# HIGHER HOMOTOPY ASSOCIATIVITY IN THE HARRIS DECOMPOSITION OF LIE GROUPS 

DAISUKE KISHIMOTO AND TOSHIYUKI MIYAUCHI

## 1. Harris decomposition

If we localize a connected Lie group at a prime $p$, then it decomposes into a product of small spaces, which is called a mod $p$ decomposition of a Lie group. The direct product factors of a $\bmod p$ decomposition of a Lie group are well understood, and so the $p$-local homotopy types of Lie groups are well understood. Recently, several attempts were made to understand the group structure of a $p$-localized Lie group through its $\bmod p$ decomposition $[1,4,5,6,7,9,10,11]$. In particular, the paper [8] studies how group structures are living in a certain fibration involving Lie groups, and this note is a survey of it.
In $[2,3]$, Harris showed that the $p$-localized homotopy groups of a compact connected Lie group admits a direct sum decomposition when a Lie group admits an automorphism of finite order which is prime to $p$. This result can be easily reinterpret as a mod $p$ decomposition of Lie groups as follows.

Theorem 1.1. Let $(G, H)$ and $p$ be in the following table.

| $(G, H)$ | $(S U(2 n+1), S O(2 n+1))$ | $(S U(2 n), S p(n))$ | $(S O(2 n), S O(2 n-1))$ |
| :---: | :---: | :---: | :---: |
| $p$ | $p \geq 3$ | $p \geq 3$ | $p \geq 3$ |
| $(G, H)$ | $\left(E_{6}, F_{4}\right)$ | $\left(S \operatorname{pin}(8), G_{2}\right)$ |  |
| $p$ | $p \geq 5$ | $p \neq 3$ |  |

Then the fibration $H \rightarrow G \rightarrow G / H$ splits $p$-locally so that there is a p-local homotopy equivalence

$$
\begin{equation*}
G \simeq_{(p)} H \times G / H . \tag{1.1}
\end{equation*}
$$

2. Result

Now we ask how the group structures of $G$ and $H$ are living in the Harris decomposition (1.1). This is nothing but asking how close to a homomorphism a projection $G_{(p)} \rightarrow H_{(p)}$ is. Groups up to homotopy are loop spaces, and so we are asking how close to a loop map a projection $G_{(p)} \rightarrow H_{(p)}$ is. It remains to measure a distance between a map between loop spaces and a loop map, and this is typically done by $A_{n}$-maps. Recall that an $A_{n}$-space for
$n \geq 2$ is an H -space with the ( $n-2$ )-th higher homotopy associativity. For example, an $A_{2}$-space is an H -space, an $A_{3}$-space is a homotopy associative H -space, and an $A_{\infty}$-space is a loop space. A map between $A_{n}$-spaces are called an $A_{n}$-map if it preserves the $A_{n}$ structures. Then one can say that a map between a loop map is close to a loop map when it is an $A_{n}$-map as $n$ gets larger. Thus our question is formulated precisely as:

Question 2.1. Let $(G, H)$ be as in Theorem 1.1. For which $k$ and $p$ is a projection $G_{(p)} \rightarrow H_{(p)}$ an $A_{k}$-map?
Remark 2.2. There are several choices of a projection $G_{(p)} \rightarrow H_{(p)}$, but our result holds for any projection whenever it holds for some projection. Then we will not be explicit on a choice of a projection.

Now we state the main theorem of [8].
Theorem 2.3. Let $(G, H), a_{k}$ and $p$ be as in the following table.

| $(G, H)$ | $(S U(2 n+1), S O(2 n+1))$ | $(S U(2 n), S p(n))$ | $(S O(2 n), S O(2 n-1))$ |
| :---: | :---: | :---: | :---: |
| $a_{k}$ | $k(2 n+1)$ | $2 k n-1$ | $2(k-1)(n-1)+n$ |
| $p$ | $p \geq 3$ | $p \geq 3$ | $p \geq 3$ |
| $(G, H)$ | $\left(E_{6}, F_{4}\right)$ | $\left(S \operatorname{pin}(8), G_{2}\right)$ |  |
| $a_{k}$ | $12 k-5$ | $6 k-2$ |  |
| $p$ | $p \geq 5$ | $p \neq 3$ |  |

Then for $k \geq 2$ the following statements hold:
(1) for $(G, H) \neq(S O(2 n), S O(2 n-1))$ the projection $G_{(p)} \rightarrow H_{(p)}$ is an $A_{k}$-map if and only if $p \geq a_{k}$;
(2) for $(G, H)=(S O(2 n), S O(2 n-1))$
(a) if $p \geq a_{k}$ then the projection $G_{(p)} \rightarrow H_{(p)}$ is an $A_{k}$-map;
(b) if $p<a_{k}-n+2$ then the projection $G_{(p)} \rightarrow H_{(p)}$ is not an $A_{k}$-map.

There are yet more pairs $(G, H)$ satisfying a $\bmod p$ decomposition (1.1), and in [8], for such $(G, H)$, a range of $p$ in which a projection $G_{(p)} \rightarrow H_{(p)}$ is an $A_{k}$-map is also determined.
The proof for a projection $G_{(p)} \rightarrow H_{(p)}$ being an $A_{k}$-map is done by refining the product decomposition of projective spaces proved in [7], and the proof for a projection $G_{(p)} \rightarrow H_{(p)}$ not being an $A_{k}$-map is done by a cohomological criterion which is a sort of a higher homotopy associativity version of the following simple lemma.
Lemma 2.4. Let $(G, H)$ be a connected pair of Lie groups satisfying a mod $p$ decomposition (1.1). Suppose there are maps $f_{1}: S^{m_{1}} \rightarrow H_{(p)}$ and $f_{2}: S^{m_{2}} \rightarrow(G / H)_{(p)}$ such that $q_{*}(\langle h \circ$ $\left.\left.f_{1}, h \circ f_{2}\right\rangle\right) \neq 0$, where $q: G_{(p)} \rightarrow H_{(p)}$ is a projection and $h: H_{(p)} \times(G / H)_{(p)} \rightarrow G_{(p)}$ is a homotopy equivalence (1.1). Then $q$ is not an H-map.

Proof. By definition, $\left.q \circ h\right|_{H_{(p)}}=1_{H_{(p)}}$ and $\left.q \circ h\right|_{(G / H)_{(p)}}=*$. Then if $q$ is an H-map,

$$
q_{*}\left(\left\langle h \circ f_{1}, h \circ f_{2}\right\rangle\right)=\left\langle q \circ h \circ f_{1}, q \circ h \circ f_{2}\right\rangle=\left\langle f_{1}, *\right\rangle=0 .
$$

which contradicts the assumption.

## References

[1] H. Hamanaka and A. Kono, A note on Samelson products and mod $p$ cohomology of classifying spaces of the exceptional Lie groups, Topol. Appl. 157 (2010), no. 2, 393-400.
[2] B. Harris, On the homotopy groups of the classical groups, Ann. of Math. 74 (1961), 407-413.
[3] B. Harris, Suspensions and characteristic maps for symmetric spaces, Ann. of Math. 76 (1962), 295-305.
[4] S. Hasui, D. Kishimoto, T. Miyauchi, and A. Ohsita, Samelson products in quasi-p-regular exceptional Lie groups, Homology Homotopy Appl. 20 (2018), no. 1, 185-208.
[5] S. Hasui, D. Kishimoto, and A. Ohsita, Samelson products in p-regular exceptional Lie groups, Topology Appl. 178 (2014), no. 1. 17-29.
[6] S. Hasui, D. Kishimoto, T.S. So, and S. Theriault, Odd primary homotopy types of the gauge groups of exceptional Lie groups, Proc. AMS 147 (2019), no. 4, 1751-1762.
[7] S. Hasui, D. Kishimoto, and M. Tsutaya, Higher homotopy commutativity in localized Lie groups and gauge groups, Homology, Homotopy Appl. 21 (2019), no. 1, 107-128.
[8] D. Kishimoto and T. Miyauchi, Higher homotopy associativity in the Harris decomposition of Lie groups, Proc. Roy. Soc. Edinburgh: Sect. A, DOI: https://doi.org/10.1017/prm.2019.57.
[9] S. Kaji and D. Kishimoto, Homotopy nilpotency in p-regular loop spaces Math. Z. 264 (2010), no. 1, 209-224.
[10] D. Kishimoto, Homotopy nilpotency in localized $\operatorname{SU}(n)$, Homology, Homotopy Appl. 11 (2009), no. 1, 61-79.
[11] D. Kishimoto and M. Tsutaya, Samelson products in p-regular $S O(2 n)$ and its homotopy normality, Glasgow Math. J. 60 (2018), no.1, 165-174.

Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan
Email address: kishi@math.kyoto-u.ac.jp
Department of Applied Mathematics, Faculty of Science, Fukuoka University, Fukuoka, 8140180, Japan
Email address: miyauchi@math.sci.fukuoka-u.ac.jp

