = {a,b, c}. The associated extreme point operator is shown in the right-hand
side. ' '

abc — abe abc— ¢
® ®
ab+— ab ca +—> abe  bec— abe ab— b ca — ca bc — be
[ ] (@] O [ J (@] O
a—a b— ab cwC ar—a b—b cH—C
[ ] O ]
®H0 ®p—0
T ex

Antimatroids can be characterized in many ways. Among them is the following due to
Edelman and Jamison [2].

For a closure space (X, 7), a subset K C X is called closed if 7(K) = K.

Theorem 2.6 (Edelman and Jamison [2]): Let (X, ) be a closure space with (@) = 0. The
following conditions are equivalent.

(a) (X,7) is an antimatroid.

(b) VA C X:7(A) = 7(ex(A)).

(c) For each closed set K and p ¢ K, we have p € ex(7(K Up)).
0

Condition (b) in the above theorem is called the (finite) Minkowski-Krein-Milman property.
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Lemma 2.7 (Monjardet and Raderanirina [6, Theorem 2]): Let (X.7) be a closure space. For
each A C X, we have ex(1(A)) C ex(A). '

(Proof) Let A C X. Since A C 7(A4) = 7(1(4)), we have

{B|B C A7(B)=1(A)} C{B|BC r(4).7(B) = (r(A))}.

It follows from Lemma 2.1 that ex(7(A4)) C ex(4). O

We have the following variant of the Minkowski-Krein-Milman property, where 7 and ex
are transposed.

Lemma 2.8 (Monjardet and Raderanirina [6, Proposition 5]): A closure space (X, 7) with 7(8)
= 0 is an antimatroid if and only if for each A C X we have ex(4) = ex(1(4)).

(Proof) If (X, ) is an antimatroid, then it follows from Theorem 2.6(b) that 7(ex(7(4))) =
7(A). Also, we have ex(7(A)) C ex(A) C A by Lemma 2.7. Therefore, we have from Lemma 2.1
that ex(A) C ex(7(4)).

Conversely, suppose that (X,7) is not an antimatroid. Then, by Theorem 2.6(c), there
exists a closed K and p ¢ K such that p ¢ ex(7(K Up)). However, since we have p € ex(K Up)
by definition of ex, it follows that ex(K Up) 2 ex(r(K Up)). O

3. [Extreme point operator of closure spaces

In this section, we give a proof of Theorem 1.1. The following proposition proves the “only
if” part of the theorem.

Proposition 3.1: Let (X, 7) be a closure space and S:2X — 2X be its extreme point operator.
Then, there hold Conditions (Ex1)—(Ex3).

(Proof) (Ex1) is clear from the definition of extreme point operator. Condition (Ex2) follows
from Proposition 2.3.

Let us show (Ex3). Suppose that p,g & A,p € S(AUp) and q € S(AUgq). Then, by
definition of S, we have p € 7(A) and q & 7(A). Therefore, we have 7(AUp) = 7(4) # q, and
hence, g € S(AUpUg). O

For a mapping §:2X — 2X define 75:2X — 2X by
Ts(A) = AUA (ACX), (3.1)

where )
A={q|g¢Aq¢gS(AUq)} _ (3.2)
for each A C X.

Lemma 3.2: Suppose that S:2X — 2X satisfies Conditions (Ex1)-(Ex3). Then, mapping
75:2% — 2X defined in (3.1) is a closure operator.

(Proof) By its definition, 7g satisfies Extensionality (C1). It remains to show Monotonicity
(C2) and Idempotence (C3).

We first show (C2). Suppose A C B C X. Let p € 75(A). If p € B, then p € 75(B)
and we are done. Suppose p € B. Invoking (Ex2) to inclusion AUp C B U p, we have
S(BUp)N(AUp) C S(AUp). Since p &€ S(AUp), we have p & S(BUp), and hence, p € 75(B).
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Next we show (C3). Let 4 C X. It suffices to show that 7¢(4) = AUA = §). Suppose
that g € AU A.

We prove by induction on |B| that ¢ € S(AU B Ugq) for each B C A. This is trivially true
for B = () since we have ¢ € S(A U q) by definition of A. Suppose § £ B C A and let p € B.
We have p,q € AU (B — p). By the induction hypothesis, we have ¢ € S(AU (B — p) U q).
Since AUp C AU B, we have by (Ex2) that

S(AUB)N(Aup) C S(AuUp).
Since p € A, we have p & S(AUp), and hence, p ¢ S(AU B) = S(AU (B —p)Up). By (Ex3),
we have g € S(AU(B—p)UpUgq) = S(AUBUg).

We have q € S(AU AU q) in particular. Since g ¢ AU A is arbitrary, we have 7g(A4) =
This completes the proof of the present lemma. O

Note that the set £ of closed subsets of closure space (X, 7s) is given by
L={A|ACXVpeX-ApecSAUp)} (3.3)

by definition (3.1) of 7g.
The next theorem proves the “if” part of Theorem 1.1.

Theorem 3.3: Suppose that a mapping S:2X — 2X satisfies (Ex1)—~(Ex3). Then, (X,7s)
defined by (3.1) is a closure space with its extreme point operator being S.

(Proof) Lemma 3.2 shows that (X, 7s) is a closure space.

Let ex: 2X — 2X be the extreme point operator of (X, 7s). We shall show ex(A4) = S(A)
for each A C X. Suppose A C X.

Let p € ex(A). We have p € A and p & 75(4 — p). By definition of 75, we have p €
S((A—-p)up) = S(A). Conversely, let p € S(A). Then, by definition of 7g, we have
p & 7s(A — p). Since p € A due to (Ex1), we conclude that p € ex(4). O

4. Extreme point operators of matroids and antimatroids

In this section, we prove Theorems 1.2 and 1.3.
We first prove Theorem 1.2 concerning extreme point operators of matroids.

(Proof of Theorem 1.2) Suppose that §:2X — 2% is the extreme point operator of a matroid
(X,7). Let AC X,p¢& A and p € S(AUp). We have to show that S(AUp) 2 S(A) Up. Let
g € S(A) and suppose, on the contrary, that ¢ € S(A U p). Then, by definition of S, we have
q & 7(A—q) and g € T(A—qUp). It follows from Exchange Axiom that p € T(A—qUgq) = 7(A).
This means that p ¢ S(AUp), a contradiction.

Conversely, suppose S:2%X — 2X satisfies (Ex1)-(Ex4). We know from Theorem 1.1 that
S is the extreme point operator of a closure space (X, 7). Hence, it suffices to show that
satisfies Exchange Axiom (EA).

Suppose that p € 7(A U gq) — 7(A). Since p € 7(A), we have p ¢ A and p € S(AUp).
Then, we have, by (Ex4), that S(AUp) 2 S(A) Up. Suppose, on the contrary, that we have
g € S(AUpUgq). Then,

S(AUPUQ) 2 S(AUp) Uq 2 S(4) UpUg.

However, since p € 7(A U q), we have p € S(AUpU q), a contradiction. Therefore, we have
g€ S(AUpUq), and hence, g € T(AUp). O

Next, we consider extreme point operators of antimatroids.
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Proposition 4.1 (see Mounlin [7]): Condition (Ex2) is equivalent to any one of the following
four conditions, provided that (Ex1) holds.

(Ex2a) VA, B C X:S(AUB) C S(S(A) U B).

(Ex2b) VA,B C X:S(AUB) C 5(S(4) U S(B)).
(Ex2c) VA, B C X:S(AUB) C S(A)US(B).
(Ex2d) VA,B C X:S(AUB) C S(4) UB.

O

The following lemma shows that Condition (Ex3) is a weakening of Aizerman’s Axiom
(Ex5).

Lemma 4.2: Condition (Ex5) implies Condition (Ex3), provided that Conditions (Ex1)—(Ex2)
hold.

(Proof) Suppose that a mapping S: 2% — 2X satisfies Conditions (Ex1), (Ex2) and (Ex5). Let
us consider A C X and p,q € A such that p € S(AUp) and ¢ € S(A U q). Then, it follows
from Proposition 4.1 and (Ex2) that

S(AUpUg) C S(AUp)UgC Aug.
Applying (Ex5) to the inclusions
S(AUpuUq)CAUgC AUpUyg,
we have g € S(AUq) C S(AUpUgq). O

Theorem 4.3: Suppose that S:2X — 2X satisfies (Ex0)~(Ex2) and (Ex5). Then, (X,7s) is
an antimatroid with its extreme point operator being S.

(Proof) We have from Lemma 4.2 and Theorem 3.3 that (X, 7s) is a closure space and that
S is the extreme point operator of (X, 7g). Therefore, it suffices to show that (X, 7g) is an
antimatroid. We show that (X, 7g) satisfies the condition in Lemma 2.8.

Let A C X be arbitrary. We have from Theorem 3.3 and Lemma 2.7 that

S(rs(4)) € S(4) € 7s(A). (4.1)

Applying Aizerman's Axiom (Ex5) to (4.1), we have S(A) = S(S(A4)) C S(rs(A)), where the
equation follows from Proposition 2.4. Since we have 75(@) = @ by (Ex0), it follows from
Lemma 2.8 that (X, 7g) is an antimatroid. O

(Proof of Theorem 1.3) The “if” part of the theorem follows from Theorem 4.3.

Let us show the “only if” part. Let S be the extreme point operator of an antimatroid
(X, 7). Since an antimatroid is a closure space, we have (Ex1)-(Ex2) by Proposition 3.1. Also,
since 7(0) = 0, we have S({p}) = {p} for each p € X.

To show (Ex5), let us suppose S(B) C A C B. Then, it follows from the monotonicity of
7 and Theorem 2.6(b) that

7(B) = 7(S(B)) € r(4) € 7(B),
and hence, we have S(A) = S(B) by Lemma 2.8. 0
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5. Concluding remarks

A choice function on X is a mapping S:2%X — 2X gsatisfying the following two conditions (see
Moulin [7]).

(Ex1) S(A)C A (ACX). (Intensionality)
(NE) S(A)#0 ®+#ACX). (Nonemptiness)

Koshevoy [5] characterized extreme point operators of antimatroids as path-independent choice
functions as follows.

Theorem 5.1 (Koshevoy [5]): A mapping S:2X — 2% is the extreme point operator of an
antimatroid if and only if S satisfies (Ex1), (NE) and the following (PI).

(PI) VA,B C X:S(AU B) = S(S(A) U S(B)). (Path Independence)
a

Path-independent property (PI) decomposes into Chernoff property (Ex2) and Aizerman’s
Axiom (Ex5) as the following lemma shows.

Lemma 5.2 (Aizerman and Malishevski [1]; see also Moulin [7]): Condition (PI) is equiv-
alent to Conditions (Ex2) and (Ex5), provided that (Ex1) holds. O

The following proposition shows the equivalence of Theorem 1.3 and Theorem 5.1.

Proposition 5.3: The set of Conditions (Ex0), (Ex1). (Ex2) and (Ex5) is equivalent to that
of Conditions (Ex1), (NE) and (PI).

(Proof) Suppose that §:2X — 2% satisfies (Ex1), (NE) and (PI). Then, by Lemma 5.2, S
satisfies (Ex2) and (Ex5). Also, Conditions (Ex1) and (NE) implies (Ex0).

Conversely, suppose that S satisfies (Ex0), (Ex1), (Ex2) and (Ex5). Then, by Lemma 5.2,
we have (PI). It remains to show that §:2X — 2% satisfies (NE). Suppose, on the contrary,
that for some A # () we have S(A) = 0. Let p € A. Then, we have S(A4) C {p} C A. It follows
from (Ex5) that S({p}) C S(A) = @. This contradicts (Ex0). O

Koshevoy proved the “if” part of Theorem 5.1 as follows. He showed that, given a choice
function S:2X — 2% satisfying (PI), the mapping defined by

54 = J{BIBCX, S(B) =S(A)} (ACX). (5.1)

is a closure operator and that S is the extreme point operator of (X, 5). This approach does not
work for proving Theorem 1.1 since S may not be a closure operator. (Consider the extreme
point operator given in Example 2.5. We have ex({c}) = {a,b,c} Z {c¢,a} = ex({c, a}).)

However, if $:2%X — 2X gatisfies the conditions in Theorem 1.3 (or equivalently, those in
Theorem 5.1), then we have 75 = S.

Proposition 5.4: Suppose that mapping S:2X — 2X satisfies Conditions (Ex0)—(Ex2) and
(Ex5). Then, we have s = S, where 75 and S are, respectively, defined by (3.1) and (5.1).

To show Proposition 5.4. we need the following lemma. .

Lemma 5.5: Let (X, 71) and (X, 73) be closure spaces with their extreme pomf operators being
ex; and exy. respectively. If Ty # 1y, then ex; # exs.
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(Proof) Let £ and £y be the set of closed subsets of (X,7;) and (X, 72), respectively. Since
a closure operator is uniquely determined by its closed sets, we have £ # L3. Suppose, say.
L1 € Ly and let A € L) — Lo. Then. we have 71(A) = A and 7(A4) 2 A. Let p € 12(4) - A.
We have p € ex;(AUp) and p & exa(AUp) by definition of extreme point operator. Therefore.
we have ex; # exs. [

(Proof of Proposition 5.4) Suppose that mapping S: 2% — 2% satisfies (Ex0)-(Ex2) and (Ex5).
Then, we have from Theorem 4.3 that (X, 75) is an antimatroid with its extreme point operator
being S. However, § is also the extreme point operator of (X, S) by Theorem 5.1 and we must
have 7¢ = § by Lemma 5.5. O

If §:2X - 2X is the extreme point operator of an antimatroid (X, 7), then the represen-
tation of the mapping S = 7 in (5.1) looks nice in comparison with the representation of S in
(2.1) since, in this case, we have

ex(A) =[{B|B C X,7(B) = 7(4)}. (5.2)

We close this paper posing a question about rationalizability of extreme point operators of
closure spaces. It is known that a choice function S:2X — 2X is path-independent if and only

if it is pseudo-rationalizable, i.e. there exists linear orders <,---, <, on X such that
n ,
S(4) = | Jmax<,(4) (A< X) (5.3)
i=1

([1]; see also [7]), where for a partial order < on X max<:2* — 2% is defined as
max<(4) = {p|p€ 4, Age Aip<q} (ACX). (5.4)

Is it possible to “rationalize” functions satisfying (Ex1)-(Ex3) in some sense?
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