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Stabilization of bridge decompositions of knots 

and bridge positions of knot types 

Yeonhee Jang, Tsuyoshi Kobayashi, Makoto Ozawa and Kazuto Takao 

1 Introduction 

We study bridge decompositions of knots and bridge positions of knot types. A bridge 

decomposition of a knot in the 3-sphere is a decomposition of it into two very simple 

pieces. A bridge position of a knot type is a representative knot of it which lies in a 

good way with respect to the standard height function in the 3-sphere. (See Section 2 for 

precise definitions.) While they are seemingly equivalent, we will point out substantial 

differences between them in a separate paper [1], currently in preparation. 

In this paper, we show the uniqueness of stabilization for bridge decompositions and 

bridge positions. A stabilization for a bridge decomposition of a knot is a certain process 

to obtain a new bridge decomposition of the same knot, and similarly for a bridge position. 

By the uniqueness of stabilization, we mean the following facts, which have been folklore 

without proofs in the literature as far as we are aware. 

Fact 1. Let (B_, Bけ bea bridge decomposition of a knot, and (B'_, B~) be the bridge 
decomposition obtained from (B_, B』 bya stabilization. Then, the bridge isotopy class 

of (B'_, B~) depends only on the bridge isotopy class of (B_, Bサ

Fact 2. Let K be a bridge position of a knot type, and K'be the bridge position obtained 

from K by a stabilization. Then, the bridge isotopy class of K'depends only on the bridge 

isotopy class of K. 
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2 Preliminaries 

In this section, we review basic definitions concerning bridge decompositions and bridge 

positions. We work in the smooth category. 

The notions of knot and knot type are defined as follows. A knot is a circle embedded 

in the 3-sphere S3. Two knots are said to be isotopic if there is an ambient isotopy of S3 

which takes one to the other. A knot type is an isotopy class of knots. 

2.1 Bridge decomposition 

An n-string trivial tangle is the pair of a 3-ball and a collection of pairwise disjoint 

properly embedded n arcs in the ball simultaneously parallel to the boundary. 

The notion of bridge decomposition for knots is defined as follows. Let K be a knot, and 

n be a positive integer. Ann-bridge decomposition of K is the pair (B_, B』of3-balls B_ 

and B+ such that B_ u B+ = S3 and B_ n B+ = 8B_ = DB+, and the 2-sphere B_ n B+ 

intersects K transversely, and (B_, Kn  B_), (B+, Kn  B+) are n-string trivial tangles. 

A bridge decomposition of K is an m-bridge decomposition of K for some positive integer 

m. Two bridge d 
．． 

ecompos1t1ons (B1 _,Bい） and (B2, ―, Bぃ） of K are said to be bridge 

isotopic if there is an ambient isotopy { Ht : S3→ 炉}tE[O,l] such that R。isthe identity 

map, H1 (Bi,-) = B2 -, and 
.. 

(Ht (B1,-), Ht (Bぃ）） is a bridge decompos1t10n of K for 

every t E [O, 1]. 
The notion of stabilization for bridge decompositions is defined as follows. Let K be a 

knot, and (B_, Bけbea bridge decomposition of K. Let P denote the 2-sphere B_ n B+. 

Let a be an arc in S3 such that 8a consists of a point in K ¥Panda point in P ¥ K, and 

that the interior of a is disjoint from Kand P. Suppose that there is a disk△ in S3 such 

that 8△ is composed of a, a subarc of K, and an arc on P, and that the interior of△ is 

disjoint from Kand P. Then, we call a a stabilizing arc for (B_, B+)-Let E denote the 

sign such that a C Be, and let N(a) be a small closed neighborhood of a in S釘LetB'_e 

denote the 3-ball obtained from B_e U N(a) by smoothing the corner 8B_e n 8N(a). Let 

B'denote the closure o 
£ 

f S3 ¥ B'_c Then (B'_, B~) is a bridge decomposition of K. We 

say that (B'_, B~) is obtained from (B_, B』 bya stabilization, or, more specifically, by 

the stabilization along a. 

2.2 Bridge position 

We let h denote the standard height function of the 3-sphere throughout the paper. To 

be specific, one may regard S3 as the unit sphere in配 andh: S3→ 股 asthe restriction 

of the projection of配 toone of the艮factors.
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The notion of bridge position for knot types is defined as follows. Let K, be a knot type, 

and n be a positive integer. An n-bridge position of K, is a knot K in K, such that the 

function hにhasexactly 2n critical points, they are all non-degenerate, and any locally 

maximal value is greater than any locally minimal value. A bridge position of K, is an 

m-bridge position of K, for some positive integer m. Two bridge positions K1 and K2 of 

K, are said to be bridge isotopic if there is an ambient isotopy { Ht : S3→ 炉｝tE[0,1] such 

that R。isthe identity map, H1 (K1) = K2, and Ht (K1) is a bridge position of K, for 

everytE [0,1]. 
The notion of stabilization for bridge positions is defined as follows. Let K, be a knot 

type, and K be a bridge position of K. Let V+ denote the minimum of the locally maximal 

values of hlK, and v_ denote the maximum of the locally minimal values of hlK• Let p be 

a point in K n h―1 ((v_, v+)), which we call a stabilizing point for K. Let K'be the knot 

obtained from K by a local isotopy near p creating a canceling pair of non-degenerate 

critical points of hlK-Then K'is a bridge position of K. We say that K'is obtained from 

K by a stabilization, or, more specifically, by the stabilization at p. 

3 Proofs 

In this section, we give proofs of Fact 1 and Fact 2 in the following subsections, respec-

tively. 

3.1 Bridge decomposition 

Note that stabilization is unique for a given bridge decomposition and a given stabilizing 

arc. That is to say, the bridge decomposition obtained by the stabilization is unique up 

to bridge isotopy, independently of the choice of small neighborhood of the arc and the 

way of smoothing the corner. 

Note also that a proof of the uniqueness for a given bridge isotopy class of bridge de-

compositions can be reduced to that for one representative decomposition as follows. Let 

K be a knot, and (B1, ―, Bぃ）， (B2,―, B2,+) be bridge isotopic bridge decompositions of 

K. Let a1, a2 be stabilizing arcs for (B1, ―, Bぃ）， (B2,―,Bぃ）， respectively.There is an 

ambient isotopy { Ht : S3→ 炉hE[o,iJsuch that E。isthe identity map, H1 (Bi,-) = B2, ―’ 
and (Ht (Bi,-), Ht(B1,+)) is a bridge decomposition of K for every t E [O, 1]. Note that 

Ht伽） is a stabilizing arc for (Ht (B1,-), Ht (Bぃ）） • This shows that the bridge decom-
positions obtained from (Bi,-, Bい） and (B2,-, B2,+) by the stabilizations along a1 and 

H1 (a1), respectively, are bridge isotopic. It remains to compare the bridge decompositions 

obtained from (B2, ―, B2,+) by the stabilizations along H1 (a1) and a2. 
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We show that stabilization for a bridge decomposition does not depend on the choice of 

stabilizing arc as follows. Let K be a knot, and n be a positive integer. Let (B_, B』be

an n-bridge decomposition of K, and a, b be stabilizing arcs for (B_, B+)-Let P denote 

the 2-sphere B_ n B . Since (B Kn  B)・ _ 1s an n-string tnvial tangle, there are pa1Iw1se 

disjoint disks D_,1, D_,2, ... , D-,n of parallelism between Kn  B_ and P. Similarly for 

(B+,KnB』,we have pairwise disjoint disks D+,1, D+,2, ... , D+,n・Since a is a stabilizing 

arc for (B_, B』,there is a disk△ in S3 such that 8△ is composed of a, a subarc of K, 

and an arc on P, and that the interior of△ is disjoint from Kand P. By an isotopy along 

△, we can make a short and close to a point p1 in Kn  P. Similarly for b, we have a point 

q in Kn  P. Lets denote the sign such that a C B0, and i denote the index such that D紅

is adjacent to p1. By a local isotopy near p1, we can put a on D,:,i• Then, by an isotopy 

along D0,i, we can translate a close to another point p2 in K n  P. Then, we can convert 

a into a stabilizing arc in B_0 near p2 preserving the bridge decomposition obtained by 

the stabilization up to bridge isotopy, as illustrated in Figure 1. Let j denote the index 

such that D-,:,j is adjacent to p2. We can put a on D-,:,j, and translate it close to another 

point p3 in KnP. Since the knot K is connected, by continuing this process, a eventually 

comes close to q, and hence isotopic to b. This shows that the bridge decompositions 

obtained from (B_, B+) by the stabilizations along any two stabilizing arcs are bridge 

isotopic. 

K 

B+ 

B_ 

↓ stabilization stabilization↓ 

⇔ ⇔ 

Figure 1: Stabilizing arcs for (B_, B+) in B_ and B+, and the bridge decompositions 

obtained by the stabilizations along them, and a bridge isotopy between them. 
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3.2 Bridge position 

Note that stabilization is unique for a given bridge position and a given stabilizing 

point. That is to say, the bridge position obtained by the stabilization is unique up to 

bridge isotopy, independently of the choice of local isotopy creating a canceling pair of 

critical points. 

Note also that a proof of the uniqueness for a given bridge isotopy class of bridge 

positions can be reduced to that for one representative position as follows. Let K, be a knot 

type, K be any bridge position of K, and p be any stabilizing point for K. Note that there 

exists a bridge position K,。ofK, bridge isotopic to K such that hlK。hasonly two critical 

values. That is to say, all the locally minimal points of hlK。havethe same value, and all 

the locally maximal points do also. There is an ambient isotopy { Ht : S3→ 炉}tE[□,11such 

that E。isthe identity map, H1 (K) = K,。,and Ht (K) is a bridge position of K, for every 

t E [O, 1]. By composmg an ISotopy along K if necessary, we can arrange {Ht} so tE[0,1] 
that Ht(P) is a stabilizing point for Ht(K). This shows that the bridge positions obtained 

from Kand K,。bythe stabilizations at p and H1 (p), respectively, are bridge isotopic. It 

remains to compare the bridge positions obtained from K,。bythe stabilizations at such 

points as H1(p). 

We show that stabilization for a bridge position does not depend on the choice of 

stabilizing point as follows. Let K, be a knot type, and n be a positive integer. Let K,。be
an n-bridge position of K, such that hlK。hasonly two critical values, and v_, V+ denote 

the minimal and maximal values, respectively. Let k1, k2, ... , k2n denote the component 

arcs of Kn  h-1 ((v_, v+)). Let p and q be stabilizing points for K。.Note that p lies on 

似 forsome index i1 in { 1, 2, ... , 2n}. By an isotopy along ki1, we can raise p close to a 

maximal point of hlK。.Then, we can convert p into a stabilizing point in kむ foranother 

index砂preservingthe bridge position obtained by the stabilization up to bridge isotopy, 

as illustrated in Figure 2. Then, by an isotopy along ki2, we can lower p close to a minimal 

point of hlKo, and convert it into a stabilizing point in ki3 for another index i3. Since the 

knot K。isconnected, by continuing this process, p eventually meets q. This shows that 

the bridge positions obtained from K。bythe stabilizations at any two stabilizing points 

are bridge isotopic. 
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Figure 2: Stabilizing points for Ki。ondifferent sides of a critical point of hlK。,and the 

bridge positions obtained by the stabilizations at them, and a bridge isotopy between 

them. 
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